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A theoretical analysis is provided of the anomalous isotope effects observed for the diffusion of
hydrogen on the W(110) surface in the limit of zero coverage. Low temperature tunneling
diffusion shows an isotope effect several orders of magnitude smaller than predicted by simple
rigid lattice models, while the higher temperature activated diffusion displays an inverse
isotope effect several orders of magnitude larger than the rigid lattice predictions. It is shown
here that both effects can be explained consistently by a single model of hydrogen-tungsten
interactions in which there is a large separation in time scales between the hydrogen and
tungsten motions. Tunneling is described with a small polaron model. Large phonon overlap
factors are found to diminish the role of the tunneling matrix element and thereby to decrease
the isotope effect. Activated diffusion is described as a many-phonon process in which the
vibron is thermally excited as a result of phonon—vibron coupling. The same coupling
parameter explains both the tunneling and activated diffusion results. This coupling parameter

is shown to be dependent on adsorbate mass.

I. INTRODUCTION

The dynamics of adsorbed atoms on metal surfaces is a
subject of great theoretical interest to which relatively little
experimental effort has been devoted. A very sensitive probe
of the details of the adsorbate—substrate interactions is pro-
vided by the adsorbate diffusion coefficient D(7T). Recent
measurements of D(7") as a function of temperature have
been made by the field-emission-fluctuation spectroscopy’
technique. Here we examine the low coverage results for
hydrogen diffusion on the tungsten (110) surface, summar-
ized in Figs. | and 2, and show how it is possible to extract
from the unusual isotope dependence of D(T) several im-
portant features of the hydrogen—tungsten interactions
which are involved in the diffusion process.

The unusual experimental findings involve the follow-
ing observations:

(1) Classical theories of the high temperature D yield
the Arrhenius form

Dy r=1?oymg " exp( —V/kpT), (1.1)

where ¥ is the barrier height for diffusion, / the jump length
(i.e., lattice spacing), and @y /27 the attempt frequency for
"H. However, as seen in Fig. 1, the Arrhenius prefactor in the
activated regime increases dramatically with increasing hy-
drogen mass my . Freed” has shown that the huge inverse
isotope dependence can be explained as a purely quantum
mechanical effect to be expected in this system as a conse-
quence of strong coupling between a local low energy
phonon and a much higher energy hydrogen vibron.

(2) At low temperatures, D becomes very weakly tem-
perature dependent (see Fig. 2) and tunneling dominates.
The frozen lattice approximation implies that the only mass
scale in the problem is my; and therefore that the diffusion
coefficient should have the form

D; = I?wy exp[ — S,(m;/m )], j=1.23. (1.2)

When the tunneling does not occur near the barrier maxi-
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mum, it is permissible to use a WKB approximation, and .S,
is the WKB exponent for H, tunneling. Equation (1.2) is
inconsistent with experiment, which shows a much weaker
dependence of tunneling rate on hydrogen mass: If the value
of S, is estimated from Eq. (1.2) and if the experimental
values of D,, D,, and D; are inserted in Eq. (1.2), the result-
ing values of D are many orders of magnitude too large,
unless the prefactor / >wy is considerably smaller than the
expected value of ~ 1072 cm? s~ . Thus in order to reduce
this prefactor, either there is strong “mass renormalization”
as suggested by Muttalib and Sethna,* or, as we prefer to
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FIG. 1. Prefactors D, for hydrogen diffusion on W(110) in the thermally
activated regime vs M :” 2 extrapolated to zero coverage. D, is defined by
D =D, e~ """ where ¥ is the activation energy. M is the isotope mass in
amu. [From Ref. 1(b).]
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FIG. 2. Log D vs inverse temperature for the three isotopes at low coverage.
Solid lines are fitted by Eqgs. (3.9) and (4.2) for the low and high tempera-
ture regimes, respectively.

describe it, large lattice overlap factors must contribute to
the tunneling matrix elements because the lattice must dis-
tort to accommodate the hydrogen tunneling.

Since phonon-hydrogen coupling appears to be impor-
tant in determining the diffusion rates, it should be possible
to explain diffusion in both the high and low temperature
regimes by the same microscopic model of hydrogen—tung-
sten interactions. The purpose of this paper is to demonstrate
that this can be done and to use the experimental data to
deduce some general features of the potential which de-
scribes the phonon-hydrogen interactions. Section II dis-
cusses the single-well problem which governs the coupled
dynamics of the hydrogen and the local lattice distortions
within a single potential well for the hydrogen atom on
W (110). Sections II and III briefly review the theories of
small polaron hopping (SPH) and nonadiabatic activation
(NAA), respectively, and show them to be applicable to this
system in the tunneling and activated regions, respectively.
The crucial parameter, which justifies both approaches, is
the large ratio of the frequencies of the hydrogen vibration to
that of the phonons. We analyze the data in terms of the SPH
and NA A models and find that a novel feature of the interac-
tion emerges, namely that the lattice distortion (polaron)
appears to have a sizeable dependence on the hydrogen mass.
This conclusion has also been reached independently by
Emin who has proposed a simple explicit model potential
exhibiting this behavior.* This result has important implica-
tions for any ab initio or semiempirical calculations of the
potential, i.e., it is necessary to calculate the hydrogen wave
function self-consistently in order to determine the effective
potential which it feels. We also deduce that relatively few
localized phonons within a narrow spectral range are prob-
ably relevant in the coupling to the hydrogen motion.

li. THE SINGLE WELL PROBLEM

Since the sublimation energy of W is 9.3 eV and since
the binding energy of H on W(110) is 2.8 eV, the energies

per W-W and per H-W bond are comparable. Thus, it seems
reasonable to assume that the H-W and W-W force con-
stants are of the same order of magnitude. The large ratio of
tungsten to hydrogen masses my, /my > 1 therefore implies
a clear separation of time scales between the vibron and local
phonon frequencies wy and o, , respectively, namely that
oy >y . This assumption is confirmed by the direct mea-
surements of wy (96 and 160 meV) and by the surface De-
bye temperature [ ~27 meV for W(110)].° We also assume
that the interatomic forces are not of long range, and there-
fore the dynamics of an H atom at a given surface adsorption
site « is most strongly coupled to only a few localized lattice
modes, denoted by g7, i = 1,2,... . This results in consider-
able simplification of the analysis of the coupled hydrogen-
lattice problem in the experimental temperature regime 273
K> T> 27 K. Additional coupling of hydrogen to the lower
lying excitations of the lattice provides a thermal heat bath
and source of dissipation which is discussed in the following
sections. Here we first treat the single well problem, which
does not involve intersite tunneling, as the starting point for
understanding the diffusion process in both the activated
and tunneling regimes.

We begin by expanding the total potential energy V for
the hydrogen coordinate r about 7, where 7 is the equilibrium
interstitial position in the distorted surface adsorption site.
The single well Hamiltonian HV is written as

HSW = TH + Tw -+ V(l',{q,}) 3 (213.)

where g, is the ith phonon coordinate and where the kinetic
energy operators are

#? #
T, = — 82, Ty = — 32 .
H 2my, v 2my, 2,: %

(2.1b)

Because of the time scale separation, an adiabatic (or Born—
Oppenheimer) approximation allows the single well eigen-
states to be written as the product ¥,,, ({g;: Dé(r;{g;})
where the site index « is dropped for convenience. The vi-
bron and phonon wave functions obey, respectively, the
Schrodinger equations

[TH + V(r’{ql})]¢n = Un({qx})¢n ’
[TW + Un ({qi})]¢m,n =Em,n¢m,n .

Expanding U, to quadratic order around its minimum
g; (n) gives

(2.2a)
(2.2b)

U, (g ) = U, (@,(m}) + - my 3ok,

X[¢:—q,(m) 1>+ 0[g—gm)]?, (2.3)
where @, ; defines the local phonon frequency, and g; (n) is
the polaron distortion due to the occupation of the nth vi-
bron state in the surface ad site. In general, Eq. (2.2a) im-
plies that U, ({g,}) and hence both w, ; and §; (n) depend
on hydrogen mass and vibron quantum number. When the
potential Vis smooth, U, in Eq. (2.2a) is well approximated
by the harmonic oscillator eigenvalues (n + 1) #fiwy for the
vibron levels, where wy = @y ({g;}). As a result the mini-
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mum positions g; (n) in Eq. (2.3) satisfy

g, (n)=g;(nmy) =7, [(n+ 1) mz '] . (2.4)

Equation (2.4) leads to a useful relation between the isotope
dependence of the polaron distortions and their variations
with the vibron quantum number. This relation is obtained
in terms of the finite difference approximation
Mz —lm+Dmg' [g(n+1) —g. ()],
dmy
(2.5)

which is used later for semiquantitative comparisons
between tunneling and activated diffusion.

Hl. THE SMALL POLARON HOPPING

At approximately 100 K the measured high tempera-
ture diffusion coefficients D(T) exhibit a relatively sharp
transition from activated behavior D=~exp( — V/T) toa
very weak temperature dependence at lower temperatures
(Fig. 2). This suggests that at these lower temperatures
quantum tunneling processes dominate over thermal activa-
tion over the intersite barriers. The small polaron hopping
(SPH) theory, which has been specifically developed to
treat electron motions in metals in the presence of strong
electron—phonon coupling,®’ provides a natural framework
for treating the hydrogen tunneling. The common feature of
the electron—phonon and vibron-phonon problems is that a
large separation exists between the electron and phonon time
scales as well as between the hydrogen and lattice character-
istic time scales.

We assume for now, and return later to justify this as-
sumption, that the hydrogen motion for 100 K > T'> 27K is
described by incoherent tunneling hops between neighbor-
ing wells. This breaking of coherence is produced either by
slight disorder or by a heat bath with a continuum of low
energy (<27 K), bosonic excitations which may involve
acoustic phonons, hole—particle excitations, etc. Disorder
can arise from lattice strain, from impurities and from the
fact that experiments must be made at nonzero coverage.
The lack of coherence implies that at the measured tempera-
tures above 27 K the tunneling is dominated by nondiagonal
transitions which do not conserve the heat bath quantum
numbers, so that coherent diagonal transitions are unimpor-
tant. Thus, the diffusion coefficient is given by the Fermi
golden rule expression for incoherent hopping,

D=27”12J2p(T), (3.1
where J is the tunneling matrix element, which we discuss
shortly, and in the heat bath model p is the weakly tempera-
ture dependent density of inelastic boson excitations contrib-
uting to the nondiagonal transitions. If the breaking of co-
herence between tunneling events is due to static disorder, p
in Eq. (3.1) is replaced by (A, ) "', where A, is the mean
energy mismatch between the neighboring intersite configu-
rations. The magnitude of A, depends on the strength of the
disorder. This disorder mechanism would also yield a weak
temperature dependence in Eq. (3.1).

Flynn and Stoneham® (FS) have explicitly calculated
p(T) for two distinct microscopic models of the heat bath.
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FS use phonons as the heat bath, but here their work can
straightforwardly be generalized to include low lying acous-
tical phonons and electron-hole excitations.) We quote two
of their main results for p (7 for different coupling symme-
tries between the tunneling coordinate and heat bath boson
coordinates in order to justify our contention that the heat
bath could produce incoherent hydrogen hopping and that
the prefactor of Eq. (3.1) is weakly temperature dependent.

First FS show that a set of antisymmetrically coupled
(e.g., linear in both tunneling and boson coordinates) oscil-
lators yields

(3.2)

P (1) = exp( — A, /K1),

T 172
Frword
where A, is the associated heat bath relaxation energy, re-
leased by shifting the oscillator coordinates (distorting the
adsorption site) to minimize the total hydrogen—environ-
ment potential. When both symmetric and antisymmetric
couplings are present, FS show that p(7) may be expressed
as

]1/2 [_— (A, +A) (3.3)

4A, A, K;T

where A, is the symmetric distortion energy for the most
probable tunneling path. These model expressions are useful
to justify the contention that at temperatures high compared
to A, the density p(T') is expected to vary only slowly with
temperature. Because of the relatively large region of flat
temperature dependence observed for 100 K> 7'>27 K,
these inelastic bosonic processes have an upper cutoff A <27
K which is well below the excitation energies of the vibron
and of the local phonons #iwy and fiw; , respectively, that
contribute to the diagonal ground-state to ground-state tran-
sitions in the tunneling matrix element J. If such a separation
did not exist, the transition to activated behavior would be
gradual and over a large temperature range instead of the
fairly sharp behavior observed. Knowledge of A would also
allow us to estimatep at 7> 27 K, since Egs. (3.2) and (3.3)
give p~ (k3 A)~' in this limit.

The lowest temperature regime of the SPH model oc-
curs where there is coherent band motion. Whaley et al.® use
a band-like transport equation to explain the low tempera-
ture data of Ref. 1. Here we argue, however, that even at the
lowest accessible temperatures, this regime is unattainable
because of the extreme narrowness of the expected hydrogen
bandwidth J. The criterion for coherent propagation over
more than one lattice constant is that A<J. We estimate an
upper bound for J from the observed D at 27 K, which is
taken for the purposes of this estimate as equal to Dy _,.
Thus we have

J<HDy_ 17y | 22107 12€V (3.4)

where /=3 A is the nearest neighbor hopping distance. It is
therefore quite unlikely that A could be as much as nine
orders of magnitude below the experimental temperatures of
1072 eV in order to satisfy the condition A<J for the exis-
tence of coherent band motion for the hydrogen at 27 K. If
the incoherence is induced by static disorder, then the above
arguments proceed using A = A, as a measure of the ran-
dom energies involved.

Pas(T) = [
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J is the multidimensional tunneling matrix element
between localized vibron—phonon states at neighboring sites.
The formalism of the path decomposition expansion'®
(PDX) allows us to evaluate J by simultaneously using the
semiclassical approximation and the fast-flip or Franck-
Condon approximation. The first is asymptotically exact in
the limit of small #iwyy /V, and the second is accurate in the
limit of large wy /@, . The latter condition is consistent with
our Born—-Oppenheimer-type separation, while corrections
due to a finite barrier height are easily appended but do not
change the general conclusions. The PDX involves separat-
ing configuration space into disjoint regions where the wave
functions are independently determined. Thus, we use the
single-well Born—Oppenheimer wave functions ¢¥*,a = 1, 2,
for the local phonons, where a denotes the site occupied by
the hydrogen. The ground state diagonal tunneling matrix
element is then given by

2mwy
hi,

where the action under the tunneling barrier is evaluated
semiclassically as

12
J = fiwy ( ) (Woo [Wiodexp( —Sy), (3.5)

2 -
SH = —ﬁ' (ZmH V1)1/2lt ’ (36)
and where a quartic double-well potential for the hydrogen
tunneling coordinate 7, is parametrized as

V(r)—I_/[ 4 )2—12
R (1,/2 ]

The subscripts in Eq. (3.5) designate that both wells have
the local phonons in their ground states. In principle, ¥, can
be larger than the measured activation energy ¥ since the
activation process chooses the minimal barrier height need-
ed to cross over to the neighboring well and since the energy
—17,, on the other hand, is the height of the barrier along the
minimum action path between the two wells. Here we set
¥ =V, and lump our ignorance of the exact tunneling path
and potential into the uncertainty in the tunneling distance
/,. The form of Eq. (3.6) is then valid for more general po-
tentials than Eq. (3.7) where /, is on the order of the actual
tunneling distance.

The overlap factor can be evaluated using the Gaussian
eigenfunctions associated with the potential in Eq. (2.3).
Ignoring changes in phonon frequencies between a well
which is occupied by a hydrogen or is not, this overlap is

(3.7

('/’(1),0 |¢(2),0 ) =exp( —Sw)

= exp[ _Ln‘;i’y"z_“)L,i [qi(o) —qiw]z} ,
(3.8)

where g~ is the mean phonon position when there is no
hydrogen at the site. It is straightforward to include phonon
frequency changes, but there is presently insufficient infor-
mation to provide any information on these changes. Thus,
we employ the standard model of Eq. (3.8), which should be
of sufficient accuracy for our order of magnitude-type calcu-
lations. The overlap action Sy, can in general reduce the
diffusion coefficients by a sizeable amount, even for relative-

ly small polaronic distortions. Note that S, contains two
identical contributions from the two wells in ' and %
hence, there is no factor of 1/2 in front of the summation
over modes in Eq. (3.8).

As shown in Ref. 10, when large changes of curvatures
in the transverse components of hydrogen coordinates r, and
r; are coupled to the tunneling coordinate 7, the effective
barrier height ¥ is expected to be strongly isotope dependent
through a quantum renormalization of the tunneling barrier
with the shift 8V~ m,; 2. This barrier renormalization re-
sults from the “squeezing” of the transverse zero point mo-
tion near the barrier top and is discussed in the solution of
such model problems as in Ref. 10, Sec. IV. Although such
anomalous isotope dependences have been observed in bulk
diffusion, the values of ¥ determined here from the data in
the activated regime appear to be only weakly isotope depen-
dent. Thus, we disregard the transverse hydrogen coordi-
nates as irrelevant for the tunneling analysis.

We therefore fit the low temperature, low coverage data
for D(my ) to our final theoretical expression for the tunnel-
ing diffusion,

2mwy

172 -

My |2
Xexp’—Z( ) S, =28y —2(my —my)
m,

])
my

where a Taylor expansion of Sy, and my = m, is introduced
to simplify the form of my dependence. We estimate
1, =0.5-0.8 A from the geometry of the surface and take
#iwy = 100 meV from Ref. 5. Unfortunately, we do not
have a way to independently determine a lower bound on the
heat bath or disorder scale A. Thus, we choose it to be in the
wide range of 0.1-2 meV. Substitution of these quantities
into Eq. (3.9) and use of the experimental data' for D yields

% dSw

3.9
e, (3.9

S, =37+06 Sy =14+2, (3.10a)
ds

¥ = —15+03, (3.10b)
dmy

where the range of values in Eq. (3.10) comes from the range
of possible A.

Equation (3.10b) implies the data for D can only be fit
with an isotope dependent factor S w (74 )! (Choosing high-
er values for /, and ¥, would lead to even a larger value of
dS v /dmy.) This is one of our main results: The low tem-
perature diffusion data are shown here to require a sizeable
isotope dependence of the hydrogen-lattice force constants
that determine the phonon overlap factor through o, ; and
q;-

As noted above, the work of Muttalib and Sethna® in-
vokes the opposite time scale separation, namely, the hydro-
gen tunneling time is argued to be long compared to phonon
inverse frequencies. Although the resulting “mass renormal-
ization” also yields a large contribution to the tunneling ac-
tion, thus reducing the relative hydrogen mass dependence
of D, it is inconsistent with measurements of vibron and
phonon frequencies.’ As mentioned earlier, the smallness of
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o /oy is essential in explaining both isotope dependence in
S'w and the inverse isotope dependence of the activation pre-
factor. We now discuss the latter behavior.

IV. NONADIABATIC ACTIVATION

Consider now the thermally activated regime. The prin-
cipal contribution to the diffusion coefficient is assumed to
come from barrier climbing by H atoms, rather than from
activated polaron hopping. This assumption is based on the
experimentally observed strong inverse isotope effect, name-
Iy that the activation energies vary only slightly with adsor-
bate mass but that the prefactors vary as
Dy~exp( — cmy V?) (see Fig. 1). If activated polaron hop-
ping were involved, the prefactor would go as
Do~exp( — ¢'mg '?) since the hydrogen tunneling would
introduce a tunneling exponent strongly decreasing with in-
creasing mass.

The quantum theory of thermal activation above a bar-
rier has been formulated in Ref. 4. It involves solving the
master equation for the Markovian probabilities of occupy-
ing the ladder of vibron states in a given single potential well.
Freed” has applied this theory to the present system by using
H®Y of Sec. 11, where the role of the local phonons is to
“promote” the hydrogen up the vibronic ladder of states
until it passes the barrier of energy ¥ and hops to a neighbor-
ing well. The intrawell transitions are generated by the nona-
diabatic correction to the Born-Oppenheimer approxima-
tion and are induced by the operator P,

P¢(r,{q})E[TW’¢(r,{qi})] ; (4.1)
where Ty, is defined in Eq. (2.1b), and where the rates of the
interawell transitions are dependent on the shifts in the
phonon equilibrium positions g(n + 1) — g(n). The result-
ing expression for D is given by

DhighT =D, exp( — I_//T) s 4.2)

where D, is proportional to the average nonadiabatic matrix
element between consecutive vibron levels. In practice only
about 2-3 vibron levels exist below the barrier, so here we
study only the 0— 1 transition as this may very well be the
rate limiting transition for the activation process.

The Golden Rule expression for D, is consequently giv-
en by

2
DO = 777’ lz (2} K\I/{m},o IP I\I’{O},l > '25(2 miﬁa)L,i _ ﬁa)H) ,
| l (4.3)

where the second quantum numbers on V¥ are those of the
vibron. The matrix element of P cannot depend exponential-
ly on the hydrogen mass since it is evaluated between vibron
wave functions in the same well. Thus, we factor Eq. (4.3)
into the vibron matrix element |P,,|? and the phonon over-
lap factors. The overlap factor of a single phonon mode
between its ground state and its N, th excited state is

[(O|RL)|>=exp( — X, )X &:/R, , (4.4)
where R, = fiwy /#iw, is the number of phonon quanta re-
quired to promote the vibron from its ground state to its first
excited state, and X, is the dimensionless shift

X, =29 201y — 3(0)]2. (4.5)

24
For a set of Einstein phonons of the same frequency w; , the
total overlap factor is given by Eq. (4.5) with X, replaced
by the sum

My, @ _ _
Xo=—02=2 [4.(D-3,O]".

Thus, in this case the behavior of Eq. (4.3) for large R,
becomes?

(4.6)

2
Dy = 7;1 |Poi|? exp{ — Xo; — R, [log(R, /Xo1) — 11} .
4.7

When R, islarge, the isotope dependence in Eq. (4.7) is
dominated by the second argument in the exponential which
goes as — my; '2. If additional lower frequency modes )
are involved where R ; >R it can be shown using a two
frequencies model (see Ref. 2) that their contribution to Eq.
(4.7) is suppressed provided that are not coupled very
strongly, i.e., they do not yield an exponentially larger con-
tribution to X,,, such that X, =exp(R ; /R, ) X,,. Thus
the effective R, ~m; '/* dependence is given by the primar-
ily higher frequencies w, . This assumption is compatible
with any microscopic approach involving short range or
pairwise interactions, where the strongly coupled lattice
modes are primarily the local optical modes. In principle,
X, is expected* to be inversely proportional to (my )~ " as
shown in Sec. II for the scaling of g(n,m;; ) in Eq. (2.4).

We estimate the magnitude of X, by fitting Eq. (4.7) to
the experimental D, values shown in Fig. 1. Using wy/
@z, = (my /my)'? = 13.5 it is found that X,), is roughly of
o(1).

The consistency of this result is checked by relating X,
to the isotope dependence of the overlap factor dS'y, /dmy,
which is determined from the tunneling data in the previous
section. Using Egs. (3.8), (4.6), and (2.5) we write

(o)

dmy
2my, - - dg; |?
[ P ZwL [2:(0) —g7] = ]

H
2
:[ﬁﬁ‘”—zm,.- @ ~¢7f°>§m§‘ [7:(1) —WO)I}

=3 Sy my Xy, . (4.8)
Substituting the values determined in Eq. (3.10) into Eq.
(4.8) in turn yields X,,; ~0.3-2.0.

Although the isotope dependence observed in activated
diffusion argues against activated polaron hopping, as al-
ready noted, it is worthwhile to ask why this should be so,
since hydrogen diffusion in the bulk of metals is usually tak-
en to proceed by polaron hopping.® The short answer seems
to be that in the bulk the barrier for hydrogen motion is
rather high, so that activation over it is never competitive
with polaron hopping at accessible temperatures. It is intu-
itively reasonable that the opposite should be true in surface
diffusion, but it is worthwhile to attempt a more quantitative
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answer. If activated polaron hopping were to occur, D would
be given approximately by

D=~1*wy exp( — Sw#w, /kT) exp( — 2 Sy ) - (4.9)

The strain energy is S 7w, and may be evaluated using the
value of Sy deduced from the tunneling data. If we take
Sw ~ 14 from Eq. (3.10a) and #iw; ~100cm ™' = 0.012eV
as an average phonon frequency,” we find Sy #iw; ~0.17
eV = 4 kcal/mol. This value is comparable to the observed
activation energy, and the smallness of the prefactor for 'H
could arise from the hydrogen tunneling term exp( — 25y )
in Eq. (4.9). However, in that case we would expect a sub-
stantial increase in activation energy and D, as T increases,
since tunneling would then be replaced by barrier climbing.
This is not observed over the accessible range of activated
diffusion, as shown by Fig. 2. The estimate of strain energy is
of course very rough. However, even if it were substantially
less than 4 kcal, appreciable tunneling in the activated re-
gime would lead to a much more gradual crossover between
tunneling and fully activated behavior than is seen for 'H.
Furthermore, Eq. (4.9) cannot account for D, of ?H and *H
in any case since the observed values of D, are much larger
than predicted by inclusion of exp( — 25 ) if the smallness
of D, for 'H is attributed to this factor. Finally, as coverage
increases small changes in @, can account for the observed
increases in D, via the Freed NA A mechanism.” No compar-
able explanation in terms of activated polaron hopping
comes to mind.

V. DISCUSSION

The preceding sections have shown that substrate phon-
ons play a vital part in hydrogen diffusion on W(110) and
that both activated and nonactivated diffusion can be ex-
plained consistently in terms of adsorbate—phonon interac-
tions if a large separation in time scales for hydrogen and
tungsten motions is assumed. This adiabatic separation also
leads in a natural way to an isotope dependence of effective
hydrogen-lattice force constants. The isotope dependence
has been invoked in the activated regime to explain the ratio
of D, values for the three isotopes and in the tunneling re-
gime to explain the fact that S'y, has some dependence on
hydrogen mass. The present analysis is consistent with as-
suming that only a small number of neighboring tungsten
coordinates, i.e., local phonons, are involved. Thus, a micro-

scopic approach, using pairwise potentials of short range, is
Justifiable.

This paper deals only with the very low coverage limit.
Reference 1 shows that D is significantly coverage depen-
dent in the tunneling regime, but that the D vs 8 curves re-
main essentially parallel, i.e., that the isotope effects remain
constant, except for a difference between 'H and *H on the
one hand and *H on the other at 8 > 0.7. Speculations on the
coverage dependence of D have been given elsewhere. ™!
For present purposes it suffices that the isotope effect is al-
most coverage independent (with the exception of 2H at high
coverage). Thus the considerations of this paper probably
apply at higher coverage as well. D, in the activated regime
also shows strong coverage effects,'® which are different
for each isotope. It has been speculated!® that these have to
do with small changes in phonon (and/or adsorbate) fre-
quencies with increasing coverage. A detailed discussion
would go beyond the scope of this paper, but it seems quite
reasonable that very small changes of this kind can account
for the observed behavior within the framework of the pres-
ent model.
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