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Superfluids and supersolids on frustrated two-dimensional lattices
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We study the ground state of hard-core bosons with nearest-neighbor hopping and nearest-neighbor inter-
actions on the triangular andkagome´ lattices by mapping to a system of spins (S51/2), which we analyze
using spin-wave theory. We find that the both lattices display superfluid and supersolid~a coexistence of
superfluid and solid! order as the parameters and filling are varied. Quantum fluctuations seem large enough in
the kagome´ system to raise the interesting possibility of a disordered ground state.@S0163-1829~97!09605-7#
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INTRODUCTION

A supersolid is a state of matter which simultaneou
exhibits both solid and superfluid properties. That is to say
displays both long-ranged positional order as well as fin
superfluid density and, naı¨vely, off-diagonal long-ranged or
der ~ODLRO!. The intriguing suggestion by Andreev an
Lifshitz1 that vacancies in solid4He might Bose condense i
the vicinity of the melting line has, to our knowledge, nev
been experimentally verified.2,3 Nonetheless, a sizeable li
erature has developed on the theoretical properties
supersolids.4–16 In two dimensions, the physics o
Josephson-junction arrays17 has also stimulated the theore
cal study of supersolids. Most of the work is based on
contributions of Matsuda and Tsuneto18 and of Liu and
Fisher,19 who established some key concepts in the theory
lattice-based supersolid models. Of central importance is
mapping between a hard-core lattice Bose gas and a spin
quantum magnet:

ai
†↔Si

1 , ai↔Si
2 , ni5ai

†ai↔Si
z2

1

2
. ~1!

Thus, an occupied site is represented by an up spin, whil
empty site is represented by a down spin. An interact
hard-core lattice Bose gas with nearest-neighbor hoppint,
nearest-neighbor repulsionV, and chemical potentialm is
thereby equivalent to the anisotropicS51/2 Heisenberg
model

H5(̂
i j &

@JiSi
zSj

z1J'~Si
xSj

x1Si
ySj

y!#2H(
i
Si
z , ~2!

whereJi5V is an antiferromagnetic longitudinal exchang
J'522t is a ferromagnetic transverse exchange, andH5m
2(1/2)zV is an external magnetic field~z is the lattice co-
ordination number!. The spin model exhibits a globalU(1)
symmetry with respect to rotations about theẑ axis, which of
course means total particle number conservation in the bo
language. The boson condensate order parameter is rela
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the transverse magnetization density via^ai
†&5^Si

1&, while
the boson compressibilityK5]n/]m is the magnetic suscep
tibility x5]Mz/]H. Liu and Fisher identified four phases o
interest: ~i! a normal fluid, in which the magnetization i
uniform and in theẑ direction,~ii ! a normal solid, in which
the magnetization lies alongẑ yet is spatially modulated a
some wave vectork, ~iii ! a superfluid, in which the magne
tization is uniform and has a component which lies in t
x-y plane, and~iv! a supersolid, in which there simulta
neously exists a nonzero transverse component to the m
netizationM' , as well as a spatial modulation of the long
tudinal magnetizationMz . ~An incompressible normal fluid
is also called a Mott insulator.!

If one relaxes the hard-core constraint in favor of a fin
on-site repulsionU, one obtains the Bose-Hubbard model

H52t(̂
i j &

~ai
†aj1aj

†ai !2m(
i
ni

1
1

2
U(

i
ni~ni21!1V(̂

i j &
ninj . ~3!

This model has been extensively studied since the sem
work of Fisheret al.,20 who considered the model withV50
in the context of a superconductor-insulator transition.
study of this model in the presence of disorder has led to
understanding of the Bose glass.21 On a two-dimensional
square lattice, and forVÞ0, the model was studied atT50,
for both finite and infiniteU, by Scalettaret al.,14 Bruder,
Fazio, and Scho¨n,6 and van Otterlo and co-workers7,8 using
mean-field theory and quantum Monte Carlo techniques.
summarize their results, no supersolid phase is observe
half filling ( ^n&51/2), where a first-order transition occu
as a function ofV between superfluid~smallV! and a Ne´el
solid @large V, k5~p,p!#. ~Large next-nearest-neighbor re
pulsion V8 stabilizes a striped phase, the colinear soli!
Away from half filling, there is no normal solid phase, an
the transition is instead from superfluid to supersolid. T
supersolid phase exhibits both a peak in the static struc
3104 © 1997 The American Physical Society
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55 3105SUPERFLUIDS AND SUPERSOLIDS ON FRUSTRATED . . .
factorS~k! at the Néel vector~and properly proportional to
the lattice volume!, and a nonzero value of the superflu
densityrs . Again, next-nearest neighborV8 can stabilize a
striped supersolid phase with anisotropicrs . One can also
obtain Mott insulating phases with fractional filling in th
presence of next-nearest neighbor interactions.

In this paper, we will investigate the properties of t
model in Eq.~2! on frustrated two-dimensional lattices. W
are motivated by the fascinating interplay between frus
tion, quantum fluctuations, order, and disorder which h
been seen in quantum magnetism.

Frustration enhances the effects of quantum fluctuatio
Indeed, as early as 1973, Fazekas and Anderson23,24 raised
the possibility that for such systems, quantum fluctuatio
might destroy long-ranged antiferromagnetic order even
zero temperature. In many cases, frustration leads to an
nite degeneracy at the classical~or mean field! level not as-
sociated with any continuous symmetry of the Hamilton
itself. In these cases, it is left to quantum~or thermal! fluc-
tuations to lift this degeneracy and select a unique gro
state,25,26sometimes with long-ranged order. Our models e
hibit both a depletion~but not unambiguous destruction! of
order due to quantum fluctuations, as well as the phen
enon of ‘‘order by disorder.’’

In our work, we will choose the units of energy to beJi ,
writing D[t/V5J'/2Ji , andh[H/Ji . We will be follow-
ing closely the analysis of the anisotropic triangular latt
antiferromagnet by Kleine, Mu¨ller-Hartmann, Frahm, and
Fazekas~KMFF!,27 who performed a mean-field~S5`
limit ! and spin-wave theory~order 1/S corrections to mean
field! analysis. Contemporaneously with KMFF, Chubuk
and Golosov28 derived the spin-wave expansion for an is
tropic Heisenberg antiferromagnet in a magnetic field, wh
Sheng and Henley29 obtained the spin-wave theory for th
anisotropic antiferromagnet in the absence of a field.

The mean-field phase diagram is shown in Fig. 1~both the
triangular andkagome´ lattices have the same mean-fie
phase diagram up to a rescaling ofh!. Notice that the super
solid phase appears in a broad region ofD and filling. The
reason the supersolid is so robust is that the lattice frustr
a full condensation into a solid. Generically, frustrated l
tices might be good places to look for this phase.

Let us briefly concentrate onh50 before describing the
entire phase diagram. We will be assuming a three subla
structure throughout. The mean-field state is then descr
by three polar and three azimuthal angles: (uA ,uB ,uC ,
fA ,fB ,fC), and is invariant under uniform rotation of th
azimuths.

Due to the ferromagnetic coupling in thex-y spin direc-
tions the mean-field solution is always coplanar. Just a
KMFF, there is a one-parameter family of degenerate me
field solutions in the zero-field case~originally found by Mi-
yashita and Kawamura30!. The A sublattice polar angleuA
may be chosen as the free parameter; spin-wave th
~SWT! is necessary to lift the degeneracy and uncover
true ground state. Figure 2 shows the ground-state energ
SWT as a function ofuA for the triangular lattice atD50.25.
Using SWT we also compute the fluctuations of the spi
and the consequent quantum-corrected magnetization an
solid and ODLRO order parameters. Figure 3 illustra
these quantities in mean field and to leading order in S
-
s
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~whereS has been set equal to 1/2! as a function ofD for the
triangular lattice. It is clear that the quantum correctedSz is
very close to zero for allD, reflecting the fact that ath50
the lattice is half-filled. Two sublattices acquire large corre
tions due to quantum fluctuations~even in the Ising limit
D→0!, while the third has only small quantum correction
This is very similar to the fully antiferromagnetic case stu
ied by KMFF. Therefore, even atS51/2 the solid order sur-
vives. The off-diagonal order parameterSx is reduced in

FIG. 1. Mean-field phase diagram for the triangular lattice. T
kagome´ lattice phase diagram differs only by a rescaling ofh.
Heavy lines denote first-order transitions, light lines second-or
transitions, and dashed lines denote linear instabilities.

FIG. 2. Ground-state energy of the triangular lattice atD50.25
as a function ofuA . The minimum is quadratic.
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3106 55GANPATHY MURTHY, DANIEL AROVAS, AND ASSA AUERBACH
magnitude by quantum corrections, but goes to zero only
D→0. Supersolid order survives quantum fluctuations for
triangular lattice, at least in this order of SWT.

Let us now consider thekagome´ lattice. There is a quali-
tative difference between the antiferro-ferromagnetic c
considered here,D>0, and the fully antiferromagnetic cas
D<0, which has been exhaustively explored for the Heis

FIG. 3. Classical and quantum magnetizations for the triang
lattice,Sz andSx per site, as a function ofD at the true ground state
The full quantum-correctedSz is always close to zero, while th
quantum-correctedSx is always nonzero.
as
e

e

-

berg limit D521 ~for a partial set of references, see Re
31–38!. For the fully antiferromagnetic case there are loc
motions of the spins that move the system on the degene
submanifold, leading to a much larger ground-state deg
eracy for thekagome´ lattice than for the triangular lattice
However, forD>0, the ferromagnetic transverse interacti
eliminates the possibility of these local motions, resulting
a ground-state degeneracy parametrized only byuA , just as
in the triangular lattice.

We carried out SWT for the two long-range ordered co
figurations shown in Fig. 4—a three sublattice ‘‘q50’’ state,
and a nine sublattice)3) structure,35,36 respectively.
These states have the same mean-field ground-state en
It will turn out that two of the three sublattices have the sa
spin orientation in the ground state for both lattices. W
this proviso, note that theq50 structure has one twofold axi
and a mirror plane~point groupC2v!, while the)3) struc-
ture has a sixfold axis and a mirror plane~point groupC6v!.
Once again SWT selects the true ground state. When q
tum fluctuations are accounted for, we find that the)3)
structure always has lower energy than theq50 structure, to
the numerical accuracy of our calculations. More impo
tantly, the fluctuations of the spins on six of the nine subl
tices diverge in the limith→0, as shown in Fig. 5. This
divergence is the consequence of a flat~dispersionless! mode
at zero energy ash→0. Higher-order terms in the spin wav
expansion will lift this mode and remove the divergence.25,39

However, the fluctuations remain large forS51/2, as we
estimate in Sec. III. This indicates that quantum fluctuatio
may be strong enough to wash out any order, includ
ODLRO, on two of the sublattices, which raises the intrig
ing possibility of a partially disordered ground state atT50.
It must be emphasized that we have not demonstrated

r

FIG. 4. The two long-range-
ordered structures on thekagome´
lattice. ~a! the q50 structure and
~b! theR3 structure.
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55 3107SUPERFLUIDS AND SUPERSOLIDS ON FRUSTRATED . . .
this is so: the fluctuations could be correlated between
ferent sites, there could be long-range order with a larger
cell, a condensed array of vortices, etc. This problem me
further study, with, e.g., quantum Monte Carlo methods.

Let us now turn to a fuller description of Fig. 1, whe
four types of mean-field states are present~solid lines indi-
cate first-order transitions!. We adopt the nomenclature o
Ref. 14 ~see Fig. 12 of this reference for comparison!. At
high fieldsh the system is in a Mott phase—incompressib
and fully polarized. As the field is lowered, for anyD.0, the
system enters a compressible superfluid phase~SF!, with
uA5uB5uC.0. A first-order transition from the superflui
to an incompressible Ne´el solid ~NS! at filling fraction 2/3
@magnetization per siteMz56(1/3)S# occurs forD,1/2. Fi-
nally, the supersolid phase~SS! exists forD,1/2 between
the two symmetry-related Ne´el solid lobes. There is a tri
critical point at (D* ,h* )5[(1/2),3]. Quantum fluctuations
will modify these mean-field phase boundaries. Since
superfluid state, we have found, benefits the most from s
wave energy corrections, it will encroach on its neighbors
S decreases from̀ . Increasingh tends to suppress quantu
fluctuations.

We will present each of the above results in more detai
the rest of this paper. Section I concentrates on the me
field theory and the mean-field phase diagram. Sectio
describes the selection of the true ground state by quan
fluctuations ath50, and the form of the spin-wave excita
tions for arbitraryh. Section III presents the suppression
order by quantum fluctuations. We end with our conclusio
connections to experimental work, and open questions.

I. MEAN-FIELD THEORY

The mean-field limit is obtained by settingS5`. For-
mally, we first generalize the model fromS51/2 to a model

FIG. 5. Classical and quantum-corrected values of the magn
zationsSz andSx per site as a function ofh at D50.25 for theR3
structure on thekagome´ lattice. Notice the divergence ash→0.
This is an artifact of SWT.
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with a spin-S at each site. We then represent each spin a
classical vector of magnitudeS, Sa5SVa, whereV̂ is a unit
vector in three dimensions. We rescale the magnetic field
S and write

HMF /S
25(̂

i j &
V i

zV j
z2D(̂

i j &
~V i

xV j
x1V i

yV j
y!2h(

i
V i

z .

~4!

In the mean-field solution, all spins lie in thex-z plane.
Furthermore, it turns out that the triangular and bothkagome´
structures have the same mean-field energy, to within a c
stant factor~up to a separate rescaling ofh in the case of the
kagome´ structures!, so we will consider all three cases simu
taneously. Note that coplanar states have been selected a
mean-field level for thekagome´ lattice, in contrast to the
fully antiferromagnetic case.

A. Zero field

Consider first mean-field ground states on the triangu
and kagome´ lattices that have a three-sublattice structu
The three specific cases are the usual sublattice structur
the triangular lattice, theq50 structure on thekagome´ lat-
tice, and the)3) structure on thekagome´ lattice. The nine
sublattices of the)3) structure are organized into thre
groups (A,B,C) of three, so that anA site has twoB and two
C neighbors. Thus, the energy per site, in units ofS2, is

eMF[EMF /NS
2

5~cosuAcosuB1cosuBcosuC1cosuCcosuA!

2D~sinuAsinB1sinuBsinuC1sinuCsinuA! ~5!

on the triangular lattice andzKag/zTri52/3 this value on the
kagome´ lattice.

Miyashita and Kawamura30 have shown that there is
one-parameter family of degenerate ground states for
classical problem for arbitraryD, which does not seem to b
related to any obvious symmetry of the model. Followi
KMFF, and writingb i5u i2(uA1uB1uC), and defining the
two-dimensional vectorsmi5~sinb i ,cosb i!, we can write the
mean-field energy in terms of the two-component vec
m[mA1mB1mC :

eMF5
1

4
~12D!~m223!1

1

2
~11D!my . ~6!

Therefore eMF , while nominally depending on the thre
anglesu i , actually depends only on two combinations
them, leaving one parameter free. We can then parame
the degenerate ground states byuA , by defininguB5e2d,
anduC5e1d, where

tane52
tanuA

D
, ~7!

cose5
2D cosuA

A12~12D2!cos2uA
,

ti-



h

te

io

lts

se
th

Let

lid
d

,
le

w-
in-

the
tua-

tum
ula-

c-

d-
t

-

s

ve
g-
-
r

s
on-
is
he

ol
ol
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cosd5
D

~12D!A12~12D2!cos2uA
.

It is easy to verify thatuA can lie in the range

cos21S 1

12D
A122D

12D2 D<uA<
1

2
p.

As D increases from zero, the range of possibleuA is
compressed, and the differencesuuB2uAu, uuC2uAu shrink,
until at D51/2 the ground state is colinear wit
uA5uB5uC5(1/2)p—a featureless superfluid. ForD,1/2,
in the case of zero field, the true ground state will be selec
by quantum fluctuations. MinimizingeMF gives mx
5(D11)/(D21), my50, and

eMF52S 12D1D2

12D D . ~8!

B. Nonzero field

Turning on a fieldh adds an energy

DeMF52
1

3
h~cosuA1cosuB1cosuC! ~9!

per site and lifts the degeneracy described in the prev
subsection, producing a unique mean-field ground state~un-
like in the Heisenberg antiferromagnet28!. We find that mini-
mization generally leads to a state where~without loss of
generality! uA5uBÞuC in the supersolid phase. The resu
are plotted in Fig. 6. A rescaling of the field for thekagome´
lattice @hKag5~2/3!hTri# makes the entire mean-field pha
diagram identical, and we have therefore shown only
triangular lattice results.

FIG. 6. OptimaluA5uB anduC as a function ofh for D50.25.
Note the continuous approach to collinearity at the supersolid-s
transition, and the discontinuous change of the angles at the s
superfluid transition.
d

us

e

The phase diagram has already been shown in Fig. 1.
us keep at a particular value ofD and turn up the fieldh. At
zero field there are two regimes, the superfluid with no so
order for D.1/2, and the supersolid with both solid an
ODLRO (T50) for D,1/2. For D.1/2, the ground state
remains a uniform superfluid, thoughMz becomes nonzero
as h is increased. The spins cant at an ang
u5cos21[h/6(11D)]. The energy in this phase is

eMF
@SF#523D2

h2

12~11D!
. ~10!

Eventually, forh.6(11D), every site has the maximum
possibleSz, and the system is in the Mott insulator~MI !
phase, with each site fully occupied with one boson. Borro
ing from spin-wave results derived in Sec. II, the linear
stability of the SF phase occurs at

hi156A~11D!~122D!. ~11!

Next focus on a specificD,1/2, and increase the fieldh
from zero. At zero field, the one-parameter degeneracy of
mean-field ground states has to be lifted by quantum fluc
tions, which select a particularuA . However, it turns out that
we can recover thisuA by considering nonzeroh and taking
the limit h→0, which gives

cos2uA5
122D

12D2 . ~12!

It seems surprising that the ground state selected by quan
fluctuations can be predicted by an entirely classical calc
tion. A plausible~though nonrigorous! argument will be pro-
vided for this in terms of spin-wave theory in the next se
tion.

As h is increased from zero,uA and uC change~recall
uA5uB throughout!. At a certain critical fieldhc1(D), SC
points exactly along the2 ẑ direction (uC5p), while SA,B
point along theẑ direction (uA5uB50). This critical field
hc1 can be analytically determined by the following consi
eration: the pointuA50, uC5p is always a stationary poin
of the mean-field energy. However, forh,hc1 it is a saddle
point, while forh.hc1 it is a minimum. Therefore the sec
ond derivative matrix ofeMF(uA ,uC) should have a zero
eigenvalue ath5hc1. Setting the determinant to zero give

hc1~D!5
3

2
~21D2A424D27D2! . ~13!

Forh,hc1(D), we are in the supersolid phase. Just abo
hc1, however, the system is exactly 2/3 filled, and its ma
netic susceptibility is zero~the compressibility of the corre
sponding boson system is zero!. There is no superfluid orde
and the system is again a Mott insulator, the Ne´el solid. It
will be seen in Sec. III that the exact filling of 2/3 survive
quantum fluctuations. Since the superfluid order goes c
tinuously to zero below the transition, it is clear that th
transition is second-order within in mean-field theory. T
energy of the Ne´el solid phase is

eMF
@NS#5212

h

3
. ~14!

id
id-
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One can furthermore determine that the Ne´el solid phase is
linearly stable for 3/2(21D2A424D27D2)<h<3/2(2
1D1A424D27D2).

Further increasingh, we find a critical field

hc2~D!52~11D!14A~11D!~122D!, ~15!

beyond which the canted superfluid becomes energetic
favored. The transition is first order since it is far from a
linear instabilities. Finally, a second-order line
h.hc3(D)56(11D), signals the boundary between supe
fluid and fully polarized Mott phases.

WhenD51/2, we can solve analytically to find

cosuA5
1

3
h,

cosuC52
1

3
h, ~16!

eMF
@SS#52

3

2
2

1

18
h2.

This is exactly the same as the energy of the SF phas
D51/2 @which is characterized by all the angles satisfyi
cosu5(1/9)h#, which marks this vertical line as a first-orde
line. Note the tricritical point atD51/2, h53, where two
first-order lines~with infinite slope! meet a second-order lin
~with finite slope!.

The situation is completely symmetric with respect to t
sign of h, with the Néel solid phase now existing at 1/
filling for h,0. At the mean-field level, theD axis is a
first-order transition line up toD51/2, sinceSz is discontinu-
ous across it. However, forS51/2 it apparently become
continuous, at least for the triangular lattice.

The phase diagram has some similarities to the cla
picture of the Mott lobes surrounded by superfluid describ
by Fisher, Weichman, Grinstein, and Fisher~FWGF!.20

However, there are important differences. FWGF conside
local Hubbard repulsion, whereas our extended Bo
Hubbard model we consider affords the possibility of inco
pressible Mott phases at fillings 0, 1/3, 2/3, and 1. The N´el
solid phase found by Scalettaret al., for example, exists a
filling 1/2. Fractional fillings have also been observed in t
square lattice with frustrating longer range interactions
Ref. 6. Also, the transitions from the fractional filling M
phases to the~canted! superfluid are first order. Finally, an
most notably, the entire region between the two fractio
Mott lobes is taken over by the supersolid, and the sup
solid gives way to the superfluid only beyond a hoppi
t.(1/2)V.

II. SPIN-WAVE THEORY

We now develop the spin-wave theory~SWT! for this
problem. IfhÞ0, there is a unique ground state~up to per-
mutations of the sublattices!. Whenh50, the ground-state
manifold is parametrized byuA , and the other angles,uB and
uC ~in general not equal!, can be determined fromuA andD
using Eq.~7!. We implement SWT in the usual way: by firs
performing local rotations of the spins so that the mean-fi
directions point along the localz axis. Since all the spins ar
lly

-

at

ic
d

d
e-
-

e
n

l
r-

d

assumed to lie on thex-z plane, we can do this by a rotatio
about they axis. Labeling the local frame spins with a tild
we have

SRn
x 5cosunS̃Rn

x 1sinunS̃Rn
z ,

SRn
y 5S̃Rn

y , ~17!

SRn
z 52sinunS̃Rn

x 1cosunS̃Rn
z ,

where the subscriptR labels a Bravais lattice site,n a basis
element, andun is uA,B,C depending on the mean-field orien
tation of then sublattice. The triangular lattice and theq50
structure on thekagome´ lattice have three sublattices, whil
the)3) structure on thekagome´ lattice has nine.

We now describe the spin operators in terms of Holste
Primakoff bosons

S̃Rn
1 5cRn

† A2S2cRn
† cRn5A2ScRn

† 1O~S21/2!,

S̃Rn
2 5A2S2cRn

† cRncRn
† 5A2ScRn1O~S21/2!, ~18!

S̃Rn
z 5cRn

† cRn2S.

The Hamiltonian~restoringh for generality! is now written
in Fourier space as

Hsw5E01~1/2!S(
k
:C†~k!SM N

N MDC~k!:1O~S0!

~19!

~note the normal ordering! where the energyE0 is given by

E05~N/K !S2F12 (
nn8

znn8Xnn82(
n

hnG . ~20!

Here,N is the total number of lattice sites,K is the number
of sublattices, and we define the quantities

Xnn85cosuncosun82D sinunsinun8 ,

Ynn85sinunsinun82D cosuncosun8 , ~21!

hn5h cosun ,

and znn8 is the number ofn8 sublattice neighbors eachn
sublattice site has. The vectork lives in the first Brillouin
zone of the reciprocal lattice, and

C†~k!5@c1
†~k!,c2

†~k!,...,cK
† ~k!,

c1~2k!,c2~2k!,...,cK~2k!#. ~22!

The matricesM andN have diagonal and off-diagonal ele
ments given by

M nn~k!5hn2(
n8

znn8Xnn8 , ~23!

M nn8~k!5
1

2
~Ynn82D! f nn8~k!,

Nnn~k!50,
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Nnn8~k!5
1

2
~Ynn81D! f nn8~k!,

where the functionf nn8(k) is given by the following sum:

f nn8~k!5( 8
d

exp~ ik•d!, ~24!

where the prime on the sum indicates that the sum is o
nearest-neighbor vectors connecting an sublattice site to an8
sublattice site.

Now we perform a Bogoliubov transformation, whic
amounts to finding a rank 2K matrixT satisfyingT†LT5L,
with

L5S 1K3K 0K3K

0K3K 21K3K
D , ~25!

as well asLT21LHswT5v, a non-negative diagonal matri
with identical upper left and lower right blocks. Thevn~k!
are the spin-wave frequencies. The spin-wave correctio
the ground-state energy is given by

DE5
1

2
S(

k
(
n51

K

@vn~k!2M nn~k!#. ~26!

A. Ground-state selection

Figure 2 shows the ground-state energy, including sp
wave corrections, for the triangular lattice ath50 as a func-
tion of uA . Since the classical energy is independent ofuA
all the variation comes from the SW correction. It is cle
that there are two possible values ofuA which minimize the
ground-state energy, one of them lying at the edge of
allowed range ofuA . However, the two minima turn out to
be physically identical, and correspond to a relabeling of
sublattices. We call the minimizing value ofuA which lies
away from the edge of its allowed rangeuA* .

The value ofuA* can be determined by purely classic
arguments, by extremizing the value ofSz}uA1uB1uC
along the degeneracy submanifold. We have checked
this is so by a comparison of the analytic expressionuA*
5cos21A(122D)/(12D2) with the ground-state energ
curves obtained from SWT. We now provide an argum
indicating why this might be the case.

Our argument will be the following: For a genericuA
there is only one mode of zero energy atk50, whereas if
]Sz/]uA50 there are two zero modes~to spin-wave order!.
The ground-state energy is the sum of the energies of al
modes, and does not depend on just the zero modes. H
ever, we think it plausible that having more modes of ze
energy atk50 drags down the energies of all thek modes,
thus reducing the full ground-state energy. Of course
argument is not rigorous,40 and there may be counterex
amples that we are not aware of.

Let us go on to show the first statement about the num
of modes of zero energy. We only sketch the argument h
We treat the issue with more generality and greater deta
the Appendix. It is helpful to think in terms of the cohere
states path integral22
er
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Z5E D@uA ,uB ,uC ,fA ,fB ,fC#e2A,

~27!

A5E dtS (
r
iS cosu~r ,t!

]

]t
f~r ,t!1H@u,f# D ,

whereH stands for the spin Hamiltonian of Eq.~4! written in
terms ofu andf. The first term is the Berry phase contribu
tion to the path integral, which also makesS cosu the mo-
mentum canonically conjugate tof.

Let us concentrate on just thek50 modes. There are thre
f variables and three conjugateu variables. We choose to
call one of thef variablesf0 corresponding to an overa
rotation of all the spins around thez axis, and call the re-
mainingfs, f1, andf2.

Choose any particular ground state labeled byuA . The
Hamiltonian for small deviations from the ground-state co
figuration is now given by

H5
1

2
uTM uu1

1

2
fTMff, ~28!

whereuT5(duA ,duB ,duC) andfT5(f0 ,f1 ,f2). The first
row and column ofMf are zero sincef0 does not appear in
the Hamiltonian.

The general procedure for finding the normal modes is
following:

~i! Diagonalize the 232 block ofMf and rescale the re
sulting eigenvectors so that the rescaledMf8 becomes a unit
matrix in the 232 block. Call the rescaledf variablesc6 .

~ii ! Use the Berry’s phase terms to identify the cano
cally conjugate momenta tof0, c6 asP0 , P6 , respectively.

~iii ! Re-express the matrixM u as a matrixMP .
~iv! Sincef0 is cyclic, its canonically conjugate momen

tum P0 is conserved. TreatP0 as a constant and form linea
combinationsP68 5P61a6P0 such that the off-diagona
terms containingP0 are eliminated. A diagonal term multi
plying P 0

2 remains.
~v! Now diagonalize the lower 232 block of MP . The

two eigenvalues ofMP are the squares of the energies of t
normal modes of the Hamiltonian. The third normal mo
corresponds to a uniform rotation of all the spins around
z axis coupled to a change inSz , and its energy is always
zero regardless of the coefficient ofP 0

2.
The above is true even if there is no ground-state deg

eracy. If there is ground-state degeneracy in theu subspace
the matrixMP has a null eigenvectorv0 . For genericuA , P0
has nonzero overlap withv0 . In this case the above proce
dure always produces a zero coefficient forP 0

2. Thus there is
still only one mode of zero energy, theSz mode. Another
way of seeing this is to recognize that as long asP0 andv0
have nonzero overlap, one can always rescalev0 so that it
becomes canonically conjugate tof0. One then has to
modify c6 to keep them independent ofv0 in the Poisson
bracket sense.

However, ifP0 andv0 have zero overlap, the null vecto
must lie in the subspace ofP6 . This means one of the ei
genvalues of the lower 232 block ofMP must be zero, im-
plying that there isanotherzero mode of the Hamiltonian
apart from theSz mode. The condition forP0 andv0 to have
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FIG. 7. The Brillouin zone of the triangula
lattice and the reduced zone for the sublatti
structure.
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zero overlap is identical to]Sz/]uA50 along the degenerac
direction, which is the same as extremizingSz .

In brief, if ]Sz/]uAÞ0, there is only one zero mode
whereas if]Sz/]uA50, there are two zero modes atk50. A
rigorous derivation is supplied in the Appendix.

We have done explicit calculations to verify all the
statements for the triangular lattice. If one computes the
quencies of thek50 modes at a nonoptimaluA , one finds
one mode of zero energy~theSz mode!, and two modes of
nonzero energy, neither of which is exactly along the deg
eracy direction. However, at precisely the optimal poin
there appeartwomodes with zero energy, one of which is th
Sz mode and the other exactly the degeneracy mode.
third mode still has nonzero energy.

In particular, the argument makes no assumptions ab
the interactions other than that they should conserve totaSz.
So this result should hold even for site dilution or long
range interactions. Of course, for site dilution, one sho
focus on a particular realization of randomness and look
Sz over the degeneracy subspace. In general, our argume
that the search for the true ground state can be restricted
the points on the degeneracy submanifold where all c
served quantities commute in the Poisson bracket sense
the generators of motion along the degeneracy submanif.

This criterion can fail if thekÞ0 modes do not follow the
behavior of thek50 modes. Also, if there are more con
served quantities than degeneracy directions, not all of th
may be extremized at the true ground state.

With uA anduB taking on the value quoted above, we fin
that uc is at the extreme edge of its allowed range:

cosuc*52
1

12D
A122D

12D2 . ~29!
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B. Spin-wave dispersions

1. Triangular lattice

The Brillouin zone~BZ! of the triangular lattice is shown
in Fig. 7, with the lattice and reciprocal-lattice vectors bei

e15a~1,0!,

e25aS 12 ,A32 D ,
~30!

G15
4p

aA3
SA32 ,2

1

2D ,
G25

4p

aA3
~0,1!,

wherea is the lattice spacing.
As usual, we first concentrate onh50. Figure 8 shows

the spin-wave dispersion forD.1/2. Since there is only one
sublattice, there is only one mode. However, plotting it
the reduced BZ of the sublattice problem forces us to fold
back and represent it as three modes. In this scheme, the
one gapless mode, which is the Goldstone mode corresp
ing to the density fluctuations of the bosons. However, aD
approaches 1/2, a ‘‘roton’’ minimum develops, precisely
the wave vectors corresponding to the sublattice structure
demonstrated in Fig. 9. At exactlyD51/2, this becomes a
gapless mode, heralding the transition to the supers
phase.

Now consider the dispersion ath50 in the SS phase
which is shown in Fig. 10. There are two gapless mod
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within SWT. One is the standard density fluctuation, wher
the other corresponds to the degeneracy mode. The de
eracy mode will be shown to acquire a gap to higher orde
1/S in the next subsection.25,39 There is a third ‘‘optical’’
mode to complete the count of the sublattice degrees of f
dom. The energy scale of the two low-lying modes isD,
while the optical mode has an energy scale of 1. As we m
towardsD50 the two low-lying modes get softer, until the
become completely flat atD50.

However, when we turn on a field the degeneracy mo
becomes gapped, as shown in Fig. 11. Let us now investi
the modes at nonzero field in the other phases, in partic

FIG. 8. Triangular lattice SW dispersion forD50.75,h50.

FIG. 9. Triangular lattice SW dispersion forD50.51, h50.
Note the quadratic minimum which is nearly gapless. This is
linear instability that leads to the SS phase.
s
en-
in

e-

e

e
te
ar

at the transitions. The SWT for the canted spin phase ca
analyzed analytically, since there is only one sublattice.
find that the SW dispersion is

v~k!5zSAD~12gk!FD1S 12
h2

36~11D! DgkG ,
~31!

gk5
1

z ( 8
d

e2 ik•d,

wherez56 for the triangular lattice, and the prime on th
sum restrictsd to nearest-neighbor vectors. We show an e
ample forD50.25,h56.0 in Fig. 12. We have21/2<gk<1,

e

FIG. 10. Triangular lattice SW dispersion in the SS phase
D50.25,h50.

FIG. 11. Triangular lattice SW dispersion in the SS phase
D50.25,h50.5. The degeneracy mode has become gapped.
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55 3113SUPERFLUIDS AND SUPERSOLIDS ON FRUSTRATED . . .
which leads to the linear instability of the SF phase, which
denotedhi1 in Eq. ~11!. Note that the mean-field energies o
the various phases lead to first-order instabilities which ma
the linear instability irrelevant except atD50 andD51/2.

We next turn to the transition line between the superso
and Néel solid phases, denoted byhc1(D), a second-order
line. Figure 13 shows the SW dispersion at the transition f
D50.25,h50.9738. The soft density mode is now atk50
and has a quadratic dispersion instead of the usual linear o
As we increaseh and enter the Ne´el solid phase, the density
mode becomes gapped, as Fig. 14 shows. The total ene

FIG. 12. Triangular lattice SW dispersion in the canted sp
~CS! phase atD50.25, h56.0. Note the single gapless density
mode.

FIG. 13. Triangular lattice SW dispersion at the SS-MI trans
tion at D50.25, h50.9738. Note the quadratic dispersion of th
gapless density mode.
s

e
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r
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~including spin-wave corrections! in the Néel solid phase is
independent ofh, which demonstrates its incompressibilit
and hence the exact filling of 2/3 throughout this phase.

2. kagome´ lattice q50

The kagome´ lattice is a triangular Bravais lattice with
three element basis. Ifa is the nearest-neighbor separatio
then the Bravais lattice constant isã52a. The spin-wave
theory dispersions are quite similar to those of the triangu
lattice, with the modes being softer~because of the lowe
coordination!. Note that while the Bravais lattice is triangu
lar, the symmetry is reduced~to C2v! and the dispersion
curves do not have zero slope at the zone edge~theX point!.
Figures 15, 16, and 17 show the dispersions in the superfl
the supersolid, the Ne´el solid state, respectively. A notewo
thy feature is the presence of a zero-energy mode ath50
along theGM direction in the supersolid phase. This mo
disperses and has nonzero energy except along theGM di-
rection.

3. kagome´ 9 sublattice structure

The)3) structure on thekagome´ lattice is described by
a triangular Bravais lattice of lattice constantã52)a with
a nine element basis. The elementary lattice vectors
shown in Fig. 4. The spin-wave dispersions are unrema
able except for a flat mode whose energy vanishes asAh in
the smallh limit. This is connected to the degeneracy mod
which is local up to harmonic order, and will be discussed
the next subsection. All the other features are quite simila
those of the triangular lattice as shown in Figs. 18, 19, a
20.

C. Gap of the degeneracy mode

The degeneracy mode appears gapless in SWT~and in
fact appears flat in the)3) structure on thekagome´ lat-
tice!, but acquires a gap to higher order in the S

-

FIG. 14. Triangular lattice SW dispersion in the MI phase
D50.25,h51.5.
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expansion.25,39 We will first treat the triangular lattice, an
go on to the case of thekagome´ lattice.

1. Triangular lattice

Let us concentrate on thek50 degeneracy mode of th
triangular lattice. The easiest way to derive the gap is in
spin coherent-state path-integral language22 introduced in the
previous section.

Now imagine separating the path integral by first integr
ing all the modes except thek50 degeneracy mode~call the
anglesu A

0 andf0!.

FIG. 15. kagome´ q50 SW dispersion in the CS phase
D50.25,h54.

FIG. 16. kagome´ q50 SW dispersion in the SS phase
D50.25,h50. Note the flat character of the mode along theGM
direction.
e

-

Z5E DuA
0Df0

3exp2E dtS iS cosuA
0 ]f0

]t
1
1

2
S2K~f0!2D

3E )
kÞ0

D@uk ,fk#e
2A8@u,f#, ~32!

whereA8 does not include the explicitly written terms in
volving f0 in the preceding factor. Since the classic
ground-state energy does not depend onu A

0, only the Berry
phase term and a ‘‘potential’’ energy forf0 appear there

FIG. 17. kagome´ q50 SW dispersion in the MI phase a
D50.25,h51.

FIG. 18. kagome´ R3 SW dispersion in the CS phase atD50.25,
h54.
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~expanded to lowest leading order!. If one neglects the inte
gration over the remainder of the modes, the degene
mode appears to have a potential energy but no kinetic
ergy. This is analogous to a particle of infinite mass, a
from the simple harmonic oscillator formulav5AK/M , the
oscillator energy is zero. This is why the mode appears g
less.

However, as seen from Fig. 2, the integration over the
of the modes~to leading order in the spin-wave expansio!
creates an effective potential which has a dependence onu A

0,
rendering the massM finite and the mode gapped. Since t
effective potential is produced by SWT, it will be of orderS,

FIG. 19. kagome´ R3 SW dispersion in the SS phase atD50.25,
h50. Note the completely flat zero-energy mode.

FIG. 20. kagome´ R3 SW dispersion in the MI phase atD50.25,
h51.
cy
n-
d

p-

st

as opposed to the orderS2 potentials generated classical
for the other modes. Thus the gap is orderAS, compared to
the energies of orderS seen in SWT.

Now for the specific details. We concentrate on the nei
borhood ofuA* , the optimal value ofu A

0, and writeuA
05uA*

1duA . It is easy to see that thef0 that couples to this is
f05fA~k50!2fB~k50!. The eigenvector corresponding t
this mode is (fA ,fB ,fC)5[(1/2)f0,2(1/2)f0,0]. For the
triangular lattice the classical ‘‘potential’’ energy of af0

deformation yields

K53D sin2uA* S 11
sinuB*

2 sinuA*
D . ~33!

Choosing the particular valueD50.25 for illustration, we fit
the curve in Fig. 2 near its minimum to obtain the term in t
effective action (1/2)SC(duA)

2, for which we obtainC.6.
Of course, a ‘‘potential’’ term will also be generated by th
integration of the rest of the modes, but since it is orderS, it
can be neglected compared to the orderS2 term already
present classically. We will choose the ‘‘coordinate’’ asQ
5S sinuA*f0. The Berry phase term now looks lik
S sinuA*duA(]f0/]t), which enables us to identifyP[duA as
the conjugate momentum. We now write the action as

S5E dtS iP ]Q

]t
1
1

2
SCP21

1

2
K̃Q2D , ~34!

whereK̃53D@11(1/2)(sinuC* /sinuA* )#. We can now find the
gap as the harmonic frequency of this oscillator:

v05ASCK̃. ~35!

The numerical value isv0'2.3AS. The kagome´ lattice
structure introduces new considerations, which we now
dress.

2. kagome´ lattice

The important difference that occurs for thekagome´ lat-
tice is that the effective action for theuA has a linear cusp a
the minimum instead of a quadratic minimum, as shown
Figs. 21 and 22 for theq50 and)3) structures, respec
tively. This kind of minimum has previously been seen f
the kagome´ lattice in the fully antiferromagnetic Heisenber
case.41,42 We assume that the degeneracy mode is non
persing, which, at spin-wave order, is approximately true
theq50 structure, and exactly true for the)3) structure.
This implies that the modes are local, and we assume th
be true even after quantum fluctuations have lifted them fr
zero energy. We can now interchange the roles ofu andf as
P andQ and consider the quantum mechanics of the Ham
tonian

P2

2M
1luQu, ~36!

wherel is of orderS. This leads to a gap in the degenera
mode of orderS2/3. A lifting of the degeneracy mode of orde
S2/3 has previously been seen in Refs. 43 and 44 in
Heisenberg case.

Since thekagome´ )3) structure is always lower in en
ergy, we will concentrate on it in the following, leaving
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detailed analysis of theq50 structure to a future publication
The degeneracy mode which was merely gapless atk50 on
the triangular lattice, but of nonzero energy at every othek,
becomes completely flat at zero energy on thekagome´ lattice
with the)3) structure. The reason is fairly straightfo
ward. Consider anABABABhexagon in Fig. 4~b!, isolated
from the rest of the lattice by a ring ofC sites. For the
optimal angles it is easy to deduce that ifuA5uA*1du, then
uB5uA*2du and thatuC changes only to orderdu2. Any
coupling between theduA~r ! of neighboringABABABhexa-

FIG. 21. Quantum energy correction versusuA for the kagome´
q50 structure. Note the cusp at the minimum.

FIG. 22. Quantum energy correction versusuA for the kagome´
R3 structure. Once again the leading-order potential has a lin
cusp.
gons must be mediated by the borderinguC , and must there-
fore be third order or higher induA~r !. This means that to
quadratic order theuA fluctuations of the hexagon do no
interact with the rest of the lattice. It is these local excitatio
that produce the flat mode. Note that even classically,
energy of this distortion is not zero if higher orders induA
are included. This is analogous to the flat mode in theq50
structure of the isotropickagome´ antiferromagnet, where
once again, the mode is flat only to harmonic order.35

Consider this degeneracy mode in the presence of a s
field. It is easy to show that the field energy~per nine site
unit cell! near the optimal angles is

dEfield5
3

2
hS2

~22D!2

~12D!
cosuA~du!2. ~37!

We do not need to consider the bond energies of the spin
this order for the following reasons:

~i! One can decompose the deviation from the optim
uA , uB , uC into duB5duBA1duB8 , and duC5duCA
1duC8 , where the first part represents the change inuB and
uC along the degeneracy direction, due to the change inuA ,
and the primed part corresponds to a change orthogona
the degeneracy direction.

~ii ! The optimalduB8 , duC8 in the presence of the field ar
of orderh. This is because the bond energy is quadratic
duB8 , duC8 while the field energy is linear in these quantitie
Therefore, the energy difference due to the bonds will be
orderh2, which can be neglected in comparison to the ord
h field energy at small fields.

~iii ! There is no bond energy associated with a cha
alongduA .

The localf mode conjugate to thisuA mode is@~1/2!df,
2~1/2!df,0#. The ‘‘potential’’ energy~per nine-site unit cell!
of this mode can be calculated from the classical Ham
tonian exactly as in the triangular lattice case, and is

U5
3

2
S2Df2sin2uA* S 21

sinuC*

sinuA*
D . ~38!

The Berry phase term for this unit cel
3S sinuA*du(]f0/]t), allows us to identifyQ53S sinuA*f0 as
the coordinate, andP5du as its conjugate momentum. The

v~S,h,D!5ṽ~D!SAh,
~39!

ṽ~D!5AS 21
sinuC*

sinuA*
D ~22D!2

~12D!
D cosuA* .

This gap goes to zero asAh in the limit h→0, and the mode
becomes gapless in addition to being flat.

So far we have used the field to stiffen the degener
mode. Now consider the effect of quantum fluctuations
h50. We can find the effective potential to lowest leadi
order by computing the ground-state energy for variousuA in
SWT. This is plotted forD50.25 in Fig. 22. We assume tha
the mode will remain dispersionless, and therefore loc
even when lifted from zero energy by quantum fluctuatio
This assumption allows us to extract an effective Ham
tonian for each local degeneracy mode, which has been w
ten down in Eq.~35!, where we identify themomentumas
ar
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P53S sinuA*f0 and the conjugatecoordinateasQ5du, and
where the numerical value ofl is obtained from the figure
~for D50.25!:

M2150.1944,
~40!

l50.025S.

We use a Gaussian trial wave function to obtain the appr
mate ground-state energy of this Hamiltonian, yielding

v0'S 27l2M21

128p D 1/3'0.02S2/3. ~41!

Of course, we expect this mode to disperse, but the calc
tion of the dispersion43,44 is much harder than the one pr
sented here, and will be pursued in future work.

III. EFFECT OF QUANTUM FLUCTUATIONS
ON ORDER PARAMETERS

One of the motivations for this work has been to see
quantum fluctuations can disorder the system, creating a
liquid, which would correspond to a ordinary liquid~with
nonzero viscosity! for the bosons. To leading order in SWT
one can compute the average values of the spins as

^Si&5~^ai
†ai&2S!V̂MF . ~42!

The calculation sketched out in Sec. II also produces
explicit Bogoliubov transformation, which can then be us
to find the expectation values of bilinears. More explicitly,
terms of the matrixT which implements the transformation

^ei
†~k!ej~k!&5 (

a5K11

2K

Ta i
† ~k!Tja~k!, ~43!

where it is understood thati and j run from 1 toK ~the
number of sublattices!, while a runs fromK11 to 2K, the
rank ofT. Let us now turn to the different cases.

A. Triangular lattice

Figure 3 shows a plot of the classical and quantu
corrected totalSz and totalSx, for h50. It is clear that the
quantum-corrected value of the magnetization is very cl
to zero, independent ofD. Exact diagonalizations of finite
clusters for the anisotropic antiferromagnetic caseD,0 ~Ref.
45! suggest strongly that this is an exact statement. Tha
the exact ground state ath50 has zero longitudinal magne
tizationMz . An interesting fact about the triangular lattic
allows us to map theD.0 problem~our model! to theD,0
model, which is the anisotropic antiferromagnet solved
SWT by KMFF. For very smallD one can work to linear
order inD, which means that one is working within the set
antiferromagnetic Ising model ground states. For near
neighbor spin flips, the Marshall sign property is obeyed
the wave functions, arising from a partition of the set
ground states into disjoint even and odd states.46 This means
that for very smallD there is evidence that the boson syste
would be exactly half-filled in the true ground state. Ho
ever, to any higher order inD, or numerically forD not so
i-

a-

f
in

e
d

-

e

is,

n

t-
y
f

small, the two models have no simple relationship with ea
other since the triangular lattice is not bipartite.

Although totalSx decreases asD decreases, it seems th
superfluid order persists all the way, vanishing only wh
D50. In Fig. 23 we plot the quantum fluctuation correctio
to the magnitudes of the spins on the three sublattices~since
uB5uC we plot only two values!. As D→0 theA sublattice
remains stiff, while theB andC sublattice spins get reduce
to about half their classical value~for S51/2!. Thus, super-
solid order on the triangular lattice survives quantum flu
tuations at the spin-wave level.

Let us now turn to Fig. 24, which shows the classical a
quantum order parameters as a function ofD for h53. For
D,1/2 it is clear that though there are quantum fluctuat
corrections to each of the spins, the totalSz is not corrected,
thus leaving the filling exactly 2/3. ForD.1/2, there are
fluctuation corrections which do not affect the nature of t
phase. Once again, we will concentrate on the lower ene
)3) structure on thekagome´ lattice, leaving an analysis o
theq50 structure to future work.

B. kagomé9 sublattice structure

Figure 5 presents the naive results for the occupa
numbers of the different sublattices in SWT for the)3)
structure atD50.25 as a function ofh. Notice that ash→0
the fluctuation corrections diverge. This is a consequenc
the flat mode, whose energy goes to zero ash→0. In reality,
as we have seen in the previous section, the energy flat m
will be lifted in higher orders of SWT. While a quantitativel
accurate analysis requires the computation of the disper
of this degeneracy mode, we can make a rough estimat
the fluctuation corrections to the sublattice spins by ass
ing that the mode remains flat at the valuev1 calculated in
Sec. II C 2.

FIG. 23. Quantum fluctuation corrections to the magnitudes
the spins on theA andC sublattices as a function ofD at h50 for
the triangular lattice.
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We need to determine the reduction in the magnitude
each sublattice spin due to quantum fluctuations. In term
the equilibrium positionu* and the deviations from equilib
rium du anddf we can write the magnitude of the spin a

u^S&u5SS 12
1

2
~du!22

1

2
sin2u*f2D5S 12

P2

2
2

Q2

18S2D ,
~44!

where we have once again usedP53S sinuA*f0 andQ5uA ,
and assumed a nondispersing degeneracy mode.

We know from the harmonic oscillator that

^P2&05
v

2M21 ,

~45!

^Q2&05
v

2K
,

and in the casehÞ0, we find

u^S&u5S2
1

12SAh
SA D~21sinuC* /sinuA* !

cosuA* @~22D!2/12D#

1
h

2
AcosuA* @~22D!2/12D#

D~21sinuA* /sinuA* !
D . ~46!

Clearly there is a divergence ash→0, which is seen in
Fig. 5. Of course, there will also be a contribution indepe
dent of h due to the other modes not associated with
degeneracy.

Now consider the caseh50. As shown in the previous
section, the flat mode will be lifted from zero energy b
quantum fluctuations and acquire an energy of orderS2/3. We
will assume that the mode does not disperse~even though it

FIG. 24. Classical and quantum values ofSz and Sx for the
triangular lattice ath53 as a function ofD. Note that forD,1/2 we
are in the MI phase, and the total magnetization is uncorrected f
its mean-field value of 2/3.
f
of

-
e

will, weakly! in order to estimate the quantum fluctuations
the sublattice spins. We will also assume that none of
matrix elements change substantially. Thus the energy of
mode is the only significant factor. This means that we c
estimate the contribution to the fluctuation correction to
spins by applying a fieldhQ such that the field-induced en
ergy is the same as the energy induced by quantum fluc
tions:

hQ'
l2

ṽ2 S
22/3. ~47!

Numerically, we find forD50.25 thathQ50.000 57. This
implies boson occupations ofnA5nB51.66, andnC50.04.
Since the boson occupations are larger than the valueS51/2,
we find the fluctuations to be larger than the mean-field va
of the spin. Thus, despite the lifting of the flat mode due
quantum fluctuations, we find that fluctuations may be la
enough to disorder the mean-field ordering on theA andB
sublattices. However, it is not certain that large fluctuatio
imply disorder. Furthermore, it is difficult to understand ho
theC sublattice could remain stiff and ordered if the oth
two lattices are disordered. Strictly speaking, what this re
tells us is that we have reached the limitations of spin-wa
theory.

CONCLUSIONS AND OPEN QUESTIONS

We have found a broad region of parameter space wh
supersolid order is stable to leading order in mean-fi
theory. The inclusion of spin-wave corrections modifies t
picture differently for the triangular andkagome´ lattices. The
supersolid is quite robust on the triangular lattice. Our int
pretation of the supersolid corresponds with the ideas of
dreev and Lifshitz,1 with hopping vacancies undergoin
Bose condensation. The role of lattice frustration is to p
vent all the particles from condensing into a solid.

We have also come across a general~though nonrigorous!
argument which limits the search for the true ground state
a system with ground-state degeneracy: Look for the po
at which global conserved quantities commute in the Pois
bracket sense with the generators of motion on the deg
eracy subspace.

On thekagome´ lattice we find the)3) structure to be
more stable than theq50 structure at all parameter value
Fluctuations seem much stronger here, and may even be
to destroy the long-range order assumed in mean-fi
theory. This is a fertile region for numerical and experime
tal work.

To what experimental systems might these considerat
be applicable? One might be able to construct an array
Josephson junctions47 which satisfy the conditions necessa
for the existence of a supersolid. This means that the ch
ing energy of each grain should be very high, and
nearest-neighbor charging energy should be higher than
Josephson coupling between the neighboring grains. Furt
more, only pair hopping should be relevant, which impli
temperatures low compared to the bulk superconductingTc .
Of course, since this is a two-dimensional system, the B
condensate disappears forTÞ0, but power-law ODLRO is
expected to remain.

m
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Another experimental system to which these results m
be relevant is4He on graphite. A variety of orderings an
transitions are known to occur as a function of temperat
and coverage.48 Also, steps in the superfluid density hav
been seen as a function of coverage~for multiple layers! for
4He on graphite,49 and have been interpreted as resulti
from correlation effects.50

As it stands, this work isnot applicable to the question o
supersolidity in4He on a smooth substrate. In order to a
proach the continuum one would have to consider very
densities on the lattice, as well as long-range interacti
~see Ref. 15 for an example of a continuum approach!. We
close with a number of important open questions.

SWT seems sufficient for the triangular lattice, but not
the kagome´ lattice. A formalism that can consider ordere
and disordered states in a unified manner is necessary,
haps a variant of the large-N approaches.51,36 Second, even
for the triangular lattice, the question of vortices in t
ground state is open. The spin-wave ground state has v
ces, but they occur in nearest-neighbor pairs. A fruitful w
to incorporate vortices might be to consider the effect
theory of the gapless modes only, and include their inter
tion with vortices in a semiclassical manner.

The original picture of Ref. 20 has been confirmed by
strong-coupling expansion.10 Strong-coupling expansion
and variational approaches52,53 are complimentary to the
spin-wave expansion, and it would be interesting to inve
gate our model by these approaches.

The effects of nonzero temperature on systems w
ground-state degeneracy can be very nontrivial. In particu
quantum and thermal ground-state selection effects m
compete to produce a sequence of phases and transitio
the temperature is raised.29 Clearly, thermal effects have t
be elucidated before our results can be directly applied to
experimental situation. Finally, it is intriguing to harken ba
to the question raised by Anderson and Fazekas24 and ask
whether it is possible for a liquid state to be stable at z
temperature.
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APPENDIX: CONTINUOUS DEGENERACY NOT ARISING
FROM A SYMMETRY

Consider a Hamiltonian functionH~x!, where

x5~p1 ,p2 ,...,pN ,q1 ,q2 ,...,qN! ~A1!

is the vector of~dimensionless! coordinates and momenta
What does it mean that the ground state is continuously
generate? Clearly, there must exist a one-parameter fami
ground states, i.e.,
t

e

-

s

r

er-
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e
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S ]H
]xm

D
X~l!

50 ~A2!

for all m51,...,2N, where l parametrizes the degenerac
submanifold, a curve in phase space defined byX~l!. The
degeneracy submanifold is one dimensional in this exam
Differentiating with respect tol gives

(
n51

2N S ]2H
]xm]xn

D
X~l!

]Xn~l!

]l
50, ~A3!

i.e., the vector]Xn/]l is a null eigenvector of the Hessia
matrix evaluated at the pointX~l!.

As an example, consider the function

H~r ,f!5
1

4
~r 221!2~a1b cosf!, ~A4!

whose minimum is atr51 independent off. Note thatf is
not cyclic in H, and its conjugate momentum~say r 2, by
definition! is not conserved as Noether’s theorem does
apply. Nonetheless, there is a one-parameter family
ground states, parametrized byf. The Hessian matrix, evalu
ated atr51, is

H5S 2~a1b cosf! 0

0 0D ~A5!

and the vector (]/]f)(f
r2)5(1

0) is a null eigenvector.
Now consider the Gaussian fluctuations about the gro

state. We are interested in the partition functionZ
5*D@p,q#e2A, which is obtained from the action func
tional

A5E
0

b\

dtS i\(
i
qi

]pi
]t

1H~p,q! D , ~A6!

wherei51,...,N. We expand about one of the ground stat
writing pi5Pi1dpi , qi5Qi1dqi , and, using summation
convention,

H5
\

2
dpiTi jdpj1

\

2
dpiRi jdqj1

\

2
dqiRi j

t dpj

1
\

2
dqiVi jdqj ~A7!

with

Ti j5
1

\ S ]2H
]pi]pj

D
P,Q

, Ri j5
1

\ S ]2H
]pi]qj

D
P,Q

,

Vi j5
1

\ S ]2H
]qi]qj

D
P,Q

, ~A8!

andRt is the transpose ofR. Thus, the integrand ofA is
given by (\/2)dxm(Hmn1 iJmn]t)dxn , where

H5S T R

Rt VD ~A9!

and
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J5S 0N3N 1N3N

21N3N 0N3N
D . ~A10!

The matrix H is brought to diagonal form by the basis
changeS:

S†HS5S V1 0

0 V2D , ~A11!

where V65diag(v 1
6 ,...,v N

6) is a diagonal matrix, and
S†JS5J preserves the symplectic structure~commutation re-
lations!. Note that the diagonalized Hamiltonian is
(1/2)(ptV1p1qtV2q) rather than, say (1/2)(ptp1qtV2q).
The two are, of course, related by a canonical transformatio
provided thev k

6 are nonzero.! The eigenvectors come in
pairs uc k

6& which satisfy

JHuck
1&52vk

1uck
2&,

JHuck
2&51vk

2uck
1&,

as well as the orthonormalization condition

^ck
1uJuc l

1&5^ck
2uJuc l

2&50,

2^ck
2uJuc l

1&5^ck
1uJuc l

2&5dkl ,

wherek,l51,...,N. TheN energy eigenvalues are then give
by ek5\Avk

1vk
2.

Now consider the case where the degeneracy subspac
two dimensional, parametrized by the coordinates~l,j!. In
our spin-wave theory, we have thatqi5f i and
pi5S~12cosu i!, and thel invariance is realized as some
relation among the colatitutesQ i(l) along the ground-state
submanifold, while thej invariance is simply expressed as
F i(j)5F i(0)1j. The matrixH ~and henceJH! has two
known null right eigenvectors—call themuN1& and
uN2&—corresponding, respectively, to thel and j invari-
ances. We have that
o

n,

is

uN1&5S ]Pi

]l
]Qi

]l

D 5S S sinQ i

]Q i

]l
0N

D ~A12!

and

uN2&5S ]Pi

]j
]Qi

]j

D 5S 0N1ND . ~A13!

Note that theuN2& eigenvector contains a 1 ineach of its
lower N entries. When we compute the overlap^N2uJuN1&,
we obtain

^N2uJuN1&52(
i51

N

S sinQ i

]Q i

]l
5

]Mz

]l
, ~A14!

whereMz is the total ẑ component of the magnetization
Mz[( i51

N S cosQ i . Unless the magnetizationMz is extrem-
ized with respect tol, there is a finite overlap, and by ap
propriate normalization one can chooseuN1& and uN2& to be
a uc6& pair. When the magnetization is extremized, howev
the overlap is zero which means that these two null rig
eigenvectors belong to separate pairs, and there are at
two zero modes.

Therefore, the two modes are independent only wh
]Mz/]l50, that is to say, when the magnetization Mz is ex-
tremized. In the general case both the conserved quantity
the generator of motion along the degeneracy subspace
have components along bothp and q subspaces. It is then
easy to see that the two vectors will have zero overlap onl
the conserved quantity commutes~in the Poisson bracke
sense! with the generator of motion along the degenera
subspace.
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46H. W. J. Blöte and H. J. Hillhorst, J. Phys. A15, L631 ~1982!.
47L. J. Geerligs, M. Peters, L. E. M. de Groot, A. Verbruggen, a

J. E. Mooij, Phys. Rev. Lett.63, 326 ~1989!.
48M. Bretz, J. G. Dash, D. C. Hickernell, E. O. McLean, and O.

Vilches, Phys. Rev. B8, 1589~1973!.
49P. A. Crowell and J. D. Reppy, Phys. Rev. Lett.70, 3291~1993!.
50G. T. Zimanyi, P. A. Crowell, R. T. Scalettar, and G. G. Batrou

Phys. Rev. B50, 6515~1994!.
51D. P. Arovas and A. Auerbach, Phys. Rev. Lett.61, 617 ~1988!;

Phys. Rev. B38, 316 ~1988!.
52D. S. Rokhsar and B. G. Kotliar, Phys. Rev. B44, 10 328~1991!.
53W. Krauth, M. Caffarel, and J.-P. Bouchard, Phys. Rev. B45,

3137 ~1992!.


