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Quantized Hall insulator: Transverse and longitudinal transport

Efrat Shimshoni
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We model the insulator neighboring the 1/k quantum Hall phase by a random network of puddles of filling
fraction 1/k. The puddles are coupled by weak tunnel barriers. Using Kirchoff’s laws we prove that the
macroscopic Hall resistivity is quantized atkh/e2 and independent of magnetic field and current bias, in
agreement with recent experimental observations. In addition, fork.1 this theory predicts a nonlinear longi-
tudinal responseV;I a at zero temperature andV/I;T121/a at low bias.a is determined using Renn and
Arovas’s theory for the single junction response@Phys. Rev. B51, 16 832 ~1995!# and is related to the
Luttinger liquid spectra of the edge states straddling the typical tunnel barrier. The dependence ofV(I ) on the
magnetic field is related to the typical puddle size. Deviations ofV(I ) from a pure power are estimated using
a series/parallel approximation for the two-dimensional random nonlinear resistor network. We check the
validity of this approximation by numerically solving for a finite square lattice network.
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I. INTRODUCTION

The ‘‘Hall insulator’’ defines a peculiar insulating state
which the longitudinal resistivityrxx diverges in the limit of
zero temperature and frequency yet the Hall resistivityrxy
remainsfinite. Such a behavior ofrxy has been argued to b
a quite generic property of disordered single-elect
models,1–4 which follows from the relationsxy;sxx

2 in the
limit of vanishing conductivitiessxx andsxy ,

5 that is to say,

lim
sxx→0

rxy5syx /~sxx
2 1sxy

2 !,`. ~1!

Experimentally, several groups have observed a Hall insu
ing behavior in strong magnetic fields both in thre
dimensional samples6 and in the quantum Hall~QH!
regime.7,8 In the global phase diagram of Kivelson, Lee, a
Zhang9 the entire insulating phase surrounding the QH liqu
phases is predicted to exhibit Hall insulating behavior w
rxy;B/nec, as in aclassicalHall conductor, in agreemen
with the data of, e.g., Ref. 7.~HereB is the perpendicular
magnetic field andn is the electron density.!

Confusion has been compounded recently by meas
ment of the Hall voltage near the transition between a
QH liquid and the insulator,8 which indicates a different be
havior of rxy in the insulating phase: quite remarkably,
preserves the quantized value 3h/e2 over a finite range of the
magnetic field~the parameter that drives the transition! be-
yond the critical point. Moreover, the Hall voltageVH(I ) is
linear in the low current range where the longitudinal volta
V(I ) exhibits an insulatinglike nonlinear dependence. A d
viation from the quantized Hall resistance, approaching
linear rise as a function ofB, is observed only deeper in th
insulating phase. This persistence of the QH plateau ca
550163-1829/97/55~15!/9817~7!/$10.00
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be explained by means of transport models based on hop
between strongly localized single-electron sites, as s
models do not pose any particular restriction on thevalueof
the finite Hall coefficient.

In this paper we propose a transport model that refle
the prominent phenomenology of the exotic insulating st
described above, hereon dubbed ‘‘a quantized Hall insu
tor’’ ~QHI!. It is clear that one needs to take into accou
both electron interactions, which are responsible for the fr
tional QH effect, and the random potential. This task is m
ageable in the limit of slow potential variations with respe
to the magnetic length. The incompressibility of the electr
liquid at magic densities creates puddles of QH liquid
these densities in the shape of the equipotential contour

Thus we extend Chalker and Coddington’s netwo
model10 from the integer to the fractional QH regime. I
place of the semiclassical single-electron orbits, the trans
here is conducted through a random network of edge st
surrounding the puddles of 1/k QH liquid defined to be of
densityn5B/kf0, wheref0 is a flux quantum. The edge
states are connected to each other by tunnel barriers. As
show below, if the percolating network of edge states
longs to asingle fraction1/k, rxy of the entire network ac-
quires the quantized valuek\/e2.11 This quantization isnot
sensitiveto the details of the dissipative part of the network
response.

Since edge states tunneling between a fractional QH
uid involves a power law density of states, the longitudin
current-voltage characteristic of the systemV(I ) is generally
nonlinear anddV/dI→` for I→0 in the weak tunneling
limit. Below we calculate the longitudinal response of t
edge states network and relate its properties to the total
rier density, the magnetic field, and the potential fluctuatio
9817 © 1997 The American Physical Society
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In the framework of the present paper we do not elabo
on the justification of the puddles model; rather we focus
its consequences on transport properties, some of which
yet to be confronted with experiment. It is worthwhile poin
ing out, though, that the true ground state of certain reali
systems is quite likely to be well imitated by such a mod
In restricted regions of the sample, where considerable va
tions in the disorder potential occur over length scales m
larger than the magnetic length, the formation of puddles
incompressible liquid is energetically favorable. Since tra
port inside such a puddle is dissipationless, a current ca
ing path that crosses the entire sample is expected to
dominated by channels that ‘‘hop’’ between neighbori
puddles at places of minimal separation.

In Sec. II we prove that the Hall resistance of a 1/k puddle
network is quantized atrxy5k\/e2. In Sec. III we calculate
the nonlinear longitudinal responseV(I ) of the network. De-
viations from a pure power-law behavior are estimated
Appendix A; the parameters of the model are related to
magnetic field and potential fluctuations~using the theory of
Renn and Arovas12 for single QH tunnel junctions! in Ap-
pendix B. In Sec. IV we summarize our main results a
point out some open questions and suggestions for exp
mental tests of our model.

II. THE HALL RESISTANCE OF A PUDDLE NETWORK

Consider a random two-dimensional network, combin
of the basic elements schematically depicted in Fig.
Circles denote the ‘‘puddles’’; each couple of puddles
separated by a tunnel junction that involves four edge c
rentsI 1–I 4. By current conservation the tunneling currenI
is given by

I5I 12I 35I 22I 4 . ~2!

The macroscopic theory of a Hall liquid in a confining p
tential yields a fundamental relation between the exc
chemical potentials at the edgesdm i and the edge currents

13

dm i5sgn~B!
h

e2
kIi , ~3!

whereI i ’s are positive in the clockwise direction around t
puddle. Equations~2! and ~3! yield a simple proportionality
between the Hall voltage and the tunnel current

VH[dm12dm35dm22dm45sgn~B!
h

e2
kI. ~4!

FIG. 1. Single junction between puddles.
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The relation between thelongitudinal voltage drop and the
tunneling current through the barrier is

V~ I ![dm12dm25dm32dm4 , ~5!

which is, in general, a nonlinear function. Here we assu
symmetry under reversal of the magnetic fie
V(I ,B)5V(I ,2B), which is expected for dissipative curren
transport across a narrow channel.

We now consider the response of a random network
puddles and tunnel barriers with two current leads at2x and
1x and two voltage leads at2y and1y. The network is
described by a general two-dimensional graph withNv ver-
tices at the locations of the puddles andNb bonds for each of
the tunnel barriers~see, e.g., Fig. 2!. The two-dimensional
layout of the puddles network ensures that bonds do
cross.

Henceforth we shall assume that all quantum interfere
effects take place within the tunnel barrier length scalesLi j
beyond which dissipation due to low-lying edge excitatio
destroys coherence between tunneling events. Thus the
sponse of the puddles network is given by classical Kirch
laws. First, current conservation at each vertex~puddle! i is
given by

(
jP$~ i j !%

I i j50, i51, . . . ,Nv , ~6!

where $( i j )% denotes the set of bonds emanating fromi .
Second, the sum of voltage differences around each plaqu
p is given by

(
~ i j !Pp

V~ i j !~ I i j !50, p51, . . . ,Np , ~7!

whereV( i j )(I i j ) is the nonlinear function of Eq.~5!. A total
currentI is forced through the network through a lead co
ing from 2x and leaving toward1x. There are no currents
flowing through external leads in the6y directions. It is
easy to prove the following:

FIG. 2. ~a! Typical puddle network~with Nv56 andNb58).
~b! Corresponding equivalent circuit. PathC is denoted by arrows.
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55 9819QUANTIZED HALL INSULATOR: TRANSVERSE AND . . .
Lemma. The currentsI i j in the network are completely
determined byI .

The proof uses Euler’s theorem for two-dimension
graphs14

Nv1Np2Nb51. ~8!

Thus the number of Kirchoff equations~6! and ~7! is
Nv1Np , which exceeds the number of unknown curre
Nb by one. The additional equation determines that the c
rent flowing out of the1x lead must be, of course,I . Q.E.D.

As shown above, the Hall relations~4! have no effect on
the currentsI i j . The total transverse voltageVy is given by
choosing any path of bondsC that connects the2y lead to
the1y lead ~see Fig. 2! and summing the voltages

Vy5(
iPC

Vi ,i11~ I i ,i11 ,uBu!1sgn~B!k
h

e2 (
iPC,~ i j !8

I i , j , ~9!

where (i j )8 denote all currents entering vertexi from 2x.
By global current conservation, the second term is prop
tional to the total current. Defining the Hall voltageVH to be
the antisymmetric component ofVy we thus obtain

VH5sgn~B!k
h

e2
I , ~10!

which yields a quantized Hall resistance ofrH5k(h/e2) that
is completely independent ofB and I .

This relation should hold as long as the network does
involve appreciable contributions from edge states
puddles of differentk values. The width of the QHI regime
therefore depends on the relative abundance of different
sity puddles, which depends in turn on the distribution
potential fluctuations. As the magnetic field increases, a w
distribution of potential minima will create mixed phas
with puddles of different densities. Relation~4! does not ap-
ply for tunneling between different 1/k QH liquids and thus
the above analysis fails for the mixed phase.

III. THE NONLINEAR LONGITUDINAL TRANSPORT

The dissipative response in the model introduced abov
associated with the longitudinal transport through the tun
barriers. The barriers connect edge states of neighbo
puddles of densityn5B/kf0, and we assume hencefor
that k is the same in all puddles.

A nonlinear current-voltage relation for a tunnel junctio
between 1/k QH liquids was proposed by Wen,15 who
mapped the fractional QH edge states to chiral Luttinger
uids. For small currents, the relation is a power law15,16

I;sgn~V!V2g21, ~11!

whereg5k is the Luttinger liquid interaction parameter~and
is equal to unity for the integer Hall liquid!.

Renn and Arovas12 ~RA! have extended Wen’s result t
long tunnel barriers following Giamarchi and Schulz
renormalization-group equations for disordered Lutting
liquids.17 They consider the ‘‘disordered antiwire’’ geom
etry, i.e., a barrier of length withnt tunnel couplings of av-
l
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erage magnitudet. In the small current limit they obtained
that g gets renormalizedg→g̃.k and the longitudinal re-
sponse is

VRA~ I !.V0sgn~ I !S uI u
I 0D

D 1/~2 g̃21!

, ~12!

where

V05
\v
el

,

I 05
ev
2p lk

,

D.
ntut2u

2pv2\2 . ~13!

Herev is the edge state velocity andl5A\c/eB is the mag-
netic length.

Here we consider a network of RA’s junctions and a
sume that the dephasing time is short enough that the tun
ing events through consecutive junctions in the network
incoherent~coherent backscattering effects are included
RA’s calculation of the single junction!. Our model consists
of a random network of classical nonlinear resistors, e
characterized by a poweran and a conductance prefacto
Dn ,

Vn

V0
5sgn~ I !S uI nu

I 0Dn
D an

. ~14!

By Eq. ~13! we assume thatV0 andI 0 are weakly dependen
on the barrier height fluctuations and magnetic field, co
pared, e.g., toD. Thus, for simplicity, they are taken to b
uniform in the entire network. The network of junctions wi
Dn<1 is assumed to percolate through the sample. Thus
can chooseDn ,an to be random variables whose distributio
is bounded by

0<Dn<1,

~2k21!>an>1/~2k21!. ~15!

In Appendix A we estimate the magnetic-field dependence
the average conductance prefactor to be

D̄~B!}expF2knpSB2Bc

2Bc
D 2G , ~16!

wherenp is the typical number of electrons in a puddle a
Bc is the magnetic field at which the puddles percola
through the sample. The average power law is estimated
ing RA’s renormalization-group equations. We find that~see
Appendix A!, in the limit of smallD,

ā~B!;
1

2k21
1
k23/2

2k21
D̄~B!, ~17!

and forD̄→Dc5(2ln221)

ā.
1

213ADc2D̄
. ~18!



ze

-

g

r-
e

o
ug

ur
le

o

y
,
e

pi

y

d
on-
re-

sis-

f

in
re

tice
in
han
-
eater

the

his
the
e
een

ase
a
i-
n-
as-
e
el
op-
ion
of

ge
a

9820 55EFRAT SHIMSHONI AND ASSA AUERBACH
We have solved Eqs.~6! and ~7! numerically, using a
Levenberg-Marquardt algorithm, for square lattices of si
up to 535. The distributions of (Dn ,an) were taken to be

P1~D !5Q~D !2Q~D21!,

P2~a!5
1

A2ps
expH ~a2ā !2

2s2 J . ~19!

We take the variances2 according to our estimate in Appen
dix A to be 5–10 times smaller than the meanā. The nu-
merical results in the regimeI 0/10,I,I 0, averaging over 5
realizations of disorder, can be summarized by the avera
network’s I -V response

lnV

lnI
[aeff5ā6e ~20!

wheree;102221023. That is to say, in the moderate cu
rent regimethe total voltage-current relation is given quit
well by the average power law. In the extremely small cur-
rent limit, one expects Eq.~20! to break down since due t
the power-law resistors, the currents choose to flow thro
percolating networks of highest power laws. In this regim
the numerical algorithm also fails to converge properly.

In order to better estimate the corrections to the p
power law, we examine a toy model dubbed the paral
series~PS! network~see Appendix B for details!. This model
comprises a random combination of serial and parallel c
nections of elementsP andS whereP is composed ofNp
resistors in parallel, andS is its dual, a linear chain ofNs
resistors in series~see Fig. 3!. TheS andP components can
be created from an ordinary two-dimensional network b
three-peaked distribution ofDn’s ~shorts, disconnections
and resistors ofDn51). This model is symmetric on averag
with respect to exchange of thex andy directions and hence
is an adequate description of macroscopically isotro
samples.

FIG. 3. ~a! S-type element (Ns54). ~b! P-type element
(Np54).
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As we show in Appendix B, for currents that obe
s2ln(I/I0)!ā,

V

V0
5S II 0D

aeff

, aeff5ā1S s2ln~ I /I 0!~121/ā !

4 D . ~21!

The deviation ofaeff from ā is positive forā,1. This indi-
cates that in the ‘‘insulating’’ regime, although serial an
parallel connections are equally represented, parallel c
figurations dominate at low currents. The situation is
versed in the QH liquid side of the transition, whereā.1,
while at the critical filling fraction~whereā51) theS and
P elements balance each other andaeff5ā. We note that
under a duality transformation, which exchanges each re
tor in the network by a perpendicular resistor with (Vn /V0)
and (I n /I 0) interchanged, theI -V characteristic of the whole
network is inverted:ā→1/ā, s→s/ā2, and consequently
aeff→1/aeff, which is consistent with our requirement o
macroscopic isotropy.

We also note that the deviations of the macroscopicI -V
curve from a pure power law are at mostlogarithmic in the
driving current. This gives us a sizable regime of current
which we can expect the curve to be well fitted by a pu
power law (aeff5ā):

I 0e
21/s2~121/ā!,I,I 0 . ~22!

In comparing the results of the PS model to the square lat
simulations we find that the correction to a pure power law
the numerical results is smaller by at least a factor of 10 t
the results of the PS model~21!. We suggest that the differ
ence arises due to the fact that the PS model assumes gr
inhomogeneity inDn as mentioned before. Equation~21! can
therefore be regarded as an estimate of the upper limit on
discrepancy between the macroscopicaeff andā at moderate
currents. The principal conclusion to be taken away from t
calculation is that due to the self-averaging property,
macroscopicI -V is directly related to the physics of th
single junction and the nonlinear tunneling response betw
fractional quantum Hall edge states.

IV. SUMMARY AND FINAL REMARKS

As demonstrated in the previous sections, the QHI ph
observed in proximity to a QH liquid can be modeled by
network of puddles. Although similar in spirit to the sem
classical percolation description of Ref. 10, it naturally i
corporates the electron interaction effects under the same
sumption: smoothly varying potentials relative to th
magnetic lengthl . The most important feature of this mod
is that, in contrast to models based on single-electron h
ping, it yields a quantized Hall resistance. The quantizat
is not affected by the nonlinearity of the dissipative part
the response. The latter is studied for a 1/k QHI with k.1,
yielding a power-law behavior of the longitudinalI -V curve
that is closely determined by the behavior of an avera
single junction between adjacent puddles. Deviations from
pure power law are at most of orders2ln(I) ~wheres is the
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variance of the power distribution!, estimated in Appendix A
to be typically small.

The magnetic-field dependence of the average tunne
rate is Gaussian, as shown in Eq.~16!, with a width defined
by the inverse number of electrons in a typical puddle. Th
smaller puddle sizes allow a larger regime of the quanti
Hall insulator phase. However, if these incompressi
puddles are too small, it means that our assumption of slo
varying potential becomes invalid.

We note that the integer QH case ofk51 implies all
an51 throughout the network. that is to say, the pud
model reduces naturally to a random Ohmic resistor netw
with conductances proportional to Eq.~16!. Interference ef-
fects between junctions10 are ignored here since we assum
an inelastic scattering length of the order of interjuncti
separation, an assumption that breaks down at low eno
T.

Our analysis so far has concentrated on the nonlin
transport of tunnel junctions, applicable for large enou
bias and lowT. At finite T, transport in the junctions, an
hence through the entire network, crosses over to linear
sponse at sufficiently low biaskhi/e,kBT, wherei5I /Ny is
the average current through single junction andNy is the
typical number of junctions across the sample. The lin
conductivity is then predicted to vary as a power law
temperature,12 i.e., V}IT121/ā. A temperature-dependen
measurement of the resistance in the Ohmic regime can
provide a further test of our model. In addition, for a giv
T the crossover from a linear to nonlinearI (V) can provide
an estimate ofNy .

One of the most interesting implications of our sugges
puddle-network model is that the insulating phase, surrou
ing the fundamental QH liquids in the phase diagram of R
9, is not a homogeneous phase. Restricted regions in
phase diagram that are in proximity to specific 1/k QH liq-
uids are dominated by weakly coupled puddles of the co
sponding liquid. It is therefore implied that a measuremen
rxy as a function of magnetic field at moderate disorder m
exhibit plateaus at odd integer multiples ofh/e2, even
though the longitudinal transport indicates an insulatingl
behavior. The width of the plateaus is expected, howeve
depend on details of the disorder potential in the sample.
width of the ‘‘mixed phases,’’ whererxy rises with magnetic
field between consecutive plateaus, isnot expected to vanish
for T→0 as in the QH liquid regime.

Finally, we would like to comment on an open proble
with regard to a comparison of this theory with the expe
mental results of Ref. 8. The experiment has indicated a
ality symmetry betweenI -V curves at opposite sides of th
1/3 QH liquid-to-insulator transition. This phenomenon w
interpreted in terms of charge-vortex duality or, equivalen
as particle-hole symmetry.8 In the puddle-network model
such duality would be observed if atB.Bc each tunnel bar-
rier with responseI5F(V) is related to a narrow channe
formed atB8,Bc , such thatI 85F21(V8). However, recent
theories for a single scatterer in a narrow channel15,16do not
yield this relation. The multiple tunneling case12 has only
treated electron tunneling in the large barrier limit
B.Bc . Resolution of this point is left to further research
g
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APPENDIX A: DEPENDENCE OF DISTRIBUTIONS ON
MAGNETIC FIELD

To facilitate a comparison with experiment, we mu
somehow relate the average and mean square deviation
Dn andan in Eqs.~19! to the external magnetic fieldB. Here
we make substantial use of the results of Renn and Arova12

which allow us to expressD anda in terms of the semiclas
sical tunneling probability at the junction. Th
renormalization-group equations of Refs. 12 and 17 conn
a to D as follows. In the insulating limitDn→0,

an5
1

2gn21
.

1

2k21
1

~k23/2!Dn

2k21
; ~A1!

in the regimeDn.Dc[(2ln221), we get

an.
1

213ADc2Dn

. ~A2!

Equations ~A1! and ~A2! relate an to Dn in the range
1/(2k21)<an<1/2; the analysis of Refs. 12 and 17 is n
applicable closer to the QH liquid/insulator transition, whe
1/2,a,1. Note that the effect of an increasing tunnelin
rate is to interpolate between the limitsan51/(2k21) and
an51/2.

We assume that the potential fluctuations are bounded
have a characteristic length scale of fluctuationsl V . This
length scale also represents the typical linear size of
puddles, which will turn out to be an important parameter
the following discussion.

Since the puddles are incompressible, a change in
magnetic fielddB near the percolation fieldBc will shrink
the puddles by a linear distanced l , which is related todB by

d l

l V
5

dB

2Bc
. ~A3!

The tunneling rate of an electron in the lowest Landau le
through a quadratic potential barrier V(x,y)

5 1
2 V9(2x21y2) is solved by mapping the problem to

one-dimensional Hamiltonian given by

H5
1

2m
p22

1

2
V9x2, ~A4!

where the ‘‘tunneling mass’’ ism5\2/V9l 4 ( l being the
magnetic length!. Using the WKB expression for tunnelin
at energy2VB ,
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9822 55EFRAT SHIMSHONI AND ASSA AUERBACH
D5D0expS 2
2p

\
VBAm

V9
D

5D0expF2pS d l

l D 2G
5D0expF2pS dB

2Bc
D 2~ l V / l !2G . ~A5!

The factorx5( l V / l )
2 is roughlyk times the number of elec

trons in the puddle and it determines the field dependenc
the tunneling rate near percolation. In a specific junction
the network, it is given by a random variablexn with average
^x& and variancesx such that

Dn;D0expF2xnS dB

2Bc
D 2G ,

D̄5D0exp$2 x̄~dB/Bc!
2%,

sD.S dB

Bc
D 2sxD̄. ~A6!

Employing Eqs.~A1! and~A2!, we find thatā ands of Sec.
III are given by

ā.
1

2k21
1

~k23/2!D̄

2k21
,

s.
~k23/2!sD

2k21
~A7!

for D̄→0 and

ā.
1

213ADc2D̄
,

s.S 3

2ā2

1

ADc2D̄
D sD ~A8!

for D̄→Dc . Substituting, e.g.,k53 anddB/Bc,1021, we
find thats is typically 10 times smaller thanā, which is the
values we have used in the numerical simulations of
square lattice network.

APPENDIX B: DERIVATION OF V„I … IN THE PS MODEL

Consider a system ofS andP elements, which are seria
and parallel connections of power-law resistors, respectiv
We first derive the local current-voltage response of eleme
P andS separately. InP, the average current per parallel un
is related to the voltageVp by

I p5K 1

Np
(
n51

Np

I nL 5I 0K 1

Np
(
n51

Np S Vp

V0
D 1/anL , ~B1!
of
n

e

y.
ts

where the angular brackets denote averaging over the d
butionP2(a) @Eq. ~19!#, which yields

I p
I 0

5
1

A2ps
E

2`

`

daexpH ~a2ā !2

2s2 J SVp

V0
D 1/a. ~B2!

In the saddle-point approximation @valid for
s2ln(Ip /I0)!ā#,

Vp

V0
5S I pI 0D

ap

, ap5ā2
s2ln~ I p /I 0!

2ā
. ~B3!

Note that the approximation breaks down in the limit of ve
small currents. Equation~B3! implies that the contribution of
a purely parallel configuration to the network outweighs t
significance of better conducting channels. This produce
positive shift of the power law that is enhanced at sm
currents. The response of a singleS-type element indicates
an opposite trend: similarly to Eq.~B3!, the average voltage
Vs ~per serial unit! is related to the currentI s by

Vs

V0
5K 1

Ns
(
n51

Ns Vn

V0
L 5

1

A2ps
E

2`

`

daexpH ~a2ā !2

2s2 J S I sI 0D
a

~B4!

and hence

Vs

V0
5S I sI 0D

as

, as5ā1
s2ln~ I s /I 0!

2
. ~B5!

The negative shift of the effective power reflects the ov
emphasis of the larger resistors in the chain, which is p
ticularly pronounced at small currents.

We next consider the overall response ofN serially con-
nected elements, of typeP and S alternately. Denoting
I5I p5I s , we get

V5K 1N (
n51

N

VnL 5
V0

2 F S II 0D
ap

1S II 0D
asG ~B6!

and thus, fors2ln(I/I0)!ā,

V

V0
5S II 0D

aeff

,

aeff5
~ap1as!

2
5ā1S s2ln~ I /I 0!~121/ā !

4 D . ~B7!

It is straightforward to show that a parallel connection
alternatingP- andS-type elements yields the same effecti
power law. We therefore conclude thatanyconfiguration that
involves serial and parallel connections of evenly distribu
P- andS-type elements will have a current-voltage chara
teristic given by Eq.~B7!.



er

,

e-

v.

. L

e,
. M.

stics

55 9823QUANTIZED HALL INSULATOR: TRANSVERSE AND . . .
1H. Fukuyama, J. Phys. Soc. Jpn.49, 644 ~1980!; B. L. Altshuler,
D. Khmelnitskii, A. Larkin, and P. A. Lee, Phys. Rev. B22,
5142 ~1980!.

2S. C. Zhang, S. Kivelson, and D. H. Lee, Phys. Rev. Lett.69,
1252 ~1992!.

3Y. Imry, Phys. Rev. Lett.71, 1868~1993!.
4Many-body effects were considered by L. Zheng and H. A. F
tig, Phys. Rev. Lett.73, 878 ~1994!; Phys. Rev. B50, 4984
~1994!.

5O. Entin-Wohlman, A. G. Aronov, Y. Levinson, and Y. Imry
Phys. Rev. Lett.75, 4094~1995!.

6P. Hopkinset al., Phys. Rev. B39, 12 708~1989!.
7V. J. Goldman, M. Shayegan, and D. C. Tsui, Phys. Rev. Lett.61,
881 ~1988!; V. J. Goldman, J. K. Wang, B. Su, and M. Shay
gan, ibid. 70, 647 ~1993!; R. L. Willett, H. L. Stormer, D. C.
Tsui, L. N. Pfeiffer, K. W. West, and K. W. Baldwin, Phys. Re
B 38, 7881~1988!.

8D. Shahar, D. C. Tsui, M. Shayegan, E. Shimshoni, and S
Sondhi, Science274, 589 ~1996!.
-

.

9S. Kivelson, D. H. Lee, and S. C. Zhang, Phys. Rev. B46, 2223
~1992!.

10J. T. Chalker and P. D. Coddington, J. Phys. C21, 2665~1988!.
11Quantization ofrxy has been demonstrated for the critical regim

where linear response is assumed: see A. M. Dykhne and I
Ruzin, Phys. Rev. B50, 2369~1994!; I. M. Ruzin and S. Feng,
Phys. Rev. Lett.74, 154 ~1995!.

12S. R. Renn and D. P. Arovas, Phys. Rev. B51, 16 832~1995!.
13C. W. J. Beenakker and H. van Hoiuten, inSolid State Physics:

Advances in Research and Applications, edited by H. Ehrenreich
and D. Turnbull~Academic, San Diego, 1991!, Vol. 44, pp. 207
and 208.

14This relation is more commonly known asV1F2E5x, where
V,F,E,x are the vertices, faces, edges, and Euler characteri
of general polygons in three dimensions.

15X.-G. Wen, Int. J. Mod. Phys. B6, 1711~1992!.
16C. L. Kane and M. P. A. Fisher, Phys. Rev. B46, 15 233~1992!.
17T. Giamarchi and H. J. Schulz, Phys. Rev. B37, 325 ~1988!.


