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Coulomb interactions and delocalization in quantum Hall constrictions
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We study a geometry-dependent effect of long-range Coulomb interactions on quantu@tjaiinneling
junctions. In anX-shaped geometry, duality relates junctions with opening anglasd (7— «). We prove
that duality between weak tunneling and weak backscattering survives in the presence of long-range interac-
tions, and that their effects are precisely cancelled in the self-dual geometr/2. Tunneling exponents as
a function of «, the interaction strengtly, and the filling fractionv are calculated. We find that Coulomb
interaction induces localization in narrow channgésge o), and delocalization for sharply pinched constric-
tions (small «). Consequently, an insulator-to-metal transition happens at an ap@lev) < =/2. We discuss
the implications of our results for tunneling experiments in QH-constriction and cleaved-edge geometries.

[. INTRODUCTION ever, the same interacticguppresses the tunneling in the
dual configuration, of two semi-infinite nonchiral Luttinger
The idea of current-carrying edge statés one of the liquids connected by a tunneling poirt{ 7 in Fig. 1), and

major paradigms in the theory of the quantum H@H) the system is pushed towards the insulating regime. This
effect. For simple filling fractions'=(2m+1)"*, Wen has indicates that even thegnof the Coulomb interaction effect
showrf® that edge modes can be represented as on@n.the tunneling exponent is not the same in different geom-
component chiral Luttinger liquids, with the universal cou- Etries. _ _ _ _
pling determined by. Within this simple model, controlled  The purpose of this work is to analyze in detail the Cou-
calculations are possible. This leads to many elegant result¥mb interaction effect on the properties of QH tunneling
including the universal interedge tunneling exporfenexact ~ junctions in d|fferent.geomet_r|es. First, we dgmonstrate that
expressions for tunneling conductance, the nonlinear tunnefhe well-known duality relating weak tunneling and weak
ing I-V curve®® and tunneling nois&®-*2 backscattering remains exact in the presence of long-range

Experimentally, however, there are more dimensions tdntéractions. Then, we focus on scale-invariaithaped
this problem. The results of the first pinch-off tunneling constrictions, and calculate the renormalized Luttinger cou-
experiment where the scaling appeared to be in agreemen@ling constang? (which, in particular, determines the power
with theory®’ have only recently received a partial law dependence of the conductanceToandV) as a func-
confirmation'*® Furthermore, in Ref. 16 no scaling was ob- tion of the opening angler (Fig. 1). We show that the un-
served at all, and in Ref. 17 the measured tunneling exponesgreened Coulomb interaction drives a zero-temperature de-
was off by a factor of 2. Such discrepancies were attributedocalization transition as a function ef in both integer and
in part to edge reconstruction in samples with “soft” fractional QH constrictions. In the integer case the transition
confinement® However, the tunneling measurements inoccurs precisely at the self-dual valug= /2, independent
cleaved-edge samplé$?° where the confining potential is of the interaction strength. At the fractions=(2m+1)"*,
expected to be sharp, yield tunneling exponents shifted ofthe critical anglex, is nonuniversal, but its value is always
the predicted values even at the magic filling fractians smaller thanz/2. We also analyze the effect of Coulomb
=1, 1/3.

Previously, much effoft was dedicated to identify \u](x) g \ A,
mechanisms leading taonuniversal corrections to tunnel- NN ~~" N/
ing exponents. In particular, the effect of the long-range 0‘<%< S 0L=0L0< o a>ao< v

“, . Y

Coulomb interaction was analyZ€d?® in the geometry of h s N~

two counterpropagating parallel edges—£0 in Fig. 1). In %YX)\\ //\ /’Y\\
exact analogy with its effect in a one-dimensional electron

gas?® repulsive Coulomb interaction renormalizes the Lut- Fig. 1. Shading denotes quantum Hall regions bounded by
tinger liquid coupling parameter. Thus, a weak impurity- counterpropagating edge modes u,. In a saddle-point geometry,
associated interedge tunneling becomes a relevant perturb@oulomb interactions suppress the up-down tunneling for large
tion, so that the current floiirom top to bottom in Fig. Lis  opening anglesy, and enhance it for smatt. This effect cancels
enhancedat low temperaturd and applied voltag®. How-  exactlyin the self-dual geometryy= /2.
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interactions in the geometry of cleaved-edge tunneling ex- ve? g
periments. Slzmjo de dxdy U (x)V([r,=ryhu'(y), 3

The paper is organized as follows. In Sec. Il we introduce
the tunneling action that accounts for the long-range interacWhererx is the actual position of the point as measured
tions. A general proof of the duality between weak tunneling, o the edge, and is the dielectric constant of the mate-
and weak backscattering is given in Sec. lll. In Sec. IV, Wejq| The problem is nontrivial because now both the distance
present our results for the renormalized Luttinger coupling, easured along the edge, and the geometrical distance
g2 in different geometries, and in Sec. V we discuss th r.—ry| are important.
implications on tunneling experiments. Related analytic re- "t interedge tunneling is introduced by the nonlinear
sults are collected in the Appendices: in Appendix A, theierm
case ofa=m is solved; in Appendix B, the Wiener-Hopf
technique is used to directly solve the self-dual case 8 ‘
=m/2, and evaluate the lowest-order correction flonse] Si= fo drRene'??,  o=u(xy)—u(xy); (4)
<1.

here g= /v for the quasiparticles’ tunneling between the
[l. THE EFFECTIVE TUNNELING ACTION pointsx; andx, through the QH liquid with the filling frac-

Gapless edge excitations=u(x,7) for Laughlin's QH  tion v,.org—@]':l/\/; for tunneling of electrons through the
states with filling fractions v=(2m+1)"Y can be insulating region. The tunneling amplitude is set by the

describeti® by the imaginary-time quadratic action defcalls°‘ of the_self-consstent potential near the tunneling
point and considered as a phenomenological parameter.

1 (8 The nonlinear tunneling actio@®) depends on the values
5024—J’ drf dxd,u(id,u+vau), (1)  of the fieldu(x,7) in the pointsx;, X,; the values of this

mJo field in all other points can be integrated out. Leaving the
argumente of the tunneling term as the only independent
variable, we can write the most general form of the effective
action

wherex is the coordinate along the edge, ardv (x) is the

edge wave velocity. The fieldis related to the linear charge

density at the edgep=\/vd,u/(27) (note the unconven-

tional normalization T 8
Formally, gauge invariance requires that the fie(a, 7) S=—> |wn|K:(wn)|(Pn|2+f drRene'?¢(”), (5)

be treated as a compact boson of radRis \v, i.e., the 4m 0

valuesu andu+ 2#+/v must be identified. This, however, is

not achieved within the usual path integral formalféin a ~ Where the harmonicsp,= ffd7¢(7)exp(—iwy7) and ey,

finite geometry if we assume the fieli(x,7) continuous =¢-n are evaluated at the Matsubara frequencies
everywhere along the circumference. Indeed, the equal-timg 27nT. This effective tunneling model is fully character-
commutation relationship ized by the frequency-dependent coupliif{w,), which
contains all relevant information about the form of the inter-
[u(x),u(x’)]=imsgnx—x") action potentiaM(r) and the geometry of the system. For-

mally, its functional form is defined by the correlaor
on the edge of length implies that the fieldsio=u(0,7)

andu,=u(L,7) are canonically conjugated, which contra- . oy 5

dicts the continuity of the field along the circle. The differ- K= Hwn) =75 enl =0 (6)
enceu;, — Ug (proportional to the topological charge associ-

ated with the zero modeis also proportional to the total If the couplingk() is independent of the frequency, the

chargeQ = \/v(u_— Uo)/(2) accumulated at the edge; only effective action(5) can be visualized as describing an over-
in the absence of tunneling into the edge this charge is @amped particle in a periodicosing potential with Ohmic
dynamlcally_con_served guantized quantity. The_ correct zerogissipation« = K/g?; the transport properties for this prob-
mode quantization spectrum can be obtained if we considgem are known exactl§? In general, however, the exact so-
the variablesu, andu, as independent, and write the bare jution is not available, and we have to rely on the frequency-
edge actior(1) more explicitly a8 shell perturbative renormalization grouf®G). The main
idea is that the nonlinear term is irrelevant for large-
1 (8 L . 1 (s frequency modesp(w), as long as|w|>\. When such
Efo deo dxdyu(id.utvaxu)+ Qjo dr(u modes are integrated out, the tunneling constant for the re-
maining slow modes is reduced,

S():

—Ug)id (U +Ug). 2 _
MA)=N(Ag)(e'9? , 7
The boundary term in the second line is added to fix the (A)=MAo) (€% <0z, @)
canonical quantization of the zero mode, and to decouple

br, equivalentl
from the edge modes with finite momerta. » & v

Since the charge densipy is expressed linearly in terms AA) Ao A de
of the fieldu, the action remains quadrdtc*even in the —In :ng _<|¢(w)|2>A:OZQZJ ,
presence of nonlocal Coulomb interaction MAo) A2 T A0 k(@)
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where we used the definitiof®). After the frequencies are
rescaled to restore the original upper cutoff, we arrive at the

usual RG equation K K

din\ p1 5

Jin A =L 9K M) =1-gi(A). ® D A
The renormalization stops at a Iower_ cutoff scale determined @CZ
fanly.forgi 1. he tnneling ampliude fows 1o weak oo =1 -

pling as the temperature is lowered, so that the channel along FIG. 2. The auxiliary edge configuratide)

the tunneling current becomes more insulating; dor1 it e quadratic part of the action for the tunneling geomethigs(c).

flows to strong coupling. It is assumed that the short-distance cutoff for the long-range po-
It should be pointed out that in the case whéi@w) is  tential V(r) is much larger than the scale at which the geometries

frequency independerthe parameteg? [defined in Eq(8)] (b) and(c) differ.

is a constant, and the effective Euclidean action describing

the system can be recast in the simpler form The classical solution is uniquely determined by the given

valuesu;(7) of the fields at the endpoints. The quadratic

action(2), (3), evaluated along this classical solution, can be

written as

is used to calculate

T B )
S=— 3 o |¢>n|2+f drRered-<), (9
4’7T n 0

Such is indeed the caggéor sufficiently smallw) for the _ (Uup—ug)id (ug+ug)
scale-invariant models considered in detail in Sec. IV. In this SalU]=9[U1=Uo,Us= U]+ | d7 ype
situation, the RG equation leads to the standard rekult

+de(U3_U2)if7¢(U3+U2) (11)

Netr™ maKT,V)gf’l, (10 4 ,

which can be also obtained by expanding the exacwheregla,b] is a quadratic, nonlocal in time, and generally
solution®® a very complicated functional of its arguments.
The conservation of the total charge

I1l. DUALITY BETWEEN WEAK TUNNELING AND \/—
WEAK BACKSCATTERING _\r
=—(Uz—Uy+U;—U 12
Q=5 (Us=Uz+ U= Up) (12)

The partition function corresponding to the effective ac- _ o
tion (5) [which also describes an overdamped particle in gequires thatp= u; —Uy=U,— Uz, Up to a time-independent
non-Ohmic dissipative environmenk(w)=K(w)/g?] can  constant. Setting the total charge to zero, we can write Eq.
be also rewritte??>%in terms of the dual variabld ¢ with ~ (11) as
the identical action, up to a replacemétfw,) — 1/K(w,), 1
g— 1/g, and the modified tunneling coefficient>X (which S{e.A01=Glo,—¢]— _f dreid. A6, (13
has the meaning of fugacity for the instanton of the original 2m
field ¢). In terms of edge modes, this duafifyrepresents a |, pore A 6= (Us+ Uy— Uy — Ug)/2. For the tunneling geom-

freedom to describe the same junction in termsvefktun- _etry in Fig. 2b), Eq.(12) implies that the fieldi(x,7) can be

neling or strong backscattering, and vice versa. The main p,nsen continuous everywhere along the combined &jge
advantage of the duality is the ability to substitute a problem+C A6=0 and hence the effective quadratic action be-
at strongtunneling with its dual, which can be then accessedcomzés

perturbatively.
This argument relies heavily on the properties of the ef- T
fective model(5), which, in principle, may or may not re- Sg=9le,— ¢ =an 2 lwnl K(0n)| enl?,
wp=2mnT

main equivalent to the original edge model after the addition

of the nonlocal coupling3). To illustrate the mutual consis- \yhere we introduced the couplirig(w) as in Eq.(5).
tency of the two models, we derive the relationship between Eq the tunneling geometry in Fig(@, the charges in
the couplingK(w) in the two tunneling geometries directly, upper and lower areas change with time as a result of the

using only the quadratic actiof,=So+ 5. _ tunneling, and we must keep the fial@x, 7) discontinuous.
Consider a field configuration with the boundary condi-The corresponding action becomes

tions fixed as in Fig. @), whereu;=u;(7) are given. Every-

where on the composite conto@=C;+C, the action is I ) _ _

quadratic, and the corresponding Euler-Lagrange equation is Sq=7— ; |wn| K(@p)|@n]*+ 0n(@nA = A brep).

linear,

(Note that a different choice oA#6, e.g.,A6=uz—uq or
A6=u,—u,, only changes the Euclidean Lagrangian by a

total time derivative, thus leaving the acti@}a invariant)

2
_ ve
Iy |&Tu+v(x)axu+mfcdy V([rx=ryl)dyu
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The fielde can be now trivially integrated out, and we arrive  For the special case of unscreened Coulomb potential,
at the final form of quadratic action for this geometry,

V(R)=(R?+a?) 12, (15
~Sq=4l > |onK(w)|A6,2  K(wy)= IC; the long-range interaction terii3) scales the same way as
T o, (@) the local potential(velocity) term in Eq.(1). Then, if the

(14 edge velocityv(x)=v is coordinate independent, simple
This result can be generalized for systems with several juncscaling shows that frequency can only enter in the dimen-
tions, where the couplindgC(w) is replaced by a matrix, sionless combinationv=wal/v, while the strength of the
which is inverted when all junctions are replaced by theirCoulomb interaction is defined by the dimensionless cou-
duals®® pling constarft
This simple calculation shows that even in the presence of )
long-range interactions the duality between weak tunneling x=vel(whve). (16)

and weak backscattering for the model described by &)s.  Therefore, the tunneling properties of the junctide., the
(3), (4) coincides with the duality between weak and strongsorm of the dimensionless functiok, ()] are fully deter-

coupling for the effective tunneling modéd), independent  ined by three dimensionless parameters, namely,
of the actual geometry of the system. The only assumption

we made is that the geometries in FighRand Fig. Zc)

should not differ “substantially,” that is, the size of a junc-

tion near a saddle point should be sufficiently snfally., On general grounds one can argue that in the scale-invariant

compared with a short-distance cutoff length, or, at smallimit w<1 the functionK (w;y) can depend on its first

enough frequencies, with the wavelengtfw), so that the  argument at most logarithmically.

Coulomb potential would be the same in the points To rewrite more explicitly the general Coulomb acti@)

Ug, - . . U3 for the infinite geometry in Fig. 1, let us introduce the coor-
dinate x along each edge, with the origin at the tunneling

IV. SCALE-INVARIANT MODELS point and positive direction to the right. Then the charge

densities along the top and the bottom boundaries are respec-

lCa(a);a,v,eZ)IKa(a;X).

tion of the tunneling points along the edges. If such a systery
has only one tunneling point, in the limit where both con-
toursC, andC, in Fig. 2 become infinite, the system would
not “know” the difference between the geometries in Figs.
2(b) and Zc), and the duality implies that the coupling has a Y w
— | dr
8’7TJ’ f—oo

ecause the coordinate is now chosen in the direction oppo-
site to the edge velocify The Coulomb part of the action
becomes

universal self-dual valuk(w) = 1, independent of the actual S&;=

geometry of the edges. Of course, this statement requires that

wL/v>1, otherwise one can obt&ftfor Figs. 2b) and 2c),  where the potentiaV/;(x,y)=V(|r;(x) —r;(y)|) denotes the

respectively, interaction energy between unit charges at the poirsdy

1 ol at the edgesandj, respectively, and we changed the units of
COtl‘( 2_1)1

dx dyI 1212 (=1 a0 Vi (x,y)dyu;

K(zb):[IC(ZC)]—l:_ distance: from now orv=1. For symmetric geometries

2 Vii(x,y) =V (y,X), V1i(X,y)=Va(x,y), and the obtained
expression can be diagonalized by introducing the symmetric
and antisymmetric combinationg=u;—u,, U=u;+U,.

I'I'he quadratic part2), (3) of the Euclidean action becomes

whereL; is the length of the contol€;, and a uniform edge
velocity v(x) =v is assumed for simplicity.

In the presence of Coulomb interactions, the functiona
form K(w) has been previously foufit ?®only for two par- -
allel edges ¢— 0 or &= in Fig. 1), where the translational So=g= > { f dX[ 2wn(X) O+ | @y 2+ | 94|21
symmetry of the quadratic part of the action is restored. In T
any other geometry the distanpe—y| measured along the
edges, and the geometrical distafigg=|r,—r,| in Eqg. (3) + {f de dyLexV4(XY) oy + B V_(x,y) 9],
are no longer equivalent, and an analytic computation of the 2
average(6) with “noninteracting” quadratic actiorSy+ S; (17)
becomes virtually impossible. i _

Some simplification can be achieved for an idealizedVN€reV=(x,y)=Vii(x,y) =Vi(x,y) and the coordinate in-
X-shaped geometrysee Fig. 1, which can be also intro- tegrations are performed along the entire real axis. Note that
duced as the zero-bias limit of the edges in a vicinity of athe first term of the integrand is not written as,(¢ 9,
saddle point with the opening angie The duality discussed — J¢,) as would be expected from the actith); the inte-
in the previous section implies thit, _ (0)=K (), for  grand in Eq.(17) differs by a full spatial derivative, exactly
a given edge velocity (x) and a given form of long-range equivalent to the surface term in the second line of 4.
potential V(R). Therefore, in the self-dual geometry at The interaction potential is always an even function with
=7/2, we expect =1 exactly, independent of the form respect to simultaneous reflection of both coordinates,
or the strength oV (R). V. (X,Y)=Vi(—X%X,—Yy), and the fieldsp= ¢ + ¢, and J
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=395+, can be separated into symmet(g and antisym- V,=V(x—-y)+V(R,), (19
metric (a) components. The first term of the actigh7)
couples only the components of two fields with the opposite V_=[V(X—y)=V(R,)]sgrxy). (20

symmetry:ps with 3, , andg, with 3. Since the tunneling
term depends on the field(0)= ¢,(x=0) only, the compo-
nents¢,(x) and J4(x) decouple and can be integrated out
independently of the value(0). In thefollowing, we shall
presume that this symmetrization has been done, and use

In the limit «=0, R,=|x—y|, the antisymmetric part of
the potential vanished/_(x,y)=0, while V. (x,y)=2V(x
—Y), and we obtain the usual translationally invariant action
for two parallel edges. Integrating out the figldand diago-
nalizing the remaining part of the action with the help of

e(X)=p(—Xx), IX)=—3(—X), (18)  Fourier transformation, we use E() to calculate the cou-
ling,
with the indices ‘s” and “ a” dropped for convenience. ping
Kotew= | %« @
olw)=—| = ,
A. Exactly solvable example a=0 7 Jo w?+ 2[1+2xKo(D)]

To illustrate the properties of the symmetrized action . .
prop y where the Fourier-transformed Coulomb potentidh),

(17), consider a model problem where the interaction hap N : . o
pens only between the points at equal distance from the ori¥ (£)=2Ko(¢), is expressed in terms of the modified Bessel

gin, function K, and the reduced frequenay=aw/v. Perform-
ing the integration with logarithmic accuracy, we obtain, in
(X12)V11(X,y) =vo8(X—Y) +v10(X+Y), agreement with Refs. 23—-25

1/2

(XI2V1(X,Y) =v28(X—y) +v38(X+Y), —
+0(|Inw| =2,

where the velocity, (measured in units of bare velocity)
denotes the strength of additional interaction at the same (22
edgew, andv, denote the interaction between the neighbor- :
. . . where y=~0.577 is the Euler constant.
ing edgegleft—right and top—bottom while v; denotes the erey=0.577 s the Euler constant

. . ) ; . The casex= 7 corresponds to two semi-infinite nonchiral
Interaction betwe_en the points at the opposing ed@y/si- . Luttinger liquids connected by a tunneling point-G 7 in
cally, this set of interactions corresponds to four locally in-

teracting chiral edges, running along the surface of a semfig' D; by duality we expect K, .= 1/K,o. This expres-
infinite cylinder and meeting in the tunneling point at its near-o" 1S proved again, specifically for this geometry, in Ap-

end. pendix A.

With interaction of this simple form we can use the sym- We argued that in the self-dual cage= /2, A(w)=1

) . ; identically, independently of the properties of the potential
(rennetgé&rgg:{“eﬂ&' and the quadratic actiof17) becomes V(R), as long as it is appropriately regularized at short dis-

tances. We have also constructed a direct analytical solution
T _ for this case. The major simplification comes from an obser-
Si=g= > f dX[2w,0(X) 93 + v | D] 2+ v 5] 3,01, vation that the potentia¥ (R,,) = V(yxZ+y?) is a symmet-
. ric function ofx andy independently; the corresponding con-
with v, y=1+vo—v3*(v1—v,). Now the field9¥(x) can  tribution vanishes from the actidd7) by the symmetry18).

]Ca=O=

2\2ye™”
w

be trivially integrated out, and E@6) gives As a result, only the potential(x=*y) with the distance
measured along the edge enter the extremum equations, and
KL o) = 1+vg—v3t(vi—vy) these equations can be solved exactly using the Wiener-Hopf
"V ltvo—vg—(v1—vo)’ method, as detailed in Appendix B. This direct solution con-

firms the universal resul€,,_ ,,=1. In addition, the explic-
itly found extremum configuration of the fields(x), ¥(x)
'is used to get a perturbative expression kQj( w) near the
self-dual pointag= 7/2. This yields(see Appendix B

Clearly, under interchange, < v, this expression goes to its
inverse according to the duality relation derived in Sec. lll
and(w,) =1 for the self-dual case;=v, where all edges
are equivalent.

K (0—0)~1+Mx)xcosa, |cosa|<l, (23
where () is independent of. In the limit of weak Cou-

Now let us consider more realistic long-distance interaciomb interactions\N{ y— 0)~1.51, whileA{x=1.0)~0.21.
tions in the edge geometry shown in Fig. 1. We write the To get a handle on the dependence of the couglipgw)

B. Coulomb interactions near a saddle point

intra- and interedge interaction potentials on the parameters and the cutoff scales, we have also evalu-
_ ated the averag) numerically for the quadratic actidid?)
Vi(xy) = 0(xy)V(x=y) + 0(=xy)V(R,), with the Coulomb potential15) at different frequencies,

V(X,y) = BOXYV(R,) + 0 —xy)V(X—Y), igg;ar\;iﬁ:gg:;lues of the angteand the dimensionless
where the bulk distand®,,= (x*+y?— 2xy cosa)'?, 6(x) is To perform this calculation we wrote a discretized version
the usual step functiom(x)=1 for x>0 and#(x)=0 oth-  of the quadratic actiof17) in terms of lattice valueg(x,)
erwise, andv(x) is, e.g., the Coulomb potenti&l5). The and®d’(x,), 0<n<N-1, and then integrated out the values
resulting effective action has the for¢h7), with of the fields away from the origin, which only required in-
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FIG. 3. Superimposed values &f,(w), K;Ea(w) calculated
numerically for the Coulomb potentiél5) at different values of the
opening anglex, with L=20 and the lattice siz&l=1600. The
self-duality of the original actioril?) is violated by the finite sys-
tem sizeL at smallo=aw/v, and by the discreteness of the lattice
spacing at largew/v. Pluses show the numerical datat0,
while the lines(a) and(b) respectively, correspond to Eq21) and
(22) in the text.

verting twoNX N matrices. In addition to the cutoff distance
ain Eqg. (15), the discretization involved two explicit cutoff
scales: the total system size and the lattice grid sizéa
=L/N. The calculations were performed in the regimme
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FIG. 5. Two idealized geometries for calculating the effect of
Coulomb interactions in cleaved-edge experiments. Edge quasipar-
ticles interact with image charges induced on the metallic surface.

As indicated by finite-size scaling analysis of our data

(not shown, at small enoughw, K,(w) saturates to a
frequency-independent value in the range®< 7. This be-
havior is consistent with the small-angle expans(i28). In
addition, Fig. 4 indicates that E§23) provides a good ap-
proximation toC,(w) in a rather wide range af. For small
a<1, as the frequency is reduced, the numerical values

Ka(a) seem to closely follow the logarithmically divergent
line (21), but eventually cross over to a constant value

Ka(azo;)(), which (logarithmically) depends on the angle.

C. Coulomb interactions in the cleaved-edge geometry

Here we consider the effect of long-range interactions in
the cleaved-edge geomet3Z°where the tunneling happens
between a three-dimension@D) metal and the edge of a
2DEG, located in the plane perpendicular to the surface of

<a<L; the results are independent of these cutoff scales if€ Metal. It is believed that the tunneling in these experi-

the frequency range<<v/w<L. These inequalities substan-

ments is dominated by localized “hot” spots or impurities.

tially limited the dynamical range where the results are ac<hamon and Fradkifi demonstrated that in the absence of

curate.

interactions, a point contact between a 3D metal and a QH

Typical results of the calculations are illustrated in Figs. 3¢dge with the filling fractionv is equivalent to a point tun-

and 4. The curves in Fig. 3 with marked valuesaokhow

superimposed values (o), K- (w) calculated with the
lattice sizeN= 1600, for cutoff parametera=0.05, 0.1. A

slight deviation between the superimposed curves shows tha
our discretization violated the self-duality of the problem at
both large and small cutoff scales. Nevertheless, as illus:
trated in Fig. 4, the self-duality holds with a very good nu-
merical accuracy near the middle of the dynamical range

aw/v~0.1.

-0.5

cos(Q)

FIG. 4. Duality for junctions in Fig. 1 illustrated numerically.
Boxes and pluses show the superimposed valdeéw) and

K;fa(g), calculated with the Coulomb potenti@5) at the lattice
sizeN=1600, L =20. Solid line with the slop&/{x=1)~0.212 is
a fit to the data.

neling junction between such an edge and an ideal noninter-
actingv=1 edge; furthermore, they mapped this latter prob-
lem to that of tunneling between two identical edges with
filling fractions v, =2v/(1+v).

The effect of the Coulomb interaction in this setup is lim-
ited to the chiral Luttinger liquid, the “real” quantum Hall
edge, while the Fermi-liquid nature of quasiparticles in the
metal imply that they remain noninteracting for the purposes
of tunneling measurements. The metallic surface only pro-
vides additional screening charges, which modify the form of
the interaction potential (|r,— ry|). Assuming characteristic
frequencies at the edge are small compared with the plasma
frequency of electrons in metalvhich is always true for a
good meta), the retardation can be neglected, and the modi-
fied interaction potential is obtained simply by adding the
appropriate image charges.

The quadratic part of the action for the translationally
invariant geometry shown in the left part of Fig.(i%e., the
casea=0) is obtained by combining Eq2) with the Cou-
lomb energy

X

Slzg

B o -
f da-j dx dyd,uV(x—y)dyu, (24
0 — o0

wheref/(x)EV(x)—V(\/x2+ 4a2) is corrected for the im-
age potential, and the units of length are again chosen so that
the edge velocityy =1. Because we work with the chiral
field now, the surface term in the second line of E2). is
absolutely essential even in an infinite geometry. To properly
account for this term, we formally separate the fiald ¢
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+ 6 into its symmetricp(X, 7) = ¢(— X, 7) and antisymmetric The translational symmetry is lost for the “wedge” ge-
0(x,7)=— 6(—x,7) compontents; then the surface term canometry shown in the right part of Fig. 5. The Coulomb part
be absorbed after an integration by parts, and the a¢fpn of the corresponding action can be written in the fdi24)

becomes with the potentialV(x—y)—V_(x,y) given by Eq.(20). In
the limit «— 0, the potentiaV _(x,y) vanishes identically,
1 = R Por
SO:E,[ dTJ AX[2i3.¢p Ix O+ (Ixh)?+ (3,0)?]. and hencel(w)=1 in this case as well.

At general values ofr we again use the “folding” trick
(25 by introducing symmetric and antisymmetric variab#gsé.
This transformation is equivalent to “folding” the chiral Up to an qverall coeﬁicignt, the resulting action looks like
edge in half, which produces two nonchiral fields defined orEd- (17), with the exception that both componentsand 6
a semiaxis, and simultaneously eliminates the zero mode arfPuple with thesamepotential V_(x,y). The most promi-
associated subtleties. The translationally invariant action cafent difference is that ar= /2 the symmetry no longer
be now diagonalized by a Fourier transformation, and, aftefeads to a cancellation of the par(yx“+y<) of the total
integrating out the fluctuations away from the origin, we ob-potential, and the effect of the long-distance interactions is
tain the single-edge contribution to the quadratic part of theno longer trivial, K, ,(w)# 1. Again, this comes as no sur-
effective action, prise, since there is no self-duality in this geometry.

Finally, in the limiting casex= 7, the potentiaV _(X,y)
becomes an even function of each argument; as a result, the
coupling with the symmetric fieldp (antisymmetric deriva-
o tive dy¢) vanishes by symmetry. Up to an overall coeffi-
where ¢, =u(0)= ¢(0) by definition, and cient, the resulting action is identical to that considered in

2| (= dkz(k) Appendix A, and we obtaifinote that the extra coefficient

T -
8¢=5- 2 lwnlKlwn)| 6, (26)

K Yw)= , 2 was already accounted for in the corresponding effective ac-
(e 7 Jo 0*+k°Z%(k) @ tion, cf. Egs.(26) and(5)],
X~ N 2 o dk
Z(k)=1+3V(K). R ()= Koo rl0)= 2

T Jo w?+ K31+ xV(K)
The argumerif that a point contact with a metal is equiva-
lent to that with a noninteracting=1 edge holds indepen-
dently of the interactions affecting the “real” edge. There-
fore, the full effective action can be written as

This result is quite intuitive: metallic screening becomes
noneffective in the case where a wire is perpendicular to the
conducting surface.
Our calculations imply that the tunneling exponent is
T . _ modified by the Coulomb interaction only if the edge is bent
S=5- > |wn|(K|¢1|2+|¢2|2)+j drRere' (941 42), near the tunneling point. In an ideal sample, the edge runs
" 28 along a straight line parallel to the surface of the metal, and
long-range interactions do not modify the tunneling expo-

where we used=1 for the auxiliaryr=1 edge. The ca- Nents. In any real sample, however, imperfections near the
nonical form(5) of the tunneling action can be obtained by tunneling point always reduce the effective couplitigw),
introducing the tunneling degree of freedap=gep,— ¢,  OF equwalently, systematicaliycreasethe tun'nelmg expo-
with the corresponding effective couplinges calculated, Nentin Eqg.(10). Nevertheless, we do not believe this effect
e.g., using the average as in E6). As before, the resulting Would be sufficient to explain a 10% increase of the tunnel-
model describes an overdamped particle in a washboard p#1d €xponent observéd by Graysonet al near v=1:

tential; the corresponding non-Ohmic “friction” coefficient cleaved-edge samples are characterized by sharp confine-
ment and large drift velocities, meaning that the correspond-

Kot 2 ing dimensionless coupling constagt [see Eq.(16)] is

=—=——F—. 29 small.
Keft( ©) 2. IR (29

In the noninteracting limit<(w) =1 this expression safely V. DISCUSSION

goes into the restitt obtained by a different method. i : .
Notice that the long-distance part of the Coulomb poten- We have shown that the effect of long-range interactions

- on transport through a QH tunneling junction depends cru-
tial Vin Eq (24) is screened by the metallic surface. Then, a.tc|a||y on its geometry_ In particu'ar, in a self-similar
sufficiently small frequenciesw<v,=Z(0)v, the momen-  x_shaped junctior(see Fig. 1 characterized by an opening
tum dependence of the coefficieftk) can be ignored, and angle «, unscreened Coulomb interactions renormalize the
the integral(27) gives precisely the noninteracting coupling, effective Luttinger-liquid exponent,

K=1. This is not at all surprising, since the interaction hap-

pens within a single chiral edge, and its long-range part 92=0%K (0=0;:x),

(most dangerous at small frequengies screened. As

usual®® the only effect of the additional interaction in this whereg?=1/v for electron tunneling between the edges of
chiral system is the velocity renormalizatian-uv, . 2DEGs with Laughlin fractions.. Therefore, the renormal-
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Eq', (30)

dimensionless Coulomb interaction strength X=
This implies that the system should exhibit a zero-
temperature delocalization transition at a critical angle charwhich, for a typical QH sample, leads fos1. Samples with
acterized byg?=1. This is in contrast with the transport much larger values of the Coulomb couplitgmall v, soft
properties expected in the absence of long-range interactiongpnfinement are likely to have a tendency to edge
which are exclusively determined by the filling fraction reconstructiort® This would lead to additional polarization
For integer QH systems witlv=1, the transition always atthe edge due to neutral modes, and, consequently, a partial
corresponds to a self-dual geometry, i®,= /2, indepen-  screening of Coulomb interaction.
dently of the details of the interaction. In fractional QH con- ~ Therefore, to observe the predicted effects, samples with
strictions, however, the transitigif any) occurs at a nonuni- Well-defined, but not too sharp edges are necessary. This
versal critical anglax,< /2, such thatC, (0;x)= » 1 excludes the cleaved-edge samplebere the drift velocity

Properties of all charge transfer processes through th is large, as well as the S?mp'es with electrostatically de-
junction are defined by the parametgy in the effective ined geometry(where confinement tends to be soffhe

action(13), which determines the tunneling expondritisee best choice would therefore be a Hall bar with lithographi-
Eq. (10)] t'he form of the nonlinear-V curve®® as well as cally definedX-shaped constriction and a narrow local gate
the tunn’eling noisé®~*21n the limit of weak iunneling, the 1O fine tune the tunneling. For a given base temperalire

qguantization of transferred charge is ultimately determinec}he Ilnear15|ze of the co_nstncthq should be at least of order
by gauge invariance, and a shot-noise measurement wou holT, ie, approachln_g a '.“”'”'”.‘eter sc_ale for a mK tem-
show current transferred by unit charges. However, the shdterature range. Tunneling Junct|on_s W'.th _small_ opening
noise measured in the opposite, strongly coupled Iimitangles will give I_arger valu_es oF, [in principle, limited
(reached, e.g., by driving a large tunneling current throug nly by the Iogarlthm(22),_ d|V(_argent at small ff.eq“‘?”cﬂes
the junction is set® by the instanton charge for the effective ''OWEVEr, as llustrated in Fig. 3, for such junctions the
tunneling action(13). The value of this charge is determined renormalized Luttinger parametgf is more Ilkely.to retain
solely by the value ofg,. Hence, in this regime a noise SCMe frequency(temperaturg dependence, which would

measurement would show a nonuniversal charge modify the measured exponents.

mel

ized exponent depends nonuniversally on the angiad the ve? ( ve?
mehv
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tional » with originally metallic behavior would eventually
localize at small enough temperatufé$® Contrarily, the APPENDIX A: COUPLING AT a==
interaction-induced flow in an integer junction would gradu-  Here we derive the form of the couplin(w) for the
ally stop without changing its direction. _ saddle-point geometry shown in Fig. 1 in the special limit
For anX-shaped junction with a given opening angle ;7 which corresponds to two vertical semi-infinite wires
the magnitude of the renormalization parametg(0;x) IS connected by a single tunneling point. In this case the dis-
determined by the value of the dimensionless Coulomb ingancer =|x-+y|, and the contribution of the symmetric po-
teraction constan(l6), which, in turn, is defined by the edge (ential v/, (x,y)=V(x—y)+V(x+y) to Eq. (17) vanishes
wave (drift) velocity. For mesaetched samples with expect—by symmetry (18), so that only the parV_(x,y)=[V(x
gdly sharp confining potential, edge m_agnetoplgsn_won veloci-- y)—V(x+y)]sgniy) remains. The symmetry of the de-
ties have been measufécby Ashoori etal, yielding v jjyative 8,0 implies that both parts of the potentdL give

~10% cm/s, which' cqrrespond§ tg~0.05. Qn the (.)t.her identical contribution, and the quadratic part of the action
hand, edge electric fields equivalent to drift velocities a 17) can be written as

small asv~10° cm/s have been measured by Maasilta and
Goldmant* who analyzed discrete energy levels of a quan- T o — ) 5
tum antidot. This value of velocity results in a relatively ~ Sa=g- > [fde[an¢(X)3xﬁ+|3x¢| +a,9(?]
large coupling constant valug~5. "

We must point out, however, that our discussion of Cou- o —
lomb interaction effects was based on a single-mode sharp +XJ:de dyL o, IV(x—y)dydsgnixy)]i.  (Al)
edge, which implies large confining electric fields of order
E~Eq4/(el), whereEgy is the energy gap associated with the Unlike the casex=0, the nonlocal interaction in the second
incompressible QH state, ahds the magnetic length. Using line cannot be diagonalized by a simple Fourrier transforma-
the drift velocityv =c&/B, we obtain tion; we need to get rid of the sign function first. Naively,
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this could be done by multiplying botk(x) and 9(x) by
sgn(x). However, sincep(0)+0, the functione(x)sgn(x) wﬂxgo—axj_mdy Z(x—y)sgnxy)dyd=0.  (B4)
would not be continuous at the origin, so that spuridus
functions may be generated. Instead, we define auxiliaryve assume that both fields are continuous everywhere, and
continuous functionsi(x), g(x), so that that ¢(x) andd,9(x) vanish at infinity. Multiplying the first
of the obtained equations hy(x), the second by} (x), and

@(X)=¢(0) +sgnxju(x), g(x)=9(*)—sgr(x)I(x), subtracting the reqsults fron?yt(hg integrand in thxg(a():(Bh),

andu(0)=g(=)=0. After integrating out the field(x), the ~ With the help of the definitioriB2) we obtain

effective action becomes
sge S [ o
aTg 2 X dy

o0

. B a* angd+900) [ dy Zix-y)aye
- — _ 2 2
Sq_87T ; ( 4wn¢(0)g(0)+f 271_|gk| [witk
+19(x)f dy Z(x—y)sgr(xy)&yﬁ}
><(1+XV(k))]].
_ T 2 _0 Ao
In the first term here we substitug{0)=fdk g./(27) in o84 ¢(0)A¢o,
terms of the Fourier-transformed fiedgl , integrate this field
gluot,n:nd obtain the effective action for the the fiedd0) Api=¢'(0,)—¢'(0.), (B5)
, where the integration was performed over the entire axis ex-
cluding the pointx=0. The Euler-Lagrange equatiofB3),
; (B4) can be simplified by defining linear combinatioisym-
metric with respect tx)

2w,
T

T dk
Sqg=-— 0)/|? f
a4 2 wnl #(0)] 0 w2+ k2 (1+ xV(k))
comparing the result with the general form of the effective
action (5), and the result21) for «=0, we conclude that A,B(X)=[e(X) = H(x)sgnx)]/2, (B6)

then, multiplying Eq.(B4) by sgn§) and taking symmetric

Ka=ol@n)Ko=r(wn)=1 and antisymmetric combinations of the result with E83),

exactly, independent of the form of the potentiglx). we obtain atx# 0
APPENDIX B: SELF-DUAL TUNNELING JUNCTION, ® SGN(X) dyA— (9Xf dy Z(x—y)d,A=0,  (B7)
a=1/2 -
1. General Wiener-Hopf solution and an identical equatidiup to the substitutiom — — ) for

Here we give a direct solution of the extremum equation(X)- We integrate, keeping in mind that E@7) is valid

for the self-dual case= /2. This solution gives the cou- 0F X#0,

pling £,»=1 directly, without utilizing the self-duality of .

the problem. In addition, it allows us to calculatg, pertur- WA SQYTX)—f dy Z(x—y)d,A=C,sgr(x), (B8
batively for small values ofcos()|<1. —o

Begin with the Euclidean actio at a= /2, . : . .
9 A7 ata=m where the integration constants in the intervatsO andx

T . . >0 were related using the symmetA(x)=A(—x). The
Sa= g > f dx{ 2wn<P(X)19>'<+f dy oy Z(x—Y) e, value of the constart, is determined by the boundary con-
n ditions; using the definitioriB6) we obtain

+fdy3§Z(X—Y)Sgr(XY)ﬁ{,], (B1) 2C,=we(0)=¢'(0,) =9 (0)=wd(x).  (BY)

where the total potential S|m|larly,- the mtegratlon of the corresponding equation for
the functionB(x) yields

X ! !
Z(x=y)=d(X=y)+ SV(x=y); (B2) 2C,=~wp(0)—¢'(0.)+ 9" (0)=wd(x). (B10O)
note that due to the symmet(¥8), the contribution from the Together, Eqs(B9) and (B10) imply that
part of the potential with geometrical distané&R,,) C.=Cr=—o0'(0.)/2. B11
=V(x?+y?) was cancelled. The Euler-Lagrange equations a b #'(04) (B11)

(valid atx# 0, where the nonlinear tunneling term gives N0 gecause of the sign function multiplying the first term on

contributior) are the left hand sidéLHS), Eq. (B8) cannot be solved directly
. by a Fourier transformation. It is, however, of the form solv-
waxﬁ_&xf dy Z(x—y)d,e=0, (B3) able by the _\/Vi_ener—Hoph_ techniqﬁ‘éFollowing_the stan-
—o dard prescription, we introduce the function&. (x)
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=A(X)6(*x), so that, e.g., AX)=A,.(X)+A_(X), h( k)
A(x)sgnx) =A_ (x)—A_(x). After this substitution we can h.(q)= _—f dko =570 (B19)

Fourier transform Eq(B8),

w[A+—A,]—l—ikZ(k)[A++A,]=2iCa79%, (B12)

where P denotes the principal value, and the Fourier-

transformed functionsA.=A.(k) have no singularities
above and below the real axis, respectivigggularization at

We assumed thaR . (k) are nonsingular in the origitand
elsewhere along the real axigherefore, using the identity
R_(0)=R(0)R.(0)=—-R.(0), weobtain

L Rk

hi(k)Z_Im.

(B20)

infinity ensures that they are also analytic everywhere along

the real axis The functionsA.. (x) are only discontinuous in

the origin, and the asymptotic form of their Fourier transfor-

mations afk| —« is

Ai<k>=t'EA< )+O(|K| )= +|‘P2(k)

(B13)

The independent functions in E@12) can be rearranged
as follows,

C, 1

AL()=-RIOA_(K+i>——P . (Bl
_kZ+io R_(K)

RO= 750 = ") (B19

where the functioriR(k) was separated into the ratio of the

function R _(k), which has neither singularities nor zeros at

and below the real axis, an®. (k), which has the same

properties at and above the real axis. This separation is po

sible because the functigR(k) is analytic in a vicinity of
the real axigwhich is correct for anyw, assuming that the
interaction potentiaV/(x) is properly regularized at infinify
In the absence of the long-distance interactignsO, the
decomposition is triviaR‘?::(ktiw)‘l, where we assume
®>0. At very large values ok the long-distance part of the

potential should not matter. Therefore, to ensure the regular-

ity of the decompositionB15) at y>0, we can use the
Cauchy formula

« dk Inr(k)
'”ri(Q):f_wﬁq—kiiO'

(B16)

for the ratior (k) =R(k)/R°(k). Sincer(k)—1 at largek,
this expression implies that.(k)—21 (and hence thaR.
~1/k) as|k|— .

Multiplying Eq. (B14) by R, , and separating the free

By construction, the LHS of EqB17) has no singulari-
ties at and above the real axis, while its right hand side
(RHS) has no singularities at and below the real axis. There-
fore, the whole expression is analytic everywhere in the com-
plex plane, and, as long as it is uniformly limited at infinity,
it can only be a constant. Moreover, since both sides of Eq.
(B17) actuallyvanishat infinity [as follows from Eq.(B13)
and the properties of the functior®., h.], this implies
that the whole expression can only be zero everywhere at the
complex plane&. We obtain

h-. (k)

iC,
=+
AR (k)

Ax(k)=2C = o(k%i0)’

(B21)

and by matching with the asymptotic expansi®13), we
get

_0e(0)
a 2 ’

ie(0)
_2(k+|0)

A. (k)= (B22)

g_omparing to Eq(B11), we obtain

App=2¢'(0,)=—2w¢(0)

and the contribution at the frequenay>0 to the effective
action (B5) becomes

Sq(w)= le l@(0)]2.

One can also obtain an identical contributiorwat O, so that
ICaZﬂ'/Z(w) = 11 (823)

as expected by the self-duality of the problem.
The analog of Eq(B7) for the functionB(x) differs only
by the sign ofw, which leads to a replacemef— 1/R,

term of the obtained expression into a sum of functions ana-
lytic above and below the real axis, respectively, we obtainBy analogy with Eq.(B20), we obtain

AL (KR, — —A_(KR_+2Czh_. (B17)

Here the function$..=h. (k), analytic in the uppeflower)
complex half-plane, are defined so thht (k)+h_(k)
=h(k), where

2C,h, =

Ri(k) 1 R_(k)—Ri(k)_1
kKZ—io Kk 2o "k’

these functions can be found using the Cauchy formula

h(k)=

(B18)

R+—1/R. . Instead of Eq(B17) we get
B.(kR1—2C,f,=—B_(kR_*+2C,f_.
(B24)
f (k)—_iﬂ (B25)
= w(kxi0)

By the same analyticity argument, both sides of H&R4)
are analytic everywhere in the complex plangkat- o they
asymptotically approach a constant valy€0). Therefore,

B.(k)=*ig(0)| R (k)— m )
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and, combining with Eq(B22), we can use the definition 2. Expansion around the self-dual solution

(B6) to restore the original fields in the extremum, To get an approximate expression f6t) in a vicinity

of a=m/2, we expandV.(x,y) to first order in cos, and
o(X) = @(O)J [R (K)—R,(k)]e"kx, (B26) employ perturbation theory. The solution of the extremum
equations atrg= /2 is unique, and the lowest-order nonde-
generate perturbation theory suffices. This amounts to evalu-
F(X)=sgn ox)[¢(0) = ¢(X)], (B27)  ating the Euclidean actiofl7) along the nonperturbed solu-

where the sgng) in the second line is needed because thetlon ¢(x), 900,

casew< 0 is equivalent to the interchange AfandB, which T
changes the sign di(x). 08q= 71— > |wnl 8K, 0(0)|2
It is easy to verify that the obtained functions obey the n
boundary conditions assumed when deriving EBS), (B9), T Y . .
(B10). This self-consistency check ensures that the obtained - > EJ dx dyf @38V @y + 936V _9y],
expressions give us the exact formal solution of the problem &

duce the expansion origin, and the potentials
NCOA
B | Xy COSa
XV(X)_IZl ;le a||X|, xV(k)= z k2+ ——, (B2§) oV, =— > V (VX / 2+y ),

which, for sufficiently largeN, gives an adequate regularized _
representation of any non-pathological even functfx). OV == V. sgnxy),

For example, the Coulomb potentid(x) =1//x| can be re- were found by expanding Eg&L9), (20).

written as follows, According to our solutionB27), the functionse’(x),
. —9'(X)sgn(wx) are identical, and the two terms give equal
1 a ibuti i
2 im —ima> e-alk contributions, leading to
x| aol—exp—alx]) .o 150 ycosa [

: . . : 5/c=——fdd_”av\/2+2.
so that, given a finit@, any partial sum provides a regular- « lw||(0)|?) - X dyexeyy dV(NXTHY7)
ization of the form(B28) with a,=al andA,= ya?l. ) L

We obtain For the Coulomb potentidfl5), this gives
X sk 4y cosa J’ f Y(px(py
Z=1+5V(k)= 1"'2 k2+a, ol [¢(0)2 (x2+y +a?)%?

This integral converges at small distances even if weaset
—0; in this scale-invariant limit the “wave functions(x)
can depend only on the dimensionless quantjiigx and y,
e(x)=¢(0)¢,(|w|x). Scaling out the frequency leads to a

N
kZ—iw=P2N+1(k)H (k2+a|2)711
I=1

where the polynomial frequency-independewbrrection,
2N+1 _ 5K (w,x)=xMx)cosa+ O(x?’cosa), wa<l,
Panea(k)= [ (k=ix)
Y¢ (X) 3 (y)
has precisely (R+1) purely imaginary distinct root&g Mx)= 2+y2)3’2 ' (B31)

=iks#0. One can also show that far>0 exactlyN roots
lie below the imaginary axis; we shall assumg<0 for 1  This result supports the numerical data, which indicates that
<s<N. The Cauchy integraB16) is readily evaluated, and K, (w) is independentof » at small enough frequencies.
we obtain This statement is true for all finite angldspsa|<1, while
K,-o(w) diverges logarithmically according to E(R2).
(k=irg)X ... X(K=iky) The specific value of the correction depends on the cou-
(K ikng ) X - X (Kt i Koy 1) ] (B29  pling constanty. In the weak-coupling limity<1, the func-
tion ¢Xﬂo(x):exp(—|x|), and the integration produces

using the form similar to that in the first part of E@18),
the extremum solutioiB26) can be explicitly rewritten as N x—0)~1.51.

2 2, 2 For finite x>0, and any givem in the expansioriB28), the

dk (K*+a))x ... X (k*+ag)cogkx) _ explicit form of the integrand in E{B31) can be found with

27 (KP4 k)X .. X (KP+ K5y 1) the help of Eq(B30), and the corresponding valug x) can
(B30) be evaluated numerically.

() =2] | ¢(0) f
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