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Superfluids and supersolids on frustrated two-dimensional lattices
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We study the ground state of hard-core bosons with nearest-neighbor hopping and nearest-neighbor inter-
actions on the triangular arkhgomelattices by mapping to a system of spir8=<{1/2), which we analyze
using spin-wave theory. We find that the both lattices display superfluid and supdisamkxistence of
superfluid and solidorder as the parameters and filling are varied. Quantum fluctuations seem large enough in
the kagomesystem to raise the interesting possibility of a disordered ground §&0&63-18207)09605-7

INTRODUCTION the transverse magnetization density {&d)=(S"), while
the boson compressibilitg = on/du is the magnetic suscep-

A supersolid is a state of matter which simultaneouslytibility y=JM,/dH. Liu and Fisher identified four phases of
exhibits both solid and superfluid properties. That is to say, iinterest: (i) a normal fluid, in which the magnetization is
displays both long-ranged positional order as well as finiteuniform and in thez direction, (i) a normal solid, in which
superfluid density and, naely, off-diagonal long-ranged or- the magnetization lies alorgjyet is spatially modulated at
der (ODLRO). The intriguing suggestion by Andreev and some wave vectok, (iii) a superfluid, in which the magne-
Lifshitz* that vacancies in solidHe might Bose condense in tization is uniform and has a component which lies in the
the vicinity of the melting line has, to our knowledge, neverx-y plane, and(iv) a supersolid, in which there simulta-
been experimentally verifiet Nonetheless, a sizeable lit- neously exists a nonzero transverse component to the mag-
erature has developed on the theoretical properties afetizationM, , as well as a spatial modulation of the longi-
supersolid§™*® In two dimensions, the physics of tudinal magnetizatioM,. (An incompressible normal fluid
Josephson-junction arrayshas also stimulated the theoreti- is also called a Mott insulator.
cal study of supersolids. Most of the work is based on the If one relaxes the hard-core constraint in favor of a finite
contributions of Matsuda and Tsun&toand of Liu and on-site repulsiorJ, one obtains the Bose-Hubbard model
Fisher® who established some key concepts in the theory of
lattice-based supersolid models. Of central importance is the + +
mapping between a hard-core lattice Bose gas and a spin-1/2 H= —tZ (aja;+a,; ai)_:"“z ni
guantum magnet: i

1
1 +-U ni(ni—1)+V nin; . 3

ahhis model has been extensively studied since the seminal
ork of Fisheret al,?° who considered the model wit=0
in the context of a superconductor-insulator transition. A
study of this model in the presence of disorder has led to an
understanding of the Bose gl&8sOn a two-dimensional
square lattice, and fov #0, the model was studied &t=0,
for both finite and infiniteU, by Scalettaret al,** Bruder,
Fazio, and Schm® and van Otterlo and co-workérusing
H=2 [JSIS+I(SS+YS)]-HX S, (2  mean-field theory and quantum Monte Carlo techniques. To
(i ' summarize their results, no supersolid phase is observed at
whereJ,=V is an antiferromagnetic longitudinal exchange, half filling ((n)=1/2), where a first-order transition occurs
J, =—2t is a ferromagnetic transverse exchange, drdy  as a function oV between superfluigsmall V) and a Nel
—(1/2)zV is an external magnetic fieltz is the lattice co- solid [large V, k=(m,m)]. (Large next-nearest-neighbor re-
ordination number The spin model exhibits a global(1) pulsion V' stabilizes a striped phase, the colinear splid.
symmetry with respect to rotations about thaxis, which of ~ Away from half filling, there is no normal solid phase, and
course means total particle number conservation in the bosdhe transition is instead from superfluid to supersolid. The
language. The boson condensate order parameter is relatedstapersolid phase exhibits both a peak in the static structure

Thus, an occupied site is represented by an up spin, while
empty site is represented by a down spin. An interactin
hard-core lattice Bose gas with nearest-neighbor hophing
nearest-neighbor repulsiod, and chemical potentiak is
thereby equivalent to the anisotrop=1/2 Heisenberg
model
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factor S(k) at the Nel vector(and properly proportional to Phase Diagram: Triangular Lattice
the lattice volumg and a nonzero value of the superfluid 10—’
density p. Again, next-nearest neighbdt’ can stabilize a i
striped supersolid phase with anisotropic. One can also
obtain Mott insulating phases with fractional filling in the
presence of next-nearest neighbor interactions.

In this paper, we will investigate the properties of the
model in Eq.(2) on frustrated two-dimensional lattices. We
are motivated by the fascinating interplay between frustra-
tion, quantum fluctuations, order, and disorder which has
been seen in quantum magnetism.

Frustration enhances the effects of quantum fluctuations.
Indeed, as early as 1973, Fazekas and Andét<bmaised
the possibility that for such systems, quantum fluctuations
might destroy long-ranged antiferromagnetic order even at
zero temperature. In many cases, frustration leads to an infi-
nite degeneracy at the classi¢al mean fieldl level not as-
sociated with any continuous symmetry of the Hamiltonian
itself. In these cases, it is left to quantuor therma) fluc-
tuations to lift this degeneracy and select a unique ground
state?>?® sometimes with long-ranged order. Our models ex-
hibit both a depletior{but not unambiguous destructjoaf
order due to quantum fluctuations, as well as the phenorq(—a
enon of “order by disorder.”

In our work, we will choose the units of energy to Bg
writing A=t/V=J,/2J;, andh=H/J,. We will be follow-

ing closely the analysis of the anisotropic triangular lattice .
antiferromagnet by Kleine, Mier-Hartmann, Frahm, and (whereS has been set equal to 1/2s a function ofA for the

Fazekas(KMFF)2” who performed a mean-fieldS=c triangular lattice. It is clear that the quantum correcBds

limit) and spin-wave theorjorder 16 corrections to mean- Very close to zero for al, reflecting the fact that é=0

field) analysis. Contemporaneously with KMFF, Chubukovt_he lattice is half-filled. Two sublattlces acquire Ia_rge correc-

and Golosof? derived the spin-wave expansion for an iso- tions due.to quant.um fluctuatiorigven in the Ising Im_ut

tropic Heisenberg antiferromagnet in a magnetic field, while®—0), while the third has only small quantum corrections.

Sheng and HenléY obtained the spin-wave theory for the Th|s is very similar to the fully antlferromagnetlc case stud-

anisotropic antiferromagnet in the absence of a field. ied by KMFF. Therefore, even &= 1/2 the solid order sur-
The mean-field phase diagram is shown in Figodth the ~ VIVeS- The off-diagonal order paramet&f is reduced in

triangular andkagomelattices have the same mean-field

phase diagram up to a rescalinghof Notice that the super-

solid phase appears in a broad regionAo&nd filling. The 0.065

reason the supersolid is so robust is that the lattice frustrates

a full condensation into a solid. Generically, frustrated lat-

tices might be good places to look for this phase. I
Let us briefly concentrate on=0 before describing the 007 F

entire phase diagram. We will be assuming a three sublattice :

structure throughout. The mean-field state is then described

by three polar and three azimuthal angle®, (6g,6c, I

da,Pg,dc), and is invariant under uniform rotation of the & o075 |

azimuths. ! I
Due to the ferromagnetic coupling in ttxey spin direc- i

tions the mean-field solution is always coplanar. Just as in i

KMFF, there is a one-parameter family of degenerate mean-  -00s

field solutions in the zero-field cageriginally found by Mi- [

yashita and Kawamutd. The A sublattice polar angl@,

may be chosen as the free parameter; spin-wave theory :

(SWT) is necessary to lift the degeneracy and uncover the  -00ss -

true ground state. Figure 2 shows the ground-state energy in ]

SWT as a function 0B, for the triangular lattice aA=0.25. P I rva

Using SWT we also compute the fluctuations of the spins, 0,/m

and the consequent quantum-corrected magnetization and the

solid and ODLRO order parameters. Figure 3 illustrates FIG. 2. Ground-state energy of the triangular lattice\at0.25

these quantities in mean field and to leading order in SWTas a function ofg, . The minimum is quadratic.

FIG. 1. Mean-field phase diagram for the triangular lattice. The
gomelattice phase diagram differs only by a rescaling rof
Heavy lines denote first-order transitions, light lines second-order
transitions, and dashed lines denote linear instabilities.

Triangular ; A = 0.25
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berg limit A=—1 (for a partial set of references, see Refs.

Triangular ; h = 0 . .
31-38. For the fully antiferromagnetic case there are local

— 53 motions of the spins that move the system on the degeneracy
— 3% T submanifold, leading to a much larger ground-state degen-
S ze . eracy for thekagomelattice than for the triangular lattice.
¢ . However, forA=0, the ferromagnetic transverse interaction

eliminates the possibility of these local motions, resulting in
a ground-state degeneracy parametrized onlypyjust as
in the triangular lattice.

We carried out SWT for the two long-range ordered con-
figurations shown in Fig. 4—a three sublatticg=0" state,
and a nine sublattice/3xv3 structure®3® respectively.
These states have the same mean-field ground-state energy.
It will turn out that two of the three sublattices have the same
spin orientation in the ground state for both lattices. With
this proviso, note that thg=0 structure has one twofold axis
and a mirror planépoint groupC,,,), while thev3xv3 struc-
ture has a sixfold axis and a mirror plat@oint groupCg,).
Once again SWT selects the true ground state. When quan-
tum fluctuations are accounted for, we find that #3v3
structure always has lower energy than ¢f¥0 structure, to

FIG. 3. Classical and quantum magnetizations for the triangulathe numerical accuracy of our calculations. More impor-
lattice, S, andS, per site, as a function daf at the true ground state. tantly, the fluctuations of the spins on six of the nine sublat-
The full quantum-correcte®, is always close to zero, while the tices diverge in the limith—0, as shown in Fig. 5. This
quantum-correcte@®, is always nonzero. divergence is the consequence of a fthspersionlegsmode

at zero energy as— 0. Higher-order terms in the spin wave

magnitude by quantum corrections, but goes to zero only asxpansion will lift this mode and remove the divergefte
A—0. Supersolid order survives quantum fluctuations for theHowever, the fluctuations remain large f8=1/2, as we
triangular lattice, at least in this order of SWT. estimate in Sec. lll. This indicates that quantum fluctuations

Let us now consider theagomelattice. There is a quali- may be strong enough to wash out any order, including
tative difference between the antiferro-ferromagnetic cas®©DLRO, on two of the sublattices, which raises the intrigu-
considered hereA=0, and the fully antiferromagnetic case ing possibility of a partially disordered ground statelat 0.
A=<0, which has been exhaustively explored for the Heisen#t must be emphasized that we have not demonstrated that

Sx

Sz,

C c

FIG. 4. The two long-range-
B ordered structures on theagome
lattice. (a) the q=0 structure and

(b) the R3 structure.

(a) (b)
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Kagome' /3 x v/3 : A=0.2500 with a spinS at each site. We then represent each spin as a

—— : —————— classical vector of magnitudg S*=SQ“, where() is a unit
vector in three dimensions. We rescale the magnetic field by
S and write

Hue/ =2 QI0I-AY (QIQ+QYQ))-hY OF.
i ) i
(4)

In the mean-field solution, all spins lie in thez plane.
Furthermore, it turns out that the triangular and biadigome
structures have the same mean-field energy, to within a con-
stant factorn(up to a separate rescaling lofin the case of the
kagomestructurey so we will consider all three cases simul-
taneously. Note that coplanar states have been selected at the
mean-field level for thekagomelattice, in contrast to the
fully antiferromagnetic case.

Sx

3z,

VU R SR S S S A. Zero field
-04 -0.2 0 0.2 0.4

h Consider first mean-field ground states on the triangular
and kagomelattices that have a three-sublattice structure.
FIG. 5. Classical and quantum-corrected values of the magnetiThe three specific cases are the usual sublattice structure on
zationsS, andS, per site as a function df at A=0.25 for theR3  the triangular lattice, the=0 structure on thé&agomelat-
structure on thekagomelattice. Notice the divergence ds—0. tice, and the/3xv3 structure on th(kagom'elattice. The nine
This is an artifact of SWT. sublattices of tha/3Xv3 structure are organized into three

L ) . _groups @,B,C) of three, so that aA site has twd and two
this is so: the fluctuations could be correlated between dlf-C neighbors. Thus, the energy per site, in unitsSafis

ferent sites, there could be long-range order with a larger unit
cell, a condensed array of vortices, etc. This problem merits
further study, with, e.g., quantum Monte Carlo methods.

emr=Enr/NS?

Let us now turn to a fuller description of Fig. 1, where = (COYACOHg + COSHCOH -+ COHCOH,)
four types of mean-field states are preseutid lines indi- _ . _ _ . .
cate first-order transitionsWe adopt the nomenclature of —A(sin@asing+sindgsindc +sinfcsinds)  (5)

Ref. 14 (see Fig. 12 of this reference for comparisoAt ) ] )
high fieldsh the system is in a Mott phase—incompressible®" the triangular lattice and,{zr;=2/3 this value on the
and fully polarized. As the field is lowered, for any>0, the ~kagomelattice. _
system enters a compressible superfluid phi@®, with Miyashita and Kawamurd have shown that there is a
4= 0= 0.>0. A first-order transition from the superfluid one-parameter family of_ degener_ate ground states for this
to an incompressible N solid (NS) at filling fraction 2/3 classical problem fqr arbitran¥, which does not seem to pe
[magnetization per sithl,= + (1/3)S] occurs forA<1/2. Fi- related to any .ObVIOUS symmetry of the model._ Followmg
nally, the supersolid phas@9 exists for A<1/2 between KMFF, and writing;=6;—(6x+ 65+ 6c), and defining the
the two symmetry-related N solid lobes. There is a tri- tWO'dlmenSIonal veqtorpziz(sm/s’i ,C0B;), we can write the
critical point at @* ,h*)=[(1/2),3]. Quantum fluctuations mean-field energy in terms of the two-component vector
will modify these mean-field phase boundaries. Since thé*=HMaTHstHc:!

superfluid state, we have found, benefits the most from spin-
wave energy corrections, it will encroach on its neighbors as
S decreases fromw. Increasingh tends to suppress quantum
fluctuations.

We will present each of the above results in more detail inTherefore ey, while nominally depending on the three
the rest of this paper. Section | concentrates on the mearmmngles¢,, actually depends only on two combinations of
field theory and the mean-field phase diagram. Section Ithem, leaving one parameter free. We can then parametrize
describes the selection of the true ground state by quantutthe degenerate ground states dyy, by defining fg=¢€— 5,
fluctuations ath=0, and the form of the spin-wave excita- and .= e+ &, where
tions for arbitraryh. Section Il presents the suppression of
order by quantum fluctuations. We end with our conclusions, tand,
connections to experimental work, and open questions. tane= — A

1 1
ewr=7 (1-A)(#2=3)+ 5 (1+ Ay (6

)

I. MEAN-FIELD THEORY
—A co,

The mean-field limit is obtained by settifg=~. For- CoOE= . ,
mally, we first generalize the model fro8 1/2 to a model V1-(1-A%cos6,
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Optimal 6, . for A = 0.25 The phase diagram has already been shown in Fig. 1. Let
15 —F """+ us keep at a particular value afand turn up the fieldh. At
L j zero field there are two regimes, the superfluid with no solid
L —— o,/m 8,/7 ] order for A>1/2, and the supersolid with both solid and
| ODLRO (T=0) for A<1/2. For A>1/2, the ground state
—=== 8 /7 remains a uniform superfluid, thoudg, becomes nonzero,
as h is increased. The spins cant at an angle
6=cos [h/6(1+A)]. The energy in this phase is

J h2

[SF_ _ 2 _
| et =30~ 3 ay (10)

B,5c/T

05 |- . Eventually, forh>6(1+A), every site has the maximum
] possibleS?, and the system is in the Mott insulaté¥l)

i phase, with each site fully occupied with one boson. Borrow-

K | ing from spin-wave results derived in Sec. Il, the linear in-
\ N stability of the SF phase occurs at
0 —

| | hi1=6V(1+A)(1-2A). (11
1 | 1 | P T PR 1 ) 1 )
0 & ﬁ 6 8 Next focus on a specifia<<1/2, and increase the fiehl

from zero. At zero field, the one-parameter degeneracy of the
FIG. 6. Optimalf,= 65 and 6¢ as a function oh for A=0.25. mean-field ground states has to be lifted by quantum fluctua-
Note the continuous approach to collinearity at the supersolid-solidions, which select a particula#, . However, it turns out that
transition, and the discontinuous change of the angles at the soli®ve can recover thig, by considering nonzerb and taking
superfluid transition. the limit h— 0, which gives

1-2A
A c0$0,=1 7. (12)

= .
(1-A)V1—(1—A?)coS 0,

, ) o It seems surprising that the ground state selected by quantum
It is easy to verify thay, can lie in the range

fluctuations can be predicted by an entirely classical calcula-

1 1-9A 1 tion. A plausible(though nonrigorousargument will be pro-
cos Y — +/—— <<= vided for this in terms of spin-wave theory in the next sec-
1-A V1-AZ) " 7A72 ™ tion.

As h is increased from zerod, and 6. change(recall
0,= g throughout. At a certain critical fieldh,(A), Sc
points exactly along the-z direction (6= ), while S, g

As A increases from zero, the range of possible is
compressed, and the differendég— 64|, | 0c— 04 shrink,

until at A=1/2 the ground state is colinear With nint along thez direction (6,= 63=0). This critical field
Oa= 0= Oc=(1/2)m—a featureless superfluid. FAr<1/2, |, ' can pe analytically determined by the following consid-
in the case of zero field, the true ground state will be selected, 2tion: the poin®,=0, .= is always a stationary point
liy quantum quctuEtlons. Minimizingeye  gIVES iy of the mean-field energy. However, forch,, it is a saddle
=(A+1)/(A-1), uy=0, and point, while forh>h; it is a minimum. Therefore the sec-

1—A+A2 ond derivative matrix ofeye(6,,60c) should have a zero

evE= — A (8) eigenvalue ah=h.,. Setting the determinant to zero gives
h A—32A V4—4A—TA 13
B. Nonzero field ca )_E( TA-VA—AA- ) (13

Turning on a fielch adds an energy Forh<h;(A), we are in the supersolid phase. Just above

1 h.1, however, the system is exactly 2/3 filled, and its mag-
Aeye=— 3 h(cosd,+ cosfg+ coHc) (9)  netic susceptibility is zergthe compressibility of the corre-
sponding boson system is z&rd here is no superfluid order
per site and lifts the degeneracy described in the previougnd the system is again a Mott insulator, theeNeolid. It
subsection, producing a unique mean-field ground state  Will be seen in Sec. Ill that the exact filling of 2/3 survives
like in the Heisenberg antiferromagf®t We find that mini- quantum fluctuations. Since the superfluid order goes con-
mization generally leads to a state whevethout loss of tinuously to zero below the transition, it is clear that this
generality 6,= 65+ 6. in the supersolid phase. The results transition is se,cond-order within in mean-field theory. The
are plotted in Fig. 6. A rescaling of the field for tkagome energy of the Nel solid phase is
lattice [hy,q=(2/3)h;] makes the entire mean-field phase
diagram identical, and we have therefore shown only the

[NS|_ _q _
. . ey =—1—=. 14
triangular lattice results. MF (149
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One can furthermore determine that theeNsolid phase is assumed to lie on the-z plane, we can do this by a rotation
linearly stable for 3/2(2 A—\4—4A—7A%)<h=<3/2(2 about they axis. Labeling the local frame spins with a tilde,

+A+4-4A—-TA?). we have

Further increasindp, we find a critical field

heo(A)=2(1+A)+4(1+A)(1—24), (15

y _'qy
beyond which the canted superfluid becomes energetically SRy = SRos
favored. The transition is first order since it is far from any 7 K ~,
linear instabilities. Finally, a second-order line at Sky= ~SING, Sg, + €O, S,

h>h3(A)=6(1+4), signals the boundary between super-where the subscrigR labels a Bravais lattice site;a basis

S’éV:cosﬁVg};ﬁ sinaygéy,

17

fluid and fully polarized Mott phases. _ element, and), is 0, g ¢ depending on the mean-field orien-
WhenA=1/2, we can solve analytically to find tation of ther sublattice. The triangular lattice and the=0
1 structure on th&agomelattice have three sublattices, while
cosIa== h the v3xv3 structure on th&agomelattice has nine.
3 We now describe the spin operators in terms of Holstein-
Primakoff bosons
1
codle=—3h {18 St = Wk, \2S— Uk tm, = 250, + O(S 1),
e[ss]: _ E_ i h2 S};V: Vv 25— l/IRleRVlﬂ—}QV: \/Z—SwRV—}_ O(S_ 1/2)1 (18)
MF 2 18 °

SE,= ¥k, ¥R~ S.
This is exactly the same as the energy of the SF phase at s v
A=1/2 [which is characterized by all the angles satisfyingThe Hamiltonian(restoringh for generality is now written
cos #=(1/9)h], which marks this vertical line as a first-order in Fourier space as
line. Note the tricritical point an=1/2, h=3, where two M N
first-order linegwith infinite slopg meet a second-order line _ J— . 0
(with finite slops. How= E0+(1/2)s;\1f (k)( N M)\If(k).+(9(8)

The situation is completely symmetric with respect to the (19
sign of h, with the Nel solid phase now existing at 1/3 ) o
filing for h<0. At the mean-field level, th& axis is a (Note the normal orderingvhere the energf, is given by
first-order transition line up td=1/2, sinceS* is discontinu-
ous across it. However, fob=1/2 it apparently becomes Eo=(N/K)S?
continuous, at least for the triangular lattice.

The phase diagram has some similarities to the classic , , ) )
picture of the Mott lobes surrounded by superfluid described€re; N is the total number of lattice sitek, is the number
by Fisher, Weichman, Grinstein, and Fish@FWGH).2° of sublattices, and we define the quantities
However, there are important differences. FWGF considered
local Hubbard repulsion, whereas our extended Bose-
Hubbard model we consider affords the possibility of incom-
pressible Mott phases at fillings 0, 1/3, 2/3, and 1. ThelNe
solid phase found by Scalettat al,, for example, exists at h =h cos
filling 1/2. Fractional fillings have also been observed in the v v

square lattice with frustrating longer range interactions inand z,,. is the number ofy’ sublattice neighbors each

Ref. 6. Also, the transitions from the fractional filling Ml sublattice site has. The vect&rlives in the first Brillouin
phases to thécanted superfluid are first order. Finally, and zone of the reciprocal lattice, and
most notably, the entire region between the two fractional

1
52 Z Xy — 2 h,,} (20

X,,»=cosd,cod,, — A sing,sing,, ,

Y, =sinf,sind,,—A cosf,cos, , (21

Mott lobes is taken over by the supersolid, and the super- W) =[ (k) y5(K),....pk (K),
solid gives way to the superfluid only beyond a hopping
t>(1/2)V. Pa(=K), oK), (—K) . (22)
The matricesM andN have diagonal and off-diagonal ele-
II. SPIN-WAVE THEORY ments given by

We now develop the spin-wave theof@WT) for this
problem. Ifh+0, there is a unique ground staigp to per- M, (K)=h,— > Z,, X, (23
mutations of the sublatticeswhenh=0, the ground-state v
manifold is parametrized bg, , and the other angleg; and
0¢ (in general not equglcan be determined fror, andA
using Eq.(7). We implement SWT in the usual way: by first
performing local rotations of the spins so that the mean-field
directions point along the localaxis. Since all the spins are N,,(k)=0,

1
Mvv'(k): 5

2 (YVV’_A)fVV’(k)I
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1
N,, (k)= > (Y +2)F,,(K), Z= J D[0a,0g.0c, da, b5, dcle
(27)

where the functiorf (k) is given by the following sum: P
A:f dT(Z iS cosd(r,7) —— (. 7)+H[6,4] |,
r

f(k)=2" expik-4), (24
o whereH stands for the spin Hamiltonian of E@t) written in

etrerms of@ and ¢. The first term is the Berry phase contribu-
tion to the path integral, which also mak&8xos) the mo-
mentum canonically conjugate th

Let us concentrate on just the=0 modes. There are three
¢ variables and three conjugatevariables. We choose to
call one of the¢ variables¢, corresponding to an overall

where the prime on the sum indicates that the sum is ov
nearest-neighbor vectors connecting sublattice site to @'
sublattice site.

Now we perform a Bogoliubov transformation, which
amounts to finding a rankk2 matrix T satisfyingTTAT=A,

with rotation of all the spins around theaxis, and call the re-
1 0 maining ¢s, ¢, and ¢,.
:( KoK HRK ) (25) Choose any particular ground state labeleddy The
Okxk  —Llkxk/’ Hamiltonian for small deviations from the ground-state con-

. . _ figuration is now given b
as well asA T~ *AH,,,T=w, a non-negative diagonal matrix g g y

with identical upper left and lower right blocks. The,(k) 1 1
are the spin-wave frequencies. The spin-wave correction to H== "M, 60+ = ¢TM¢¢, (28)
the ground-state energy is given by 2 2

1 K whered'=(60,,505,56c) andngz(gbo,d)l,(j)z). The first
AE==S> X [w,(k)—M,,(K)]. (26)  row and column oM, are zero sinceb, does not appear in
2 % = the Hamiltonian.

The general procedure for finding the normal modes is the
following:

(i) Diagonalize the 22 block of M, and rescale the re-

Figure 2 shows the ground-state energy, including spinsulting eigenvectors so that the rescald¢ becomes a unit
wave corrections, for the triangular latticefat 0 as a func- - matrix in the 2<2 block. Call the rescaleg variablesi. .

A. Ground-state selection

tion of 6. Since the classical energy is independentof (i) Use the Berry’s phase terms to identify the canoni-
all the variation comes from the SW correction. It is clearca|ly conjugate momenta t¢, . asP,, P~ , respectively.
that there are two possible values &f which minimize the (iii) Re-express the matrid , as a matrixM p .

ground-state energy, one of them lying at the edge of the (jv) Sinced, is cyclic, its canonically conjugate momen-
allowed range off,. However, the two minima turn out to tym P, is conserved. Trea#, as a constant and form linear
be phy_S|caIIy identical, and_ c_or_re_spond toa relab_ellng of th%ombinationsP’i =P.+a.P, such that the off-diagonal
sublattices. We call the minimizing value @, which lies  {erms containingP, are eliminated. A diagonal term multi-
away from the edge of its allowed rangg . plying P2 remains.

The value of¢; can be determined by purely classical ~(v) Now diagonalize the lower 22 block of Mp. The
arguments, by extremizing the value &6 +60g+6c  two eigenvalues oM are the squares of the energies of the
along the degeneracy submanifold. We have checked thalormal modes of the Hamiltonian. The third normal mode
this is so by a comparison of the analytic express#&fn  corresponds to a uniform rotation of all the spins around the
=cos 1J(1—2A)/(1—A?% with the ground-state energy z axis coupled to a change B,, and its energy is always
curves obtained from SWT. We now provide an argumentero regardless of the coefficient Bf.
indicating why this might be the case. The above is true even if there is no ground-state degen-

Our argument will be the following: For a generit,  eracy. If there is ground-state degeneracy in éhsibspace
there is only one mode of zero energykat0, whereas if the matrixMp has a null eigenvectar,. For genericd, , Py
dS,/96,=0 there are two zero modé® spin-wave order  has nonzero overlap withy. In this case the above proce-
The ground-state energy is the sum of the energies of all théure always produces a zero coefficient Rg. Thus there is
modes, and does not depend on just the zero modes. Howtill only one mode of zero energy, tl& mode. Another
ever, we think it plausible that having more modes of zeroway of seeing this is to recognize that as longPgsanduv
energy atk=0 drags down the energies of all tkemodes, have nonzero overlap, one can always reseglso that it
thus reducing the full ground-state energy. Of course thibecomes canonically conjugate i#,. One then has to
argument is not rigorou®, and there may be counterex- modify . to keep them independent of, in the Poisson
amples that we are not aware of. bracket sense.

Let us go on to show the first statement about the number However, ifPy andv, have zero overlap, the null vector
of modes of zero energy. We only sketch the argument heranust lie in the subspace &f... This means one of the ei-
We treat the issue with more generality and greater detail igenvalues of the lower>22 block of Mp must be zero, im-
the Appendix. It is helpful to think in terms of the coherent plying that there isanotherzero mode of the Hamiltonian,
states path integr&l apart from theS, mode. The condition foPy anduv to have
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FIG. 7. The Brillouin zone of the triangular
lattice and the reduced zone for the sublattice
structure.

GO.-I

zero overlap is identical t8S,/96,=0 along the degeneracy B. Spin-wave dispersions
direction, which is the same as extremiziBg.

. . . 1. Tri lar latti
In brief, if dS,/06,#0, there is only one zero mode, rlangular fattice

whereas if9S,/d0,= 0, there are two zero modeskat0. A The Brillouin zone(BZ) of the triangular lattice is shown

rigorous derivation is supplied in the Appendix. in Fig. 7, with the lattice and reciprocal-lattice vectors being
We have done explicit calculations to verify all these

statements for the triangular lattice. If one computes the fre- e;=a(1,0,

guencies of th&k=0 modes at a nonoptimal,, one finds

one mode of zero energyhe S* mode, and two modes of 1 \/5
nonzero energy, neither of which is exactly along the degen- &=a 2" o |
eracy direction. However, at precisely the optimal points, (30)
there appeamwo modes with zero energy, one of which is the 4 31
S mode and the other exactly the degeneracy mode. The Glz_ﬂ = - _),
third mode still has nonzero energy. ay3! 2’ 2
In particular, the argument makes no assumptions about
the interactions other than that they should conserve 8tal A
So this result should hold even for site dilution or longer G,=——= (0,1,
range interactions. Of course, for site dilution, one should a\3

focus on a particular realization of randomness and look at . . .
Wherea is the lattice spacing.

$? over the degeneracy subspace. In general, our argument is As usual, we first concentrate dn=0. Figure 8 shows

thatthe search for the true ground state can be restricted tothe spin-wave dispersion fax>1/2. Since there is only one
the points on the degeneracy submanifold where all con- P! P ' 1y of
@ublathce, there is only one mode. However, plotting it on

served quantities commute in the Poisson bracket sense wi . )
. ; e reduced BZ of the sublattice problem forces us to fold it
the generators of motion along the degeneracy submanifol . : .
ack and represent it as three modes. In this scheme, there is

This criterion can fail if thek#0 modes do not follow the S
; "~ : one gapless mode, which is the Goldstone mode correspond-
behavior of thek=0 modes. Also, if there are more con- ing to the density fluctuations of the bosons. HoweverAas
served quantities than degeneracy directions, not all of them 9 y '

- approaches 1/2, a “roton” minimum develops, precisely at
may be extremized at the true ground state. the wave vectors corresponding to the sublattice structure, as
With 6, and 6y taking on the value quoted above, we find P 9 '

) X ] demonstrated in Fig. 9. At exactl¥=1/2, this becomes a
that 4, is at the extreme edge of its allowed range: : o .
gapless mode, heralding the transition to the supersolid

phase.

cos* = — 1 [1-2A 29 Now consider the dispersion &t=0 in the SS phase,
¢ 1-A 1-A% which is shown in Fig. 10. There are two gapless modes
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Triangular ; A = 0.75 ; h = 0 Triangular ; A = 025 ; h =0
L = a4 -4
4 : 4 . k
3 -3 sr 13
cll cl
3| 3 |
2 2 2r 2
1F 11 " 1
0 0 0 0
r M X r r M X T
FIG. 8. Triangular lattice SW dispersion far=0.75,h=0. FIG. 10. Triangular lattice SW dispersion in the SS phase at
A=0.25,h=0.

within SWT. One is the standard density fluctuation, Wherea%t the transitions. The SWT for the canted spin phase can be
the other corresponds to the degeneracy mode. The degefyia|yzed analytically, since there is only one sublattice. We
eracy mode will be shown to acquire a gap to higher order iing that the SW dispersion is

1/S in the next subsectiofr®® There is a third “optical”
mode to complete the count of the sublattice degrees of free-
dom. The energy scale of the two low-lying modesAis w(k)IZS\/A(l—)’k)
while the optical mode has an energy scale of 1. As we move
towardsA=0 the two low-lying modes get softer, until they
become completely flat at=0. w==2, e ko

However, when we turn on a field the degeneracy mode o
becomes gapped, as shown in Fig. 11. Let us now investigaighere ;=6 for the triangular lattice, and the prime on the

the modes at nonzero field in the other phases, in particulal, , restrictss to nearest-neighbor vectors. We show an ex-
ample forA=0.25,h=6.0 in Fig. 12. We have-1/2<y, <1,

h2
“(1_ 36(1+A))7k}’
(3D

N|

Triangular ; A = 051 ; h =0

Triangular ; A = 0.25 ; h = 05
5 =5
3r 13
a4r 14
. —H2 )
= i
~ —~—
3 > p
~
3 ]
= 2
= -1 L
_\
T — Bk
0 0
r M X r o 0
r M X T

FIG. 9. Triangular lattice SW dispersion f&x=0.51, h=0.
Note the quadratic minimum which is nearly gapless. This is the FIG. 11. Triangular lattice SW dispersion in the SS phase at
linear instability that leads to the SS phase. A=0.25,h=0.5. The degeneracy mode has become gapped.
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Trianguler ; A = 0.25 ; h = 6.0 Triangular ; A = 025 ; h = 1.5
15 :? 1.5 i
4 14
1F 1 3r 13
G G
3 3
05 - 0.5
0 0 0 0
r M X r r M X r

FIG. 12. Triangular lattice SW dispersion in the canted spin FIG. 14. Triangular lattice SW dispersion in the MI phase at
(CS phase atA=0.25, h=6.0. Note the single gapless density A=0.25,h=1.5.
mode.

(including spin-wave correctionsn the Neel solid phase is
which leads to the linear instability of the SF phase, which isindependent of, which demonstrates its incompressibility,
denotedh;; in Eqg.(11). Note that the mean-field energies of and hence the exact filling of 2/3 throughout this phase.
the various phases lead to first-order instabilities which make )
the linear instability irrelevant except A=0 andA=1/2. 2. kagomelattice g=0

We next turn to the transition line between the supersolid ¢ kagomelattice is a triangular Bravais lattice with a
and Nel solid phases, denoted Hy;(A), a second-order three element basis. K is the nearest-neighbor separation,
line. Figure 13 shows the SW dispersion at the transition foknap, the Bravais lattice constant @&=2a. The spin-wave
A=0.25,h=0.9738. The soft density mode is nowlkt0  {heory dispersions are quite similar to those of the triangular
and has a quadratic dispersion instead of the usual linear onggtice with the modes being softébecause of the lower
As we increasé and enter the N solid phase, the density coordination. Note that while the Bravais lattice is triangu-
mode becomes gapped, as Fig. 14 shows. The total energy the symmetry is reducetto C,,) and the dispersion

curves do not have zero slope at the zone dtlyeX point).

Triangular ; & = 0.25 ; h = 0.9378 Figures 15, 16, and 17 show the dispersions in the superfluid,
F 7 the supersolid, the N# solid state, respectively. A notewor-
5 e thy feature is the presence of a zero-energy mode=ad

along theI'M direction in the supersolid phase. This mode
disperses and has nonzero energy except alond’ khedi-

oF 14 rection.
3. kagome9 sublattice structure
sl 3 Thev3xv3 structure on thé&agomdattice is described by
Il ] a triangular Bravais lattice of lattice constant 2v3a with
3

a nine element basis. The elementary lattice vectors are
shown in Fig. 4. The spin-wave dispersions are unremark-

! Ik able except for a flat mode whose energy vanisheghain
\ ] the smallh limit. This is connected to the degeneracy mode,
i . which is local up to harmonic order, and will be discussed in

W > 1 the next subsection. All the other features are quite similar to
- 1 those of the triangular lattice as shown in Figs. 18, 19, and

20.

0 0

r M X r

C. Gap of the degeneracy mode

FIG. 13. Triangular lattice SW dispersion at the SS-MI transi- ~ The degeneracy mode appears gapless in @il in
tion at A=0.25, h=0.9738. Note the quadratic dispersion of the fact appears flat in the3xv3 structure on thé&kagomelat-
gapless density mode. tice), but acquires a gap to higher order in the SW
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Kagome' q = 0 ; A =025;:h = 4 Kagome' q = 0;A=025;h =1
1- =1 3__/’__\—\_3
08 [ 08
2 “2
0.6 [ 106
= 1 =
3 3

ir 11

0z 7e2 I /\
0 o 0 0
r M X r r M X r

FIG. 15. kagomeq=0 SW dispersion in the CS phase at g 17, kagomeq=0 SW dispersion in the Ml phase at

A2025,h24 A=0.25h=1.
expansiort>2® We will first treat the triangular lattice, and o o
go on to the case of thkagomelattice. Z:f DOAD &
0
1. Triangular lattice ; 0 I 1 2 0y2
X —t+ =
exp—j dT(IS Co, pra SK (")

Let us concentrate on tHe=0 degeneracy mode of the
triangular lattice. The easiest way to derive the gap is in the
spin coherent-state path-integral langif&getroduced in the Xf IT D6k, e A1e2], (32
previous section. k#0

Now imagine separating the path integral by first integratwhere A’ does not include the explicitly written terms in-
ing all the modes except the=0 degeneracy modeall the  volving ¢, in the preceding factor. Since the classical
anglesgR and ¢°). ground-state energy does not dependd@n only the Berry

phase term and a “potential” energy fat° appear there

Kagome' q =0;A=025;h =0

Kagome' V3 xV3 ;A =025;h =4
e s e i -
1 11
/
08 [ 08
2 2 I ]
G 06 06
3 °
3
1+ -y 04 [ 404
/ 02 o2
0 0 \
T M X r 0 0
r M X r

FIG. 16. kagomeq=0 SW dispersion in the SS phase at
A=0.25,h=0. Note the flat character of the mode along ihd FIG. 18. kagomeR3 SW dispersion in the CS phasefst0.25,
direction. h=4.
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as opposed to the ord&’ potentials generated classically
for the other modes. Thus the gap is ord; compared to

3E 33 the energies of orde® seen in SWT.

Now for the specific details. We concentrate on the neigh-
. borhood of6} , the optimal value o#%, and write 8= 6%
+86,. It is easy to see that the® that couples to this is
¢°= pa(k=0)— pg(k=0). The eigenvector corresponding to
this mode is ¢, dg, dc) =[(1/2)¢°,— (1/2)¢°,0]. For the
triangular lattice the classical “potential” energy of &
deformation yields

Kagome' V3 xV3 ;A =025:h =0

o(q)

K=3A sirfg}| 1+

(33

sing )
2sindy )’

Choosing the particular valug=0.25 for illustration, we fit

the curve in Fig. 2 near its minimum to obtain the term in the

effective action (1/23C(86,)?, for which we obtainC=6.

| ] Of course, a “potential” term will also be generated by the
I integration of the rest of the modes, but since it is oigeit

0 0 can be neglected compared to the or&rterm already

r M X r present classically. We will choose the “coordinate” @s

=Ssindi¢®. The Berry phase term now looks like

S sind 86,(9¢% 1), which enables us to identifp= 56, as

the conjugate momentum. We now write the action as

FIG. 19. kagomeR3 SW dispersion in the SS phasefat0.25,
h=0. Note the completely flat zero-energy mode.

(expanded to lowest leading ordlelf one neglects the inte- Q1 1~
gration over the remainder of the modes, the degeneracy S:J dT(IP 73 SCP2+§ KQ?|, (34)
mode appears to have a potential energy but no kinetic en- _
ergy. This is analogous to a particle of infinite mass, andvhereK =3A[1+ (1/2)(singg/sind,)]. We can now find the
from the simple harmonic oscillator formuta= K/M, the  gap as the harmonic frequency of this oscillator:
oscillator energy is zero. This is why the mode appears gap-
less. wp=VSCK (35
However, as seen from Fig. 2, the integration over the rest _ _ , _
of the modes(to leading order in the spin-wave expangion '€ numerical value '5“’0“2'_3\@' The kagome lattice
creates an effective potential which has a dependen@on structure introduces new considerations, which we now ad-
rendering the mash! finite and the mode gapped. Since the d"€SS:
effective potential is produced by SWT, it will be of ordgr 2. kagomielattice
The important difference that occurs for tkagomelat-
Kagome' V3 x V3 ;A =025;h =1 tice is that the effective action for th#g, has a linear cusp at
sl dq the minimum instead of a quadratic minimum, as shown in
Figs. 21 and 22 for thg=0 andv3Xv3 structures, respec-
tively. This kind of minimum has previously been seen for
the kagomelattice in the fully antiferromagnetic Heisenberg
case’*2 We assume that the degeneracy mode is nondis-
persing, which, at spin-wave order, is approximately true for
2r ek the q=0 structure, and exactly true for th@xv3 structure.
This implies that the modes are local, and we assume this to
be true even after quantum fluctuations have lifted them from
zero energy. We can now interchange the roleg afid ¢ as
P andQ and consider the quantum mechanics of the Hamil-
tonian

w(q)

PZ
s M. 30

where\ is of orderS. This leads to a gap in the degeneracy
. mode of ordeS?’3. A lifting of the degeneracy mode of order
°r M X r S?3 has previously been seen in Refs. 43 and 44 in the
Heisenberg case.
FIG. 20. kagomeR3 SW dispersion in the Ml phase At=0.25, Since thekagomev3Xv3 structure is always lower in en-
h=1. ergy, we will concentrate on it in the following, leaving a
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Kagome' g = 0 ; A = 0.25
— T —————
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FIG. 21. Quantum energy correction versiysfor the kagome
=0 structure. Note the cusp at the minimum.

detailed analysis of the@=0 structure to a future publication.
The degeneracy mode which was merely gapleds=i on
the triangular lattice, but of nonzero energy at every okher
becomes completely flat at zero energy onkhgomdattice
with the v3Xxv3 structure. The reason is fairly straightfor-
ward. Consider amBABABhexagon in Fig. &), isolated
from the rest of the lattice by a ring o sites. For the
optimal angles it is easy to deduce thavjf= 6 + 56, then
0g=60x— 56 and thatf: changes only to ordesé’. Any
coupling between théd,(r) of neighboringABAB ABhexa-

Kagome' V3 x+V/3 ; A = 0.25
— T

-0.07 [~

-0.08 [~

C

Eyy — E

-0.09926

-0.0993 - -

—0.09935 - -

1 L 1 L
0238 0239 024 0241 7

P TS S S S T S NN TR S S S [ S S SR S N S S G
0.1 0.2 0.3 0.4 0.5 0.6

0,/m

-0.1

FIG. 22. Quantum energy correction versisfor the kagome

gons must be mediated by the borderiiyg, and must there-
fore be third order or higher id6,(r). This means that to
guadratic order th&, fluctuations of the hexagon do not
interact with the rest of the lattice. It is these local excitations
that produce the flat mode. Note that even classically, the
energy of this distortion is not zero if higher ordersdfi,
are included. This is analogous to the flat mode indqked
structure of the isotropikagome antiferromagnet, where
once again, the mode is flat only to harmonic ordfer.
Consider this degeneracy mode in the presence of a small
field. It is easy to show that the field energyer nine site
unit cell) near the optimal angles is

3, ,(2-4)? )
5Efield_§ hS W COS@A( 59) . (37)
We do not need to consider the bond energies of the spins to
this order for the following reasons:

(i) One can decompose the deviation from the optimal
Op, Og, Oc into S50g=3S80gpa+ 8605, and S6c=S0ca
+ 86¢, where the first part represents the changégrand
0c along the degeneracy direction, due to the changgin
and the primed part corresponds to a change orthogonal to
the degeneracy direction.

(i) The optimalsdg, 86¢ in the presence of the field are
of orderh. This is because the bond energy is quadratic in
86y, 86¢ while the field energy is linear in these quantities.
Therefore, the energy difference due to the bonds will be of
orderh?, which can be neglected in comparison to the order
h field energy at small fields.

(i) There is no bond energy associated with a change
along 66, .

The local¢ mode conjugate to thi§, mode is[(1/2)5¢,
—(1/2)6¢,0]. The “potential” energy(per nine-site unit cell
of this mode can be calculated from the classical Hamil-
tonian exactly as in the triangular lattice case, and is

3
U= 5 SPA¢?sir o,

) singg 38
+ :
singx 38

The Berry phase term for this unit cell,
3S sind 66(9¢° d7), allows us to identifyQ=3S sing} ¢° as
the coordinate, anB = 66 as its conjugate momentum. Then

w(S,h,A)=3(A)Syh,

_ _\/ singt\ (2—A)2 .
w(A)= 2+m WA CO,.

(39

This gap goes to zero af in the limith—0, and the mode
becomes gapless in addition to being flat.

So far we have used the field to stiffen the degeneracy
mode. Now consider the effect of quantum fluctuations at
h=0. We can find the effective potential to lowest leading
order by computing the ground-state energy for varigu
SWT. This is plotted fon=0.25 in Fig. 22. We assume that
the mode will remain dispersionless, and therefore local,
even when lifted from zero energy by quantum fluctuations.
This assumption allows us to extract an effective Hamil-

R3 structure. Once again the leading-order potential has a linedonian for each local degeneracy mode, which has been writ-

cusp.

ten down in Eq.(35), where we identify thenomenturmas
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P=3S sind ¢° and the conjugateoordinateasQ= 6, and
where the numerical value of is obtained from the figure
(for A=0.25:

M~1=0.1944,

(40)
A=0.0255.

We use a Gaussian trial wave function to obtain the approxi-

mate ground-state energy of this Hamiltonian, yielding

27\2m 1

1/3
et 2/3
wo ( 56 ) 0.02523, (41)

Of course, we expect this mode to disperse, but the calcula-

tion of the dispersiotf**is much harder than the one pre-
sented here, and will be pursued in future work.

Ill. EFFECT OF QUANTUM FLUCTUATIONS
ON ORDER PARAMETERS

SUPERFLUIDS AND SUPERSOLIDS ON FRUSTRATE ..
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Triangular ; h = 0

Se4+§S

Se,

0.5

One of the motivations for this work has been to see if

guantum fluctuations can disorder the system, creating a spin

liquid, which would correspond to a ordinary liquigvith
nonzero viscosityfor the bosons. To leading order in SWT,
one can compute the average values of the spins as

(Sy=((aja)—S) Dy . (42)

FIG. 23. Quantum fluctuation corrections to the magnitudes of
the spins on thé\ andC sublattices as a function & ath=0 for
the triangular lattice.

small, the two models have no simple relationship with each
other since the triangular lattice is not bipartite.

The calculation sketched out in Sec. Il also produces the Although totalS* decreases a& decreases, it seems that
explicit Bogoliubov transformation, which can then be usedSuperfluid order persists all the way, vanishing only when
to find the expectation values of bilinears. More explicitly, in A=0. In Fig. 23 we plot the quantum fluctuation corrections

terms of the matrixT which implements the transformation
2K

(eltoei(k)= 2 Tu(Tja(k), (43

where it is understood that and j run from 1 toK (the
number of sublatticeswhile a runs fromK+1 to 2K, the
rank of T. Let us now turn to the different cases.

A. Triangular lattice

to the magnitudes of the spins on the three sublatfisese
0= 6 we plot only two values As A—0 the A sublattice
remains stiff, while theB andC sublattice spins get reduced
to about half their classical valuéor S=1/2). Thus, super-
solid order on the triangular lattice survives quantum fluc-
tuations at the spin-wave level.

Let us now turn to Fig. 24, which shows the classical and
quantum order parameters as a functiomaofor h=3. For
A<1/2 it is clear that though there are quantum fluctuation
corrections to each of the spins, the tdalis not corrected,
thus leaving the filling exactly 2/3. Foh>1/2, there are

Figure 3 shows a plot of the classical and quantumdfluctuation corrections which do not affect the nature of the

corrected totals* and totalS*, for h=0. It is clear that the

phase. Once again, we will concentrate on the lower energy

quantum-corrected value of the magnetization is very clos&3xV3 structure on th&agoméattice, leaving an analysis of

to zero, independent k. Exact diagonalizations of finite
clusters for the anisotropic antiferromagnetic cAse0 (Ref.

45) suggest strongly that this is an exact statement. That is,

the exact ground state Bt=0 has zero longitudinal magne-
tization M, . An interesting fact about the triangular lattice
allows us to map thé&>0 problem(our mode) to the A<O

the g=0 structure to future work.

B. kagome9 sublattice structure

Figure 5 presents the naive results for the occupation
numbers of the different sublattices in SWT for t&xv3

model, which is the anisotropic antiferromagnet solved instructure atA=0.25 as a function ofi. Notice that ah—0

SWT by KMFF. For very smalA one can work to linear

the fluctuation corrections diverge. This is a consequence of

order inA, which means that one is working within the set of the flat mode, whose energy goes to zertas0. In reality,
antiferromagnetic Ising model ground states. For nearests we have seen in the previous section, the energy flat mode
neighbor spin flips, the Marshall sign property is obeyed bywill be lifted in higher orders of SWT. While a quantitatively

the wave functions, arising from a partition of the set ofaccurate analysis requires the computation of the dispersion

ground states into disjoint even and odd st&feEhis means

of this degeneracy mode, we can make a rough estimate of

that for very smallA there is evidence that the boson systemthe fluctuation corrections to the sublattice spins by assum-
would be exactly half-filled in the true ground state. How- ing that the mode remains flat at the value calculated in

ever, to any higher order i, or numerically forA not so

Sec. I C 2.
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FIG. 24. Classical and quantum values $&f and S, for the
triangular lattice ah=3 as a function ofA. Note that forA<1/2 we
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will, weakly) in order to estimate the quantum fluctuations in
the sublattice spins. We will also assume that none of the
matrix elements change substantially. Thus the energy of the
mode is the only significant factor. This means that we can
estimate the contribution to the fluctuation correction to the
spins by applying a fielthg such that the field-induced en-
ergy is the same as the energy induced by quantum fluctua-
tions:

)\2

ho==; 572, (47)

Numerically, we find forA=0.25 thathy=0.000 57. This
implies boson occupations of,=ng=1.66, andn=0.04.
Since the boson occupations are larger than the \@&#ug/2,
we find the fluctuations to be larger than the mean-field value
of the spin. Thus, despite the lifting of the flat mode due to
quantum fluctuations, we find that fluctuations may be large
enough to disorder the mean-field ordering on gheand B
sublattices. However, it is not certain that large fluctuations
imply disorder. Furthermore, it is difficult to understand how
the C sublattice could remain stiff and ordered if the other
two lattices are disordered. Strictly speaking, what this result

are in the MI phase, and the total magnetization is uncorrected frorf€!lS US is that we have reached the limitations of spin-wave

its mean-field value of 2/3.

We need to determine the reduction in the magnitude of

theory.

CONCLUSIONS AND OPEN QUESTIONS

each sublattice spin due to quantum fluctuations. In terms of

the equilibrium positions* and the deviations from equilib-

We have found a broad region of parameter space where

rium 56 and 8¢ we can write the magnitude of the spin as supersolid order is stable to leading order in mean-field

1 1 ) . P2 Q2
(S)=5S 1—5(56)2—§sm20 @2 :(1_?_@>,
(44)

where we have once again usee: 3S sinds ¢’ andQ= 6,
and assumed a nondispersing degeneracy mode.
We know from the harmonic oscillator that

<P2>o=%,
(45)
<Q2>02R1

and in the casé#0, we find

A(2+singg/singy)

(S)=s~ 1254h ( \/cose’;\[(Z—A)zll—A]

h\/cose,ﬁ[(z—A)Z/l—A]
"2 N a2+ singisingl) |-

(46)

Clearly there is a divergence &s—0, which is seen in

theory. The inclusion of spin-wave corrections modifies this
picture differently for the triangular arkhgomédattices. The
supersolid is quite robust on the triangular lattice. Our inter-
pretation of the supersolid corresponds with the ideas of An-
dreev and LifshitZ, with hopping vacancies undergoing
Bose condensation. The role of lattice frustration is to pre-
vent all the particles from condensing into a solid.

We have also come across a genéitabugh nonrigorous
argument which limits the search for the true ground state in
a system with ground-state degeneracy: Look for the points
at which global conserved quantities commute in the Poisson
bracket sense with the generators of motion on the degen-
eracy subspace.

On thekagomelattice we find thev3Xv73 structure to be
more stable than thg=0 structure at all parameter values.
Fluctuations seem much stronger here, and may even be able
to destroy the long-range order assumed in mean-field
theory. This is a fertile region for numerical and experimen-
tal work.

To what experimental systems might these considerations
be applicable? One might be able to construct an array of
Josephson junctioASwhich satisfy the conditions necessary
for the existence of a supersolid. This means that the charg-
ing energy of each grain should be very high, and the

Fig. 5. Of course, there will also be a contribution indepen-nearest-neighbor charging energy should be higher than the
dent of h due to the other modes not associated with theJosephson coupling between the neighboring grains. Further-

degeneracy.

more, only pair hopping should be relevant, which implies

Now consider the casb=0. As shown in the previous temperatures low compared to the bulk supercondudiing
section, the flat mode will be lifted from zero energy by Of course, since this is a two-dimensional system, the Bose

quantum fluctuations and acquire an energy of o&¥€r We
will assume that the mode does not dispdiseen though it

condensate disappears fo¥: 0, but power-law ODLRO is
expected to remain.
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=0 (A2)

be relevant is*He on graphite. A variety of orderings and X
X(\)

transitions are known to occur as a function of temperature #
and coveragé® Also, steps in the superfluid density have for all x=1,...,2N, where \ parametrizes the degeneracy
been seen as a function of coverdbm multiple layer$ for  submanifold, a curve in phase space definedXigy). The
*He on graphité? and have been interpreted as resultingdegeneracy submanifold is one dimensional in this example.

Another experimental system to which these results might ( OH

from correlation effects? Differentiating with respect ta. gives
As it stands, this work isot applicable to the question of
supersolidity in“He on a smooth substrate. In order to ap- 2N 9*H X, (N)
proach the continuum one would have to consider very low 21 (axﬂax PN =0, (A3)
v= vEX(\)

densities on the lattice, as well as long-range interactions
(see Ref. 15 for an example of a continuum apprgad¥e .e., the vectorX,/J\ is a null eigenvector of the Hessian
close with a number of important open questions. matrix evaluated at the poid¢(\).

SWT seems sufficient for the triangular lattice, but not for ~ As an example, consider the function
the kagomelattice. A formalism that can consider ordered
and disordered states in a unified manner is necessary, per-
haps a variant of the largd-approaches!*® Second, even
for the triangular lattice, the question of vortices in the o ) } ]
ground state is open. The spin-wave ground state has vortf/h0ose minimum is at =1 independent of. Note that¢ is
ces, but they occur in nearest-neighbor pairs. A fruitful waynot cyclic in 7, and its conjugate momentufsay r<, by
to incorporate vortices might be to consider the effectivedefinition) is not conserved as Noether’s theorem does not

theory of the gapless modes only, and include their interac@PPly. Nonetheless, there is a one-parameter family of

tion with vortices in a semiclassical manner. ground states, parametrized ¥y The Hessian matrix, evalu-
The original picture of Ref. 20 has been confirmed by a2ted atr =1, is

strong-coupling expansiofl. Strong-coupling expansions

and variational approach®s® are complimentary to the H—

spin-wave expansion, and it would be interesting to investi-

gate our model by these approaches. 20 ok s i
The effects of nonzero temperature on systems witNd the vectord/d¢)(,)=(3) is a null eigenvector.

ground-state degeneracy can be very nontrivial. In particular, NOw consider the Gaussian fluctuations about the ground

quantum and thermal ground-state selection effects ma§tate. We are interested in the partition functiah

compete to produce a sequence of phases and transitions EJD[D,QJG#‘, which is obtained from the action func-

the temperature is raiséd Clearly, thermal effects have to tional

be elucidated before our results can be directly applied to an g .

expenmenta! situation. Finally, it is intriguing to harken back A:f dr( iﬁz ai ﬂ+7—l(p,q)), (AB)

to the question raised by Anderson and Faz&kaad ask 0 i ar

grf[t)gerzz;tﬁrs possible for a liquid state to be stable at “€T8vherei = 1,...N. We expand about one of the ground states,

writing p;=P;+ dp;, 4;=Q;+ 89;, and, using summation
convention,

1
H(r,¢)=z(r2—1)2(a+b cosp), (A4)

(A5)

2(a+b cosp) O)
0 0
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APPENDIX: CONTINUOUS DEGENERACY NOT ARISING 5
FROM A SYMMETRY 1/ o°H
Vij:%(o—, = ) ; (A8)
Consider a Hamiltonian functiof((x), where 999/ 5 o

and R' is the transpose oR. Thus, the integrand aofd is

X=(P1,P2,---Pn 01,02, 0N) (A1) given by (/2)ox,(H,,+iJ,,d,) o, , where
is the vector of(dimensionlesscoordinates and momenta. T R
What does it mean that the ground state is continuously de- H=l gt v (A9)

generate? Clearly, there must exist a one-parameter family of
ground states, i.e., and
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0 1 aP;
:(—;XN oNXN)' (A10) Y S sind, 22
NXN NXN |N1>: P — 1 (9)\ (A12)
The matrix H is brought to diagonal form by the basis & Oy
changes: I\
N <Q+ 0 ) and
S'HS= _ (A11)
0 o aP;
where Q" =diag(w7 ,...,0y) iS a diagonal matrix, and 9E Oy
S'JS=J preserves the symplectic structyoemmutation re- INg)= _ :( ) (A13)
. . . . . . 3Q| lN
lations. Note that the diagonalized Hamiltonian is —
(1/2)(p'Q " p+q'Q ~ q) rather than, say (1/2p{p+q'Q2q). &

The two are, of course, related by a canonical transformatio
provided thew are nonzerg.The eigenvectors come in
pairs | ) which satisfy

JH[ g )= — oy |4y ),

JHIY ) =+ oy |4 ),
as well as the orthonormalization condition

"Note that the|N,) eigenvector contama 1 ineach of its
lower N entries. When we compute the overldg,|J|N,),
we obtain

90, IM?

A

N
(N2[JINpy=~ 2, Ssin®
i=1

where M? is the totalz component of the magnetization:

(W13 = (g 13 Y=0 M?=3N  Scod,. Unless the magnetizatidv, is extrem-
k ! k ! ’ ized with respect to\, there is a finite overlap, and by ap-
—<¢;|J|¢|+>=<¢k+|\]|,/,|*>= o propriate normalization one can choddg) and|N,) to be

_ _ a|y~) pair. When the magnetization is extremized, however,
wherek,| =1,... N. TheN energy eigenvalues are then given the overlap is zero which means that these two null right

by e=% o, o. eigenvectors belong to separate pairs, and there are at least
Now consider the case where the degeneracy subspacetigo zero modes.
two dimensional, parametrized by the coordinaeg). In Therefore,the two modes are independent only when

our spin-wave theory, we have thagj=¢; and JdM%I\=0, that is to say, when the magnetizatiori is! ex-
p;=S(1-cos;), and the\ invariance is realized as some tremized In the general case both the conserved quantity and
relation among the colatitute®;(\) along the ground-state the generator of motion along the degeneracy subspace may
submanifold, while thet invariance is simply expressed as have components along bothand q subspaces. It is then
D;(£)=D;(0)+¢&. The matrixH (and hencelH) has two  easy to see that the two vectors will have zero overlap only if
known null right eigenvectors—call themN,;) and the conserved quantity commutéism the Poisson bracket
|N,)—corresponding, respectively, to the and £ invari-  sensg with the generator of motion along the degeneracy
ances. We have that subspace.
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