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We investigate effects of short-range interactions on the addition spectra of quantum dots using a disordered
Hubbard model. A correlation functionS(q) is defined on the inverse compressibility versus filling data, and
computed numerically for small lattices. Two regimes of interaction strength are identified: the even/odd
fluctuations regime typical of Fermi-liquid ground states, and a regime of structurelessS(q) at strong inter-
actions. We propose to understand the latter regime in terms of magnetically correlated localized spins.
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Coulomb interactions and disorder in electronic systems
have posed a major challenge to condensed matter physics
for quite some time. Quantum dots with discrete electronic
spectra offer a new avenue to this problem. A direct probe to
the ground-state energy is given by Coulomb blockade peaks
in the conductance as the gate voltage is varied.1–4Theory of
spectral fluctuations of noninteracting electrons has made
much progress during the last decade due to the advent of
semiclassical approximations, random matrix theory,5 and
the nonlinears model approach.1,6 However since Coulomb
interactions are essential for the ‘‘Coulomb blockade’’ ef-
fect, one may wonder as to the validity of noninteracting
approximations to quantum dots in general. In particular: is
the ground state qualitatively similar to or different than a
Fock state of the lowest single electron orbitals?

To gain insight into this question, we consider a system of
interacting electrons on a finite tight binding lattice with on-
site disorder. The inverse compressibility at consecutive fill-
ings is

D~N!5E~N11!22E~N!1E~N21!, ~1!

whereE(N) is the ground-state energy of a dot withN elec-
trons.~We assume weakly coupled leads such thatN is well
defined within the area of the dot.! By varying a gate poten-
tial w, the dot’s energy is modified toEN

w5E(N)2ewN.
Conductance peaks through the leads are observed at
Ew(N)5Ew(N11), i.e., at potentials ewN5E(N11)
2E(N). Thus differences between the peak potentialswN
yield direct measurements ofD(N) which can be defined as
e2 times thediscrete inverse capacitanceof the dot.

We shall model the single electron part of the dot’s
Hamiltonian by a site-disordered tight-binding model

H05(
is

wicis
† cis2(̂

i j &
t i j ~B!cis

† cjs ~2!

5(
ns

enans
† ans , ~3!

wherecis
† creates an electron at sitei with spins, ^ i j & denote

nearest neighbors on the lattice, andwi are random site en-
ergies taken from a uniform distribution in the domain
@2W/A3,W/A3#. ans

† creates an electron in eigenstatefn

and spins. An orbital coupling to a magnetic field is in-
cluded by definingt i j (B)5teieA•xi j , where¹3A5B.

In the absence of electron interactions, the inverse com-
pressibility is given by

D0~N!5H 0, N52n11

en112en , N52n,
~4!

whereen are defined in Eq.~3!. We find it useful to define
the ‘‘Ising’’ variables,

S~N![
D~N!2D~N21!

uD~N!2D~N21!u
, ~5!

and a corresponding correlation function on a series ofL
consecutive data points,

S~q![
1

L2 (
i , j51

L

S~Ni !S~Nj !exp@2 i ~Ni2Nj !q#. ~6!

Obviously, the noninteracting spectrum has perfect ‘‘long-
range antiferromagnetic correlations’’ i.e.,S0(p)51.

Coulomb interactions are treated by separating the inter-
actions into the long- and short-range parts. A crude approxi-
mation to these two terms is given by an infinite range term
and an on-site term

H int5e2
N~N21!

2C
1U(

i
ni↑ni↓ , ~7!

wherenis5cis
† cis ,s5↑,↓. It is clear that the first term sim-

ply adds a constante2/C to D(N), and therefore does not
alter S(q). Thus in our model, deviations ofS(q) from
S0(q) must therefore be a consequence of the Hubbard in-
teractions described by the second term in Eq.~7!.

We restrict ourselves to a square lattice ofN sites with
periodic boundary conditions, and to disorder strengthW ap-
propriate for the ‘‘diffusive’’ regime, i.e., the mean free path
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l for the noninteracting electrons is of the order of, or smaller
than, the system’s linear lengthL. Using l5vFt, where the
inverse lifetime is calculated in the Born approximation to be
t58t\/2pW2, we findL/ l5(p/16)AN(W/t)2.

Perturbation theory:We diagonalizeH0 on a square lat-
tice of sizeN, with periodic boundary conditions for a given
realization$wi%. The single electron eigenenergies$en% and
wave functionscn( i ) are assumed to be known. The first
order correction to Eq.~4! are given by second differences of
the first-order energies,

E1~N!5U (
n↑<nF↑

(
n↓<nF↓

ucn↑
u2ucn↓

u2. ~8!

Here we appeal to the random matrix properties ofH0 in the
diffusive regime, in order to estimate the magnitude and
fluctuations ofE1 analytically. We assume a random vector
model ~RVM! where all eigenvectorscn are random com-
plex unit vectors of dimensionN whose ensemble averaged
correlations are8

^cn~xi !cm~xj !&RVM}d i jdnm . ~9!

Using the orthonormalization constraints forcn we obtain
after some algebra9 that the RVM estimate for the average
first order correction toD is

D1
RVM~N!5H 3U

N12
, N odd

2
2U

N12
, N even.

~10!

We have compared the RVM estimates to numerical results
for disorder averagedD1

num(N) for odd and evenN, respec-
tively. Calculations have been done for lattice sizes
N556,110,210,420, with the disorder varied in the range
l /LP@0.1,2.5#. We find that

D1
num~N!PH @2.3,3.5#3

U

N , N odd

@21.3,22.7#3
U

N , N even.

~11!

Comparison of Eq.~10! to Eq. ~11! shows the RVM esti-
mates to be in the right ballpark in relation to those obtained
by numerically determiningcn of the disordered tight-
binding model. The main lesson learned by this calculation is
that first order Hubbard correctionsreduceon average the
fluctuations inD(N) since they are positive for oddN and
negative~on average! for evenN.

Variational theory for sign flips.The weak coupling re-
gime is defined where the noninteracting ground stateuC0&
is variationally stable against particle hole excitations. When
interaction strength exceeds a certain threshold, it is varia-
tionally advantageous to create spin-polarized electron-hole
pairs, e.g.,cnF↑11

† cnF↓uC0&, which reduce the Hubbard inter-
action energy at the expense of enhanced single particle~ki-
netic! energyenF112enF. In this variational theory, for an
even number of electrons the threshold for forming a triplet
is given by the inequality

0.De2@E1
t ~2n!2E1

s~2n!#5De1UF,

F[(
i

S ~ ucn11~xi !u22ucn~xi !u2!S (
n8

n21

ucn8~xi !u
2D

1ucn~xi !u4D , ~12!

whereDe5en112en andE1
t ,E1

s are the interaction correc-
tions to the singlet and triplet energies, respectively. Equa-
tion ~12! can alternatively be written as an inequality for
D(N) which includes up to first-order corrections inU:

0.D~2n!2D~2n21!2U(
i

~ ucn11~xi !u2

2ucn~xi !u2!ucn~xi !u2. ~13!

For extended random wave functions, the last term in Eq.
~13! is readily seen to be of orderN23/2 and thus negligible
in comparison toD(2n)2D(2n21). Equations~12,13! es-
tablish the connection between formation of triplets and sign
flips of S(N) @defined in Eq.~5!#. The sign flips degrade the
‘‘antiferromagnetic’’ correlations ofS(q) asU is increased.
We shall proceed to estimate the leading dependence of
S(p;U) by a statistical calculation based on the properties of
the noninteracting spectrum ofH0 with and without an or-
bital magnetic field.

We assume that the level spacing statistics ofH0 in the
diffusive regime ofL/ l.1 is that of a random matrix in the
Gaussian orthogonal ensemble~GOE!. In the presence of a
magnetic fieldB whose flux through the dot is of order of
one flux quantum divided byN1/4,7 the level spacing statis-
tics ofH0 turns into the Gaussian unitary ensemble~GUE!.
These assumptions were checked numerically and verified
quite well for the Hamiltonian~3! with and without external
flux, on lattices up toN5420 sites.

The Wigner distributions ofDe are8

P2
GOE~De!5

Dep

2D̄2
e2@p~De!2/4D̄2#,

P2
GUE~De!5

32~De!2

p2D̄3
e2@4~De!2/pD̄2#, ~14!

whereD̄ is the mean level spacing.
The probability distribution of the interaction term in Eq.

~12! is denoted by

P1~UF!5
1

U
P18~F!, ~15!

whereP18 is a dimensionless function of its dimensionless
argument. The probability of satisfying Eq.~12! is given by
the double integral

Pflip~U !5E
0

`

dFP18~F!E
0

UF
d~De!P2~De!, ~16!

which at weak couplingU!D̄ we can evaluate using the
low-energy expansion ofP2 and obtain
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~17!

At weak coupling the reduction in the perfect even-odd cor-
relations are proportional toPflip, and therefore we find that

12S~p!}Pflip~U !}HU2, GOE

U3, GUE.
~18!

Numerical diagonalizations. The variational theory and
the random matrix estimates were checked by numerically
diagonalizing the full interacting Hamiltonian on a lattice
size 333 with periodic boundary conditions with a magnetic
flux f threading the lattice at its center. We varied the num-
ber of electrons for each specific realization fromN55 to
N513, each time diagonalizing the corresponding (2N

N ) ma-
trix ~i.e., maximum matrices of size 48620348620 for
N59) for various values ofU. ThenS(p) was calculated
and averaged over 500 different realizations.

Two different values off were considered:f50 and
f5p/2, which should correspond to the GOE and GUE sta-
tistics. Because of the small size of the samples the maxi-
mum flux of f5p/2 is not strong enough to completely
remove time reversal symmetry, and the level spacing is a
combination of the GOE and GUE level spacing. The results
of S(p) for both cases are presented in Fig. 1. It can be seen
that the general behavior predicted in Eqs.~18! is observed.

A reasonable fit for the numerical results in the regime
U<1 is obtained byS(p)5120.3U2 for f50 and
S(p)5120.2U3. This supports the validity of the GOE
~GUE! statistics for the casef50 (f5p/2).

ExperimentalS(q). In Fig. 2 we have plotted three sets
of data forD(N) andS(q). The top two sets were measured
on two quantum dots formed in a high mobility
GaAs/AlxGa12xAs two-dimensional electron gas by metal
gating. The lithographic areas of the dots were 0.530.5 pm,
and they both contain about 50–100 electrons.

The bottom data, measured on InO, was taken from Ref.
11. It is interesting to note thatS(q) shows strong even-odd
correlations only for the middle data set, while it has no
remnance of these correlations for the top and bottom sets.

We do not presently understand the experimental condi-
tions under which even-odd periodicity appear. Based on our
modeling and variational theory, we dare to speculate that
flatness ofS(q) correlations is associated with creation of
magnetically correlated ground states~probably of short
range! which differ from Fermi-liquid-type Fock states. We
note that two recent papers12,13show spin-related structure in
dots with low electron fillings. However, the implications of
these correlations on the thermodynamic limit are beyond the
scope of this work. Complementing this work, Ref. 14 treats
the effects of directlong-rangeCoulomb interaction and dis-
order on the fluctuations inD(N).

We acknowledge useful discussions with the late Arcadi
Aronov, and thank Yuval Gefen for helpful comments. The
support of the US-Israeli Binational Science Foundation, the
Israeli Academy of Sciences, and the Fund for Promotion of
Research at Technion are gratefully acknowledged.

1 For extensive reviews see Rev. Mod. Phys.64, 849 ~1992!; U.
Meirav and E.B. Foxman, Semicond. Sci. Technol.10, 255
~1995!, and references therein.

2T. Heinzelet al., Europhys. Lett.26, 689 ~1994!.
3T. Sakamoto, S.W. Hwang, Y. Nakamura, and K. Nakamura,

Appl. Phys. Lett.65, 875 ~1994!.
4Y. Isawa, J. Phys. Soc. Jpn.64, 14 ~1995!.
5Random matrix theory also applies to excitations in interacting
systems. Here, however, we are interested in ground-state ener-
gies.

FIG. 1. AveragedS(q), Eq. ~6!, for the disordered Hubbard
model on a 333 torus. Inset:S(p) for thef50 andf5p/2 cases,
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top and bottom data are in the strongly interacting regime.
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