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Quantized Hall insulator: Transverse and longitudinal transport
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We model the insulator neighboring thek uantum Hall phase by a random network of puddles of filling
fraction 1k. The puddles are coupled by weak tunnel barriers. Using Kirchoff's laws we prove that the
macroscopic Hall resistivity is quantized kh/e? and independent of magnetic field and current bias, in
agreement with recent experimental observations. In additiork>dk this theory predicts a nonlinear longi-
tudinal respons&/~1® at zero temperature and/|~T*~ Y at low bias.« is determined using Renn and
Arovas’s theory for the single junction respondehys. Rev. B51, 16 832(1995] and is related to the
Luttinger liquid spectra of the edge states straddling the typical tunnel barrier. The depend¥fite @t the
magnetic field is related to the typical puddle size. Deviationg(@) from a pure power are estimated using
a series/parallel approximation for the two-dimensional random nonlinear resistor network. We check the
validity of this approximation by numerically solving for a finite square lattice network.
[S0163-182607)03615-1

[. INTRODUCTION be explained by means of transport models based on hopping
between strongly localized single-electron sites, as such
The “Hall insulator” defines a peculiar insulating state in models do not pose any patrticular restriction onvhkie of
which the longitudinal resistivity,, diverges in the limit of  the finite Hall coefficient.
zero temperature and frequency yet the Hall resistigity In this paper we propose a transport model that reflects
remainsfinite. Such a behavior of,, has been argued to be the prominent phenomenology of the exotic insulating state
a quite generic property of disordered single-electrordescribed above, hereon dubbed “a quantized Hall insula-
models;~* which follows from the relatioro,,~o%, in the  tor” (QHI). It is clear that one needs to take into account
limit of vanishing conductivitiesr., andoyy,° that is to say,  hoth electron interactions, which are responsible for the frac-
tional QH effect, and the random potential. This task is man-
M pey= 0yl (0%t 0%) <. (1)  ageable in the limit of slow potential variations with respect
Txx—0 to the magnetic length. The incompressibility of the electron

. : liquid at magic densities creates puddles of QH liquid at
Experimentally, several groups have observed a Hall InSUIatfhese densities in the shape of the equipotential contours
ing behavior in strong magnetic fields both in three- :

dimensional samplésand in the quantum Hall(QH) Thus we extend Chalker and Coddington’s network

O . B .
regime’® In the global phase diagram of Kivelson, Lee, andmodEiL from the integer to the fractional QH regime. In

Zhang the entire insulating phase surrounding the QH "quidplace.of the semiclassical single-electron orbits, the transport
phases is predicted to exhibit Hall insulating behavior with€re is conducted through a random network of edge states

pxy~B/nec as in aclassicalHall conductor, in agreement surrounding the puddles ofKLQH liquid defined to be of
with the data of, e.g., Ref. THere B is the perpendicular densityn=B/k¢o, where ¢, is a flux quantum. The edge
magnetic field ana is the electron density. states are connected to each other by tunnel barriers. As we
Confusion has been compounded recently by measur&how below, if the percolating network of edge states be-
ment of the Hall voltage near the transition between a 1/4ongs to asingle fraction1k, p,, of the entire network ac-
QH liquid and the insulatdtwhich indicates a different be- quires the quantized valugi/e?.** This quantization is1ot
havior of py, in the insulating phase: quite remarkably, it sensitiveto the details of the dissipative part of the network’s
preserves the quantized valuk/8? over a finite range of the response.
magnetic field(the parameter that drives the transijidre- Since edge states tunneling between a fractional QH lig-
yondthe critical point. Moreover, the Hall voltagé,(1) is  uid involves a power law density of states, the longitudinal
linear in the low current range where the longitudinal voltagecurrent-voltage characteristic of the syst¥ifi) is generally
V(1) exhibits an insulatinglike nonlinear dependence. A de-nonlinear anddV/dl—c for | —0 in the weak tunneling
viation from the quantized Hall resistance, approaching dimit. Below we calculate the longitudinal response of the
linear rise as a function d8, is observed only deeper in the edge states network and relate its properties to the total car-
insulating phase. This persistence of the QH plateau cannaier density, the magnetic field, and the potential fluctuations.
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FIG. 1. Single junction between puddles.

In the framework of the present paper we do not elaborate (b) +y
on the justification of the puddles model; rather we focus on
its consequences on transport properties, some of which are
yet to be confronted with experiment. It is worthwhile point-
ing out, though, that the true ground state of certain realistic
systems is quite likely to be well imitated by such a model.
In restricted regions of the sample, where considerable varia-
tions in the disorder potential occur over length scales much
larger than the magnetic length, the formation of puddles 0[
incompressible liquid is energetically favorable. Since trans-
ﬁgt ;’;f:]dfhfi‘tlccr‘r :}S Sgg‘i'ﬁeisegiizip;‘;g'gsfs' ae )f;er[:etg(tj Ct?)”ﬁl"he relation between thiengitudinal voltage drop and the
dominated by channels that “hop” between neighboring Ennellng current through the barrier is
puddles at places of minimal separation. = _ - _

In Sec. Il we prove that the Hall resistance of k piddle V)= 0p1™ Opp= g Oa, .
network is quantized at,,= k#/e?. In Sec. 1l we calculate Which is, in general, a nonlinear function. Here we assume
the nonlinear longitudinal respons&1) of the network. De- symmetry under reversal of the magnetic field
viations from a pure power-law behavior are estimated inv(l,B)=V(l,—B), which is expected for dissipative current
Appendix A; the parameters of the model are related to théransport across a narrow channel.
magnetic field and potential fluctuatiofissing the theory of We now consider the response of a random network of
Renn and Arovag for single QH tunnel junctionsin Ap-  puddles and tunnel barriers with two current leads atand
pendix B. In Sec. IV we summarize our main results and+x and two voltage leads aty and +y. The network is
point out some open questions and suggestions for experiiescribed by a general two-dimensional graph wWithver-
mental tests of our model. tices at the locations of the puddles axglbonds for each of
the tunnel barriergsee, e.g., Fig. )2 The two-dimensional
layout of the puddles network ensures that bonds do not
Cross.

Consider a random two-dimensional network, combined Henceforth we shall assume that all quantum interference
of the basic elements schematically depicted in Fig. leffects take place within the tunnel barrier length scélgs
Circles denote the “puddles”; each couple of puddles isbeyond which dissipation due to low-lying edge excitations
separated by a tunnel junction that involves four edge curdestroys coherence between tunneling events. Thus the re-
rentsl;—l,. By current conservation the tunneling currént sponse of the puddles network is given by classical Kirchoff
is given by laws. First, current conservation at each veriexddlg i is

given by

-X +X
-y

FIG. 2. (a) Typical puddle networkwith N,=6 andN,=8).
b) Corresponding equivalent circuit. Pathis denoted by arrows.

II. THE HALL RESISTANCE OF A PUDDLE NETWORK

I=1;—l3=1,—1,. 2)

The macroscopic theory of a Hall liquid in a confining po- = =0, 1=1,... Ny, ©
tential yields a fundamental relation between the excess

chemical potentials at the edgég,; and the edge currerdfs ~ Where{(ij)} denotes the set of bonds emanating from
Second, the sum of voltage differences around each plaquette

h p is given by
Spi=sgnB) ki, ()
o o > Vap(1ip=0, p=1,...N,, (7)
wherel;’s are positive in the clockwise direction around the (ij)ep
puddle. Equations2) and(3) yield a simple proportionality  wherev;(1;;) is the nonlinear function of Eq5). A total
between the Hall voltage and the tunnel current currentl is forced through the network through a lead com-

ing from —x and leaving towardt+ x. There are no currents
4) flowing through external leads in they directions. It is

h
V= Or1— Oug= Opp— Spta=SQr(B) ki easy to prove the following:
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Lemma The currentd;; in the network are completely erage magnitudé. In the small current limit they obtained

determined byi. that g gets renormalizegy—g >k and the longitudinal re-
The proof uses Euler's theorem for two-dimensionalsponse is
graphd* _
||| 1/29-1)
Ny+Np_Nb:1- (8) VRA(I)ZVOSgr(I)(IO_D) ) (12

Thus the number of Kirchoff equationés) and (7) is  Where
N,+N,, which exceeds the number of unknown currents

N, by one. The additional equation determines that the cur- VO:ﬁ_U,
rent flowing out of the+ x lead must be, of coursé, Q.E.D. el
As shown above, the Hall relatiorid) have no effect on

the currentd;; . The total transverse voltagg, is given by | __ &

choosing any path of bondthat connects the-y lead to O 2k’

the +y lead(see Fig. 2 and summing the voltages 2

n
h - 27;0%2' (13
Vy=2 Viisa(livnBD+sgriBks 2 1ij, (9 , _ ,
¢ €% ecij) Herev is the edge state velocity amer 7 c/eB is the mag-

netic length.

Here we consider a network of RA’s junctions and as-
sume that the dephasing time is short enough that the tunnel-
ing events through consecutive junctions in the network are
incoherent(coherent backscattering effects are included in
RA's calculation of the single junctionOur model consists

where {j)' denote all currents entering vertexrom —x.

By global current conservation, the second term is propor
tional to the total current. Defining the Hall voltaye, to be
the antisymmetric component &f, we thus obtain

v :sgr(B)kEI (10) of a random network of classical nonlinear resistors, each
H e’ characterized by a powet, and a conductance prefactor
D 1
which yields a quantized Hall resistancepgf=k(h/e?) that "
is completely independent & and]. Vi, [I,] | n
This relation should hold as long as the network does not V—O=sgr(|) 1D, (14)

involve appreciable contributions from edge states of

puddles of differenk values. The width of the QHI regime BY Ed.(13) we assume that, andl, are weakly dependent
therefore depends on the relative abundance of different dei@n the barrier height fluctuations and magnetic field, com-
sity puddles, which depends in turn on the distribution ofpared, e.g., td. Thus, for simplicity, they are taken to be
potential fluctuations. As the magnetic field increases, a widéiniform in the entire network. The network of junctions with
distribution of potential minima will create mixed phases Dn<1 is assumed to percolate through the sample. Thus we
with puddles of different densities. Relati¢f) does not ap-  ¢an choos®,,, a, to be random variables whose distribution
ply for tunneling between different R/QH liquids and thus is bounded by

the above analysis fails for the mixed phase.

IIl. THE NONLINEAR LONGITUDINAL TRANSPORT (2k—1)=a,=1/(2k—1). (15)
The dissipative response in the model introduced above ify Appendix A we estimate the magnetic-field dependence of
associated with the |0ngitudinal transport thl’ough the tUnnE!he average conductance prefactor to be
puddles of densityn=B/k¢,, and we assume henceforth —
thatk is the same in all puddles. D(B)=exp —kny
between I QH liquids was proposed by Wen, who whgrenp is the typ.icallnumber of. electrons in a puddle and
mapped the fractional QH edge states to chiral Luttinger ligBc is the magnetic field at which the puddles percolate

: (16)

barriers. The barriers connect edge states of neighboring
B—B.\?
. . N 2B
A nonlinear current-voltage relation for a tunnel junction

uids. For small currents, the relation is a power falf through the sample. The average power law is estimated us-
ing RA’s renormalization-group equations. We find ttste
| ~sgn(V)V29-1, (11)  Appendix A), in the limit of smallD,
yvhereg=k is t_he Luttinggr liquid inter_act?on paramet@md a(B)~ 1 n k_3/2D_(B), (17)
is equal to unity for the integer Hall liquid 2k—1 2k—-1

Renn and Arova$ (RA) have extended Wen'’s result to —
long tunnel barriers following Giamarchi and Schulz’s @hd forD—D¢=(2In2-1)
renormalization-group equations for disordered Luttinger
liquids” They consider the “disordered antiwire” geom- = 1 (18)
etry, i.e., a barrier of length with, tunnel couplings of av- 2+3yD;,—D '
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FIG. 3. (8 Stype element Ns=4). (b) P-type element
(Np=4).

We have solved Eqg6) and (7) numerically, using a

EFRAT SHIMSHONI AND ASSA AUERBACH

As we show in Appendix B, for currents that obey
a?in(I/lp)<a,

V | | %eff
V_o:<ﬁ) ’

The deviation ofae¢ from « is positive fora<<1. This indi-
cates that in the “insulating” regime, although serial and
parallel connections are equally represented, parallel con-
figurations dominate at low currents. The situation is re-
versed in the QH liquid side of the transition, where-1,
while at the critical filling fraction(wherea=1) the S and

P elements balance each other amgi=«a. We note that
under a duality transformation, which exchanges each resis-
tor in the network by a perpendicular resistor wit,(V)

and (,/1,) interchanged, thé-V characteristic of the whole
network is inverted:a— 1/a, o— o/a?, and consequently
af— Llags, which is consistent with our requirement of
macroscopic isotropy.

We also note that the deviations of the macroscopic
curve from a pure power law are at madsgarithmicin the
driving current. This gives us a sizable regime of current in
which we can expect the curve to be well fitted by a pure

Q=+

, -
(0' |n(|/|ol(1 V)| o1

Levenberg-Marquardt algorithm, for square lattices of sizepower law (@en= a):

up to 5x5. The distributions of D, ,«a,) were taken to be

P1(D)=6(D)-6(D-1),

1 (a—a)?
Py(a)= o ex = ] (19

We take the variance? according to our estimate in Appen-
dix A to be 5-10 times smaller than the mean The nu-
merical results in the regimig/10<| <, averaging over 5

A
lge~ Yorr@-tac <. (22)

In comparing the results of the PS model to the square lattice
simulations we find that the correction to a pure power law in
the numerical results is smaller by at least a factor of 10 than
the results of the PS mod&1). We suggest that the differ-
ence arises due to the fact that the PS model assumes greater
inhomogeneity irD, as mentioned before. Equati@ail) can

realizations of disorder, can be summarized by the averagdfierefore be regarded as an estimate of the upper limit on the

network’s|-V response

InV
Inl’

Sagg=ate

(20

discrepancy between the macroscopjg anda at moderate
currents. The principal conclusion to be taken away from this
calculation is that due to the self-averaging property, the
macroscopicl -V is directly related to the physics of the
single junction and the nonlinear tunneling response between

wheree~10"2—10"3. That is to say, in the moderate cur- fractional quantum Hall edge states.

rent regimethe total voltage-current relation is given quite
well by the average power lavin the extremely small cur-
rent limit, one expects E(q20) to break down since due to

IV. SUMMARY AND FINAL REMARKS

the power-law resistors, the currents choose to flow through
percolating networks of highest power laws. In this regime As demonstrated in the previous sections, the QHI phase

the numerical algorithm also fails to converge properly.

observed in proximity to a QH liquid can be modeled by a

In order to better estimate the corrections to the purenetwork of puddles. Although similar in spirit to the semi-
power law, we examine a toy model dubbed the parallelclassical percolation description of Ref. 10, it naturally in-

series(PS network(see Appendix B for detailsThis model

comprises a random combination of serial and parallel consumption:

nections of element® and S whereP is composed oN,
resistors in parallel, an& is its dual, a linear chain o
resistors in serieésee Fig. 3 TheS andP components can

corporates the electron interaction effects under the same as-
smoothly varying potentials relative to the
magnetic length. The most important feature of this model

is that, in contrast to models based on single-electron hop-
ping, it yields a quantized Hall resistance. The quantization

be created from an ordinary two-dimensional network by as not affected by the nonlinearity of the dissipative part of

three-peaked distribution ob,'s (shorts, disconnections,

the response. The latter is studied for & QHI with k>1,

and resistors ob,=1). This model is symmetric on average yielding a power-law behavior of the longitudiniaV curve

with respect to exchange of tixeandy directions and hence that is closely determined by the behavior of an average
is an adequate description of macroscopically isotropicsingle junction between adjacent puddles. Deviations from a
samples. pure power law are at most of ordefIn(l) (whereo is the
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We note that the integer QH case k&1 implies all
a,=1 throughout the network. that is to say, the puddleAPPENDIX A: DEPENDENCE OF DISTRIBUTIONS ON
. . MAGNETIC FIELD
model reduces naturally to a random Ohmic resistor network
with conductances proportional to E(.6). Interference ef- To facilitate a comparison with experiment, we must
fects between junctioh$are ignored here since we assumesomehow relate the average and mean square deviations of
an inelastic scattering length of the order of interjunctionD, ande, in Egs.(19) to the external magnetic fiell. Here
separation, an assumption that breaks down at low enoughe make substantial use of the results of Renn and Artfvas,
T. which allow us to expresB and« in terms of the semiclas-
Our analysis so far has concentrated on the nonlineagical tunneling probability at the junction. The
transport of tunnel junctions, applicable for large enoughrenormalization-group equations of Refs. 12 and 17 connect
bias and lowT. At finite T, transport in the junctions, and @ to D as follows. In the insulating limib,—0,
hence through the entire network, crosses over to linear re-
sponse at sufficiently low bidehi/e<kgT, wherei =1/N, is 1 1 (k=3/2D,

the average current through single junction ad is the a”_29n—1: 2k—1Jr 2k—-1 (AL)
typical number of junctions across the sample. The linear

conductivity is then predicted to vary as a power law ofin the regimeD,=D.=(2In2-1), we get

temperaturé? i.e., VxIT: Y A temperature-dependent

measurement of the resistance in the Ohmic regime can thus 1

provide a further test of our model. In addition, for a given an 2+3D.-D. (A2)

T the crossover from a linear to nonlinedi/) can provide

an estimate o, . quations (A1) and (A2) relate a, to D, in the range

One of the most interesting implications of our suggeste /(2k—1)<a,<1/2; the analysis of Refs. 12 and 17 is not

puddle—network model is _tha_t th? insulating ph.ase, surroun applicable closer to the QH liquid/insulator transition, where
ing the fundamental QH liquids in the phase diagram of Refq > , 1 Note that the effect of an increasing tunneling

9, is not a homogeneous phase. Restricted regions in thee is to interpolate between the limiis=1/(2k— 1) and
phase diagram that are in proximity to specifik QH lig- a,=1/2.
uids are dominated by weakly coupled puddles of the corre- “\ye assume that the potential fluctuations are bounded and
sponding liquid. Itis therefore implied that a measurement Ohaye a characteristic length scale of fluctuatibps This
pxy as a function of magnetic field at moderate disorder mayength scale also represents the typical linear size of the
exhibit plateaus at odd integer multiples 6fe®, even  puddles, which will turn out to be an important parameter in
though the longitudinal transport indicates an insulatinglikethe following discussion.
behavior. The width of the plateaus is expected, however, to Since the puddles are incompressible, a change in the
depend on details of the disorder potential in the sample. Theagnetic fieldé6B near the percolation fiel&. will shrink
width of the “mixed phases,” wherp,, rises with magnetic the puddles by a linear distanéé, which is related taSB by
field between consecutive plateausn@ expected to vanish
for T—0 as in the QH liquid regime. sl 6B

Finally, we would like to comment on an open problem = 2B, (A3)
with regard to a comparison of this theory with the experi-

mental results of Ref. 8. The experiment has indicated a duthe tunneling rate of an electron in the lowest Landau level
a“ty Symmetry b.etWeerh'V CUrV.e.S at OppOSite sides of the through a quadratic potentia' barrier V(X,y)
;/3 QH Ilqu'ld-to-lnsulator transition. Th|s.phenome.non was_ Lv"(—x2+y?) is solved by mapping the problem to a
interpreted in terms of charge-vortex duality or, equivalently, . . L )

: one-dimensional Hamiltonian given by
as particle-hole symmetf/In the puddle-network model,
such duality would be observed if Bt>B. each tunnel bar-
rier with responsd =F(V) is related to a narrow channel H= i 2 EV”XZ (Ad)
formed atB’ <B,, such thal’=F ~“1(V'). However, recent 2m 2 '
theories for a single scatterer in a narrow chahtiéldo not
yield this relation. The multiple tunneling cd8ehas only ~where the “tunneling mass” isn=#2/V"1* (I being the
treated electron tunneling in the large barrier limit of magnetic length Using the WKB expression for tunneling
B>B,.. Resolution of this point is left to further research. at energy— Vg,
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2

o | 7]

5B \?
::Doex4:_”ﬁ(§E;J (Ivlnz

The factorx= (I /1)? is roughlyk times the number of elec-

. (A5)

trons in the puddle and it determines the field dependence of
the tunneling rate near percolation. In a specific junction in

the network, it is given by a random variablgwith average
(x) and variancer, such that
5B

2
D,~ Doex;{ - xn(§> }
Cc

D =D gexp{—X(6B/B,)2},

6B
O'D2 B_

Cc
Employing Eqs(A1) and(A2), we find thata ando of Sec.
[l are given by

2 —
) oD. (A6)

(k—3/2D
2k—1

1
2k—-1

o=

(k—=3/2)0p
o=—0 1 (A7)
for D_—>0 and

1

T2+ 3yD.~D’

1
g= 0
D.-D/) °

for D—D,. Substituting, e.gk=3 and oB/B.<10"', we
find thato is typically 10 times smaller thaa, which is the

3

P (A8)

values we have used in the numerical simulations of the

square lattice network.

APPENDIX B: DERIVATION OF V(I) IN THE PS MODEL

Consider a system & andP elements, which are serial

and parallel connections of power-law resistors, respectively.
We first derive the local current-voltage response of element

P andS separately. P, the average current per parallel unit
is related to the voltag¥, by

Aol

>

n=1

1

N

Np
> ln

pn=1
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where the angular brackets denote averaging over the distri-
bution P,(«a) [Eqg. (19)], which yields

b_ 1 [~ (a—a_)z](vp)lfa ®2)
—= aexXp ——— (|| -
lo V2mo)-= 20° Vo
In the saddle-point  approximation [valid  for
a?In(l/lg)<a],
V, [l,\% — a?In(1,11)
_P_|_P . AP0
Vo ('o) e 2aa (E3)

Note that the approximation breaks down in the limit of very
small currents. EquatiofB3) implies that the contribution of

a purely parallel configuration to the network outweighs the
significance of better conducting channels. This produces a
positive shift of the power law that is enhanced at small
currents. The response of a sin@dype element indicates
an opposite trend: similarly to E¢B3), the average voltage
V, (per serial unitis related to the currert by

Ve 13, 1 jw . (a—a)? |5)“
Vo Nsa=1 Vo/ 27o)-= “ 20 lo
(B4)
and hence
Ve [lg)% — o?n(l4/lg)
v_o‘(E) e TR g

The negative shift of the effective power reflects the over-
emphasis of the larger resistors in the chain, which is par-
ticularly pronounced at small currents.

We next consider the overall responseNb&erially con-
nected elements, of typ® and S alternately. Denoting
I=1,=1s, we get

1 Vol [1\% [1)%
(i) ] e
and thus, foro?In(l/lg)<a,
|\ @eff
o

a?In(1/19)(1— 1/a)
4

\Y

Vo

(oo 2|

5 ) (B7)

Xeff=
R is straightforward to show that a parallel connection of
alternatingP- and S-type elements yields the same effective
power law. We therefore conclude treaty configuration that
involves serial and parallel connections of evenly distributed
P- and S-type elements will have a current-voltage charac-
teristic given by Eq(B7).
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