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Even-odd correlations in capacitance fluctuations of quantum dots
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We investigate effects of short-range interactions on the addition spectra of quantum dots using a disordered
Hubbard model. A correlation functio$i(q) is defined on the inverse compressibility versus filling data, and
computed numerically for small lattices. Two regimes of interaction strength are identified: the even/odd
fluctuations regime typical of Fermi-liquid ground states, and a regime of structutg{lgysat strong inter-
actions. We propose to understand the latter regime in terms of magnetically correlated localized spins.
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Coulomb interactions and disorder in electronic systemsvherec/, creates an electron at sitavith spins, (ij ) denote
have posed a major challenge to condensed matter physiggarest neighbors on the lattice, andare random site en-
for quite some time. Quantum dots with discrete electronicergies taken from a uniform distribution in the domain
spectra offer a new avenue to this problem. A direct probe tCP—W/\/§,W/\/§]. OIES creates an electron in eigenstape
the ground-state energy is given by Coulomb blockade peakgnd spins. An orbital coupling to a magnetic field is in-
in the conductanpe as the gate voItage is vatiédheory of  ¢luded by defining;;(B) =te'®A i, whereVx A=B.
spectral fluctuations of noninteracting electrons has made |n the absence of electron interactions, the inverse com-
much progress during the last decade due to the advent gfessibility is given by
semiclassical approximations, random matrix theognd
the nonlinearo model approacf® However since Coulomb 0, N=2n+1
interactions are essential for the “Coulomb blockade” ef- Ao(N)= e N=2n 4
fect, one may wonder as to the validity of noninteracting nero S '
approximations to quantum dots in general. In particular: isvhere e, are defined in Eq(3). We find it useful to define
the ground state qualitatively similar to or different than athe “Ising” variables,

Fock state of the lowest single electron orbitals?

To gain insight into this question, we consider a system of S(N)= A(N)—A(N—1) (5)
interacting electrons on a finite tight binding lattice with on- [A(N)—A(N—-1)|’
site disorder. The inverse compressibility at consecutive fill

‘and a corresponding correlation function on a series of

ings is consecutive data points,
A(N)=E(N+1)—2E(N)+E(N—-1), () S(q)zpij}:‘,lS(Ni)S(N,-)exp[—i(Ni—Nj)q]. (6)

whereE(N) is the ground-state energy of a dot whkhelec- ) ) ) .
trons.(We assume weakly coupled leads such tas well ~ Obviously, the noninteracting spectrum has perfect “long-
defined within the area of the dpBy varying a gate poten- range antiferromagnetic correlations” i.&(7)=1. _

tial ¢, the dot's energy is modified t&f=E(N)—eeN. Coulomb interactions are treated by separating the inter-

Conductance peaks through the leads are observed &gtions into the long- and short-range parts. A crude approxi-

E®(N)=E®(N+1), ie., at potentials epy=E(N+1) mation to th(_ase two terms is given by an infinite range term

—E(N). Thus differences between the peak potentigls 2nd an on-site term

yield direct measurements &f(N) which can be defined as (N—1)

e? times thediscrete inverse capacitana# the dot. Hi = €2
We shall model the single electron part of the dot’s

Hamiltonian by a site-disordered tight-binding model

5C +UEi NiyNi |, (7
Wherenis=c;r5ciS ,5=1,]. Itis clear that the first term sim-
ply adds a constarg?/C to A(N), and therefore does not
_ PR ) t alter S(q). Thus in our model, deviations oB(q) from
Ho_izs WiCisCis (,2” tij(B)CisCjs 2 So(q) must therefore be a consequence of the Hubbard in-
teractions described by the second term in &g}
We restrict ourselves to a square latticedfsites with
= eala 3) periodic boundary conditions, and to disorder stre’ytap-
hs onens propriate for the “diffusive” regime, i.e., the mean free path

0163-1829/96/5¢0)/142894)/$10.00 54 14 289 © 1996 The American Physical Society



14 290 PRUS, AUERBACH, ALONI, SIVAN, AND BERKOVITS 54

| for the noninteracting electrons is of the order of, or smaller 0>Ae—[E}(2n)—E5(2n)]=Ae+UZF,
than, the system’s linear length Usingl=vg7, where the
inverse lifetime is calculated in the Born approximation to be

n—-1
7=8th/27W2, we find L/1 = (7/16)yN(WI/t)2. F= Z ( (| e 1) %= wn(xi)lz)< E Iwnr(xi)lz)

Perturbation theory:We diagonalizeH, on a square lat-
tice of sizeN, with periodic boundary conditions for a given 4
realization{w;}. The single electron eigenenergigs,} and ()|, (12
wave functionsy,(i) are assumed to be known. The first
order correction to Eq4) are given by second differences of whereAe=e€,,,— €, andE} ,E; are the interaction correc-
the first-order energies, tions to the singlet and triplet energies, respectively. Equa-
tion (12) can alternatively be written as an inequality for
E,(N)=U > > |l/’”w|2| l/’”¢|2' (8)  A(N) which includes up to first-order corrections ih

ny<ng; n<ng|

Here we appeal to the random matrix propertieg{gfin the 0>A(2n)—A(2n—-1)— UZ (| 1(X)|?

diffusive regime, in order to estimate the magnitude and :

fluctuations ofE; analytlca_lly. We assume a random vector — () |2 (X0 ]2. (13)
model (RVM) where all eigenvectorg,, are random com- ) .

plex unit vectors of dimensioN whose ensemble averaged For extended random wave functions, the last term in Eq.

correlations ard (13) is readily seen to be of ordgv" *? and thus negligible
in comparison tAA(2n)—A(2n—1). Equationg12,13 es-
(Yn(X) Pm( X)) RyM* Bij Onm.- 9 tablish the connection between formation of triplets and sign

flips of S(N) [defined in Eq(5)]. The sign flips degrade the
“antiferromagnetic” correlations o6(q) asU is increased.

We shall proceed to estimate the leading dependence of
S(7;U) by a statistical calculation based on the properties of

Using the orthonormalization constraints fgf, we obtain
after some algebfathat the RVM estimate for the average
first order correction ta\ is

3U the noninteracting spectrum @{, with and without an or-
N2 N odd bital magnetic field. . o .
ARM(N) = (10) We assume that the level spacing statisticdgfin the
2U N even diffusive regime ofL/I=1 is that of a random matrix in the

Gaussian orthogonal ensemii@OE). In the presence of a

CN¥2'
) ) magnetic fieldB whose flux through the dot is of order of
We have compared the RVM estimates to numerical result6ne flux quantum divided byv*“ the level spacing statis-

for disorder averaged 1*"(N) for odd and eveN, respec- fics of 4, turns into the Gaussian unitary ensemtBUE).
tively. Calculations have been done for lattice sizeSThese assumptions were checked numerically and verified
N=56,110,210,420, with the disorder varied in the rangeqyite well for the Hamiltoniar(3) with and without external
I/Le[0.1,2.5. We find that flux, on lattices up to\/=420 sites.
U The Wigner distributions of\ e aré®
(23385, N odd \

ATTN) € U (11) PSOR(A €)= —— o [maeftas?]

[—1.3,—2.7] XN, N even. 2A

2
Comparison of Eq(10) to Eq. (11) shows the RVM esti- PSS Ae)= 32(A_6) e~ L4(8e)?/mA%] (14)
mates to be in the right ballpark in relation to those obtained w?AS
by numerically determiningy,, of the disordered tight- - .

- : ; . .whereA is the mean level spacing.
binding model. The main lesson learned by this calculation is e . . .
. . The probability distribution of the interaction term in Eq.
that first order Hubbard correctiomeduceon average the (12) is denoted b
fluctuations inA(N) since they are positive for odd and y

negative(on averaggfor evenN.

1
Variational theory for sign flipsThe weak coupling re- PyUF)= Upl(ﬂ’ (15)

ime is defined where the noninteracting ground s . . . . - :
g 99 titg) qvhere P} is a dimensionless function of its dimensionless

is variationally stable against particle hole excitations. Whe o o o
interaction strength exceeds a certain threshold, it is variag@’9ument. The probability of satisfying EL2) is given by

tionally advantageous to create spin-polarized electron-holf1€ double integral

pairs, e.g.p;FTchFJ\IfO), which reduce the Hubbard inter- ’ o UF

action energy at the expense of enhanced single patkicle Pﬂ'p(U)ZJ dfpi(f)f d(Ae)Py(Ae),  (16)
netio energyen_ 41— €. In this variational theory, for an 0 - 0

even number of electrons the threshold for forming a tripletwhich at weak couplingJ <A we can evaluate using the
is given by the inequality low-energy expansion d?, and obtain
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FIG. 2. Experimental second energy differences from quantum

FIG. 1. AveragedS(q), Eq. (6), for the disordered Hubbard dots of GaAs, Ref. 10top and middlg and InO, Ref. 1Xbottom),
model on a X 3 torus. InsetS() for the =0 and¢=m/2 cases,  with corresponding correlation$(q). Correlations indicate that the
fitted to estimates of RVM variational theory. top and bottom data are in the strongly interacting regime.

- (e . - A reas_onable _fit for the numerical results in the regime
PQ%E*U2=J' dXPi(X)f dee=U2—(F?) us<1 is obta|3ned .byS(vr)=1—0.3U2_fqr ¢$=0 and
2A%J)o 0 4A% S(7)=1-0.2U°. This supports the validity of the GOE
(GUE) statistics for the casé=0 (¢=7/2).

plip_~ 3 32 wdei(X)JXdGGZUs 32_<f3>_ ExperimentalS(q). In Fig. 2 we have plotted three sets
0 3m2A3 of data forA(N) andS(q). The top two sets were measured
(17) on two quantum dots formed in a high mobility
GaAs/ALGa _,As two-dimensional electron gas by metal
gating. The lithographic areas of the dots werex00% pm,
and they both contain about 50-100 electrons.
2 GOE The bottom data, measured on InO, was taken from Ref.
U3 GUE (18 11. It is.interesting to note thaﬁ(q) shows strong eyen-odd
' ' correlations only for the middle data set, while it has no
Numerical diagonalizationsThe variational theory and 'émnance of these correlations for the top and bottom sets.

the random matrix estimates were checked by numericall){_ We do not presently understand the experimental condi-
diagonalizing the full interacting Hamiltonian on a lattice 0ns under which even-odd periodicity appear. Based on our
size 3x 3 with periodic boundary conditions with a magnetic Modeling and variational theory, we dare to speculate that
flux ¢ threading the lattice at its center. We varied the num_flatness' ofS(q) correlations is associated with creation of
ber of electrons for each specific realization froi=5 to ~ magnetically correlated ground statgsrobably of short
N=13, each time diagonalizing the correspondi@g)(ma— range which differ from Fergm-hqwd-;ype Fock states. We
trix (Le., maximum matrices of size 486288620 for MO that two recent papéfs>show spin-related structure in

N-9) or varous values o0 Then S(r) was calculated (s A1 (o slecon flings. However, e mplcations of
and averaged over 500 different realizations. y y

Two different values of¢ were considered=0 and scope of this vv_ork. Complementing th|_s work, _Ref. 14 treats
_ ; the effects of direcbong-rangeCoulomb interaction and dis-
¢= /2, which should correspond to the GOE and GUE sta—Order on the fluctuations it (N)
tistics. Because of the small size of the samples the maxi- ’

mum flux of ¢=m=/2 is not strong enough to completely  We acknowledge useful discussions with the late Arcadi
remove time reversal symmetry, and the level spacing is &ronov, and thank Yuval Gefen for helpful comments. The
combination of the GOE and GUE level spacing. The resultsupport of the US-Israeli Binational Science Foundation, the
of S( ) for both cases are presented in Fig. 1. It can be seelsraeli Academy of Sciences, and the Fund for Promotion of

that the general behavior predicted in E(s3) is observed. Research at Technion are gratefully acknowledged.

At weak coupling the reduction in the perfect even-odd cor
relations are proportional t8"P, and therefore we find that

1—8(W)OCPf"p(U)OC{
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