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Coulomb interactions and delocalization in quantum Hall constrictions
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We study a geometry-dependent effect of long-range Coulomb interactions on quantum Hall~QH! tunneling
junctions. In anX-shaped geometry, duality relates junctions with opening anglesa and (p2a). We prove
that duality between weak tunneling and weak backscattering survives in the presence of long-range interac-
tions, and that their effects are precisely cancelled in the self-dual geometrya5p/2. Tunneling exponents as
a function ofa, the interaction strengthx, and the filling fractionn are calculated. We find that Coulomb
interaction induces localization in narrow channels~largea), and delocalization for sharply pinched constric-
tions ~smalla). Consequently, an insulator-to-metal transition happens at an angleac(x,n)<p/2. We discuss
the implications of our results for tunneling experiments in QH-constriction and cleaved-edge geometries.
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I. INTRODUCTION

The idea of current-carrying edge states1 is one of the
major paradigms in the theory of the quantum Hall~QH!
effect. For simple filling fractionsn5(2m11)21, Wen has
shown2–6 that edge modes can be represented as o
component chiral Luttinger liquids, with the universal co
pling determined byn. Within this simple model, controlled
calculations are possible. This leads to many elegant res
including the universal interedge tunneling exponent,5,7 exact
expressions for tunneling conductance, the nonlinear tun
ing I -V curve,8,9 and tunneling noise.10–12

Experimentally, however, there are more dimensions
this problem. The results of the first pinch-off tunnelin
experiment,13 where the scaling appeared to be in agreem
with theory,5,7 have only recently received a parti
confirmation.14,15Furthermore, in Ref. 16 no scaling was o
served at all, and in Ref. 17 the measured tunneling expo
was off by a factor of 2. Such discrepancies were attribu
in part to edge reconstruction in samples with ‘‘sof
confinement.18 However, the tunneling measurements
cleaved-edge samples,19,20 where the confining potential i
expected to be sharp, yield tunneling exponents shifted
the predicted values even at the magic filling fractionsn
51, 1/3.

Previously, much effort21 was dedicated to identify
mechanisms leading to~nonuniversal! corrections to tunnel-
ing exponents. In particular, the effect of the long-ran
Coulomb interaction was analyzed22–25 in the geometry of
two counterpropagating parallel edges (a→0 in Fig. 1!. In
exact analogy with its effect in a one-dimensional elect
gas,26 repulsive Coulomb interaction renormalizes the L
tinger liquid coupling parameter. Thus, a weak impuri
associated interedge tunneling becomes a relevant pertu
tion, so that the current flow~from top to bottom in Fig. 1! is
enhancedat low temperatureT and applied voltageV. How-
PRB 610163-1829/2000/61~16!/10929~12!/$15.00
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ever, the same interactionsuppresses25 the tunneling in the
dual configuration, of two semi-infinite nonchiral Luttinge
liquids connected by a tunneling point (a→p in Fig. 1!, and
the system is pushed towards the insulating regime. T
indicates that even thesignof the Coulomb interaction effec
on the tunneling exponent is not the same in different geo
etries.

The purpose of this work is to analyze in detail the Co
lomb interaction effect on the properties of QH tunneli
junctions in different geometries. First, we demonstrate t
the well-known duality relating weak tunneling and we
backscattering remains exact in the presence of long-ra
interactions. Then, we focus on scale-invariantX-shaped
constrictions, and calculate the renormalized Luttinger c
pling constantg!

2 ~which, in particular, determines the powe
law dependence of the conductance onT andV) as a func-
tion of the opening anglea ~Fig. 1!. We show that the un-
screened Coulomb interaction drives a zero-temperature
localization transition as a function ofa in both integer and
fractional QH constrictions. In the integer case the transit
occurs precisely at the self-dual valueac5p/2, independent
of the interaction strength. At the fractionsn5(2m11)21,
the critical angleac is nonuniversal, but its value is alway
smaller thanp/2. We also analyze the effect of Coulom

FIG. 1. Shading denotes quantum Hall regions bounded
counterpropagating edge modesu1 ,u2. In a saddle-point geometry
Coulomb interactions suppress the up-down tunneling for la
opening anglesa, and enhance it for smalla. This effect cancels
exactlyin the self-dual geometry,a5p/2.
10 929 ©2000 The American Physical Society
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interactions in the geometry of cleaved-edge tunneling
periments.

The paper is organized as follows. In Sec. II we introdu
the tunneling action that accounts for the long-range inte
tions. A general proof of the duality between weak tunnel
and weak backscattering is given in Sec. III. In Sec. IV,
present our results for the renormalized Luttinger coupl
g!

2 in different geometries, and in Sec. V we discuss
implications on tunneling experiments. Related analytic
sults are collected in the Appendices: in Appendix A, t
case ofa5p is solved; in Appendix B, the Wiener-Hop
technique is used to directly solve the self-dual casea
5p/2, and evaluate the lowest-order correction forucosau
!1.

II. THE EFFECTIVE TUNNELING ACTION

Gapless edge excitationsu[u(x,t) for Laughlin’s QH
states with filling fractions n5(2m11)21 can be
described4–6 by the imaginary-time quadratic action

S05
1

4pE0

b

dtE dx]xu~ i ]tu1v]xu!, ~1!

wherex is the coordinate along the edge, andv[v(x) is the
edge wave velocity. The fieldu is related to the linear charg
density at the edge,r5An]xu/(2p) ~note the unconven
tional normalization!.

Formally, gauge invariance requires that the fieldu(x,t)
be treated as a compact boson of radiusR5An, i.e., the
valuesu andu12pAn must be identified. This, however, i
not achieved within the usual path integral formalism27 in a
finite geometry if we assume the fieldu(x,t) continuous
everywhere along the circumference. Indeed, the equal-
commutation relationship

@u~x!,u~x8!#5 ip sgn~x2x8!

on the edge of lengthL implies that the fieldsu0[u(0,t)
and uL[u(L,t) are canonically conjugated, which contr
dicts the continuity of the field along the circle. The diffe
enceuL2u0 ~proportional to the topological charge asso
ated with the zero mode! is also proportional to the tota
chargeQ5An(uL2u0)/(2p) accumulated at the edge; on
in the absence of tunneling into the edge this charge
dynamically conserved quantized quantity. The correct ze
mode quantization spectrum can be obtained if we cons
the variablesu0 and uL as independent, and write the ba
edge action~1! more explicitly as28

S05
1

4pE0

b

dtE
0

L

dx]xu~ i ]tu1v]xu!1
1

8pE0

b

dt~uL

2u0!i ]t~uL1u0!. ~2!

The boundary term in the second line is added to fix
canonical quantization of the zero mode, and to decoup
from the edge modes with finite momenta.29

Since the charge densityr is expressed linearly in term
of the fieldu, the action remains quadratic6,23,30even in the
presence of nonlocal Coulomb interaction
-
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S15
ne2

8p2«E0

b

dtE dx dy u8~x!V~ ur x2r yu!u8~y!, ~3!

where r x is the actual position of the pointx as measured
along the edge, and« is the dielectric constant of the mate
rial. The problem is nontrivial because now both the distan
x measured along the edge, and the geometrical dista
ur x2r yu are important.

The interedge tunneling is introduced by the nonline
term

St5E
0

b

dt Releigw, w[u~x1!2u~x2!; ~4!

here g5An for the quasiparticles’ tunneling between th
pointsx1 andx2 through the QH liquid with the filling frac-
tion n, or g→g̃51/An for tunneling of electrons through th
insulating region. The tunneling amplitudel is set by the
details31 of the self-consistent potential near the tunneli
point and considered as a phenomenological parameter.

The nonlinear tunneling action~4! depends on the value
of the field u(x,t) in the pointsx1 , x2; the values of this
field in all other points can be integrated out. Leaving t
argumentw of the tunneling term as the only independe
variable, we can write the most general form of the effect
action

S5
T

4p (
n

uvnuK~vn!uwnu21E
0

b

dt Releigw(t), ~5!

where the harmonicswn[*0
bdtw(t)exp(2ivnt) and w̄n

[w2n are evaluated at the Matsubara frequenciesvn
52pnT. This effective tunneling model is fully characte
ized by the frequency-dependent couplingK(vn), which
contains all relevant information about the form of the inte
action potentialV(r ) and the geometry of the system. Fo
mally, its functional form is defined by the correlator28

K 21~vn!5
uvnu
2p

^uwnu2&l50 . ~6!

If the couplingK(v) is independent of the frequency, th
effective action~5! can be visualized as describing an ove
damped particle in a periodic~cosine! potential with Ohmic
dissipationk5K/g2; the transport properties for this prob
lem are known exactly.8,9 In general, however, the exact so
lution is not available, and we have to rely on the frequen
shell perturbative renormalization group~RG!. The main
idea is that the nonlinear term is irrelevant for larg
frequency modesw(v), as long asuvu@l. When such
modes are integrated out, the tunneling constant for the
maining slow modes is reduced,

l~L!5l~L0!^eigw&L,v,L0
, ~7!

or, equivalently,

2 ln
l~L!

l~L0!
5g2E

L0

L dv

2p
^uw~v!u2&l505g2E

L0

L dv

vK~v!
,
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where we used the definition~6!. After the frequencies are
rescaled to restore the original upper cutoff, we arrive at
usual RG equation

d ln l

d ln L
512g2K 21~L![12g!

2~L!. ~8!

The renormalization stops at a lower cutoff scale determi
either by the temperature or the applied voltage. Most imp
tantly, forg!

2.1, the tunneling amplitude flows to weak co
pling as the temperature is lowered, so that the channel a
the tunneling current becomes more insulating; forg!

2,1 it
flows to strong coupling.

It should be pointed out that in the case whereK(v) is
frequency independent, the parameterg!

2 @defined in Eq.~8!#
is a constant, and the effective Euclidean action describ
the system can be recast in the simpler form

S5
T

4p (
n

uvnu uwnu21E
0

b

dt Releig!w(t). ~9!

Such is indeed the case~for sufficiently smallv) for the
scale-invariant models considered in detail in Sec. IV. In t
situation, the RG equation leads to the standard result7,12

leff;max~T,V!g!
2

21, ~10!

which can be also obtained by expanding the ex
solution.8,9

III. DUALITY BETWEEN WEAK TUNNELING AND
WEAK BACKSCATTERING

The partition function corresponding to the effective a
tion ~5! @which also describes an overdamped particle in
non-Ohmic dissipative environment,k(v)5K(v)/g2] can
be also rewritten32,33 in terms of the dual variableDu with
the identical action, up to a replacementK(vn)→1/K(vn),
g→1/g, and the modified tunneling coefficientl→l̃ ~which
has the meaning of fugacity for the instanton of the origi
field w). In terms of edge modes, this duality9,8 represents a
freedom to describe the same junction in terms ofweaktun-
neling or strong backscattering, and vice versa. The ma
advantage of the duality is the ability to substitute a probl
at strongtunneling with its dual, which can be then access
perturbatively.

This argument relies heavily on the properties of the
fective model~5!, which, in principle, may or may not re
main equivalent to the original edge model after the addit
of the nonlocal coupling~3!. To illustrate the mutual consis
tency of the two models, we derive the relationship betwe
the couplingK(v) in the two tunneling geometries directly
using only the quadratic actionSq[S01S1.

Consider a field configuration with the boundary con
tions fixed as in Fig. 2~a!, whereui5ui(t) are given. Every-
where on the composite contourC[C11C2 the action is
quadratic, and the corresponding Euler-Lagrange equatio
linear,

]xF i ]tu1v~x!]xu1
ne2

2p«EC
dy V~ ur x2r yu!]yuG50.
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The classical solution is uniquely determined by the giv
values ui(t) of the fields at the endpoints. The quadra
action~2!, ~3!, evaluated along this classical solution, can
written as

Sq@u#5G@u12u0 ,u32u2#1E dt
~u12u0!i ]t~u11u0!

4p

1E dt
~u32u2!i ]t~u31u2!

4p
, ~11!

whereG@a,b# is a quadratic, nonlocal in time, and genera
a very complicated functional of its arguments.

The conservation of the total charge

Q5
An

2p
~u32u21u12u0! ~12!

requires thatw[ u12u05u22u3, up to a time-independen
constant. Setting the total charge to zero, we can write
~11! as

Sq@w,Du#5G@w,2w#2
1

2pE dtw i ]tDu, ~13!

where Du[(u31u22u12u0)/2. For the tunneling geom
etry in Fig. 2~b!, Eq.~12! implies that the fieldu(x,t) can be
chosen continuous everywhere along the combined edgeC1
1C2 , Du50 and hence the effective quadratic action b
comes

Sq5G@w,2w#[
T

4p (
vn52pnT

uvnuK~vn!uwnu2,

where we introduced the couplingK(v) as in Eq.~5!.
For the tunneling geometry in Fig. 2~c!, the charges in

upper and lower areas change with time as a result of
tunneling, and we must keep the fieldu(x,t) discontinuous.
The corresponding action becomes

S̃q5
T

4p (
n

uvnuK~vn!uwnu21vn~ w̄nDun2Dūnwn!.

~Note that a different choice ofDu, e.g., Du5u32u0 or
Du5u22u1, only changes the Euclidean Lagrangian by
total time derivative, thus leaving the actionS̃q invariant.!

FIG. 2. The auxiliary edge configuration~a! is used to calculate
the quadratic part of the action for the tunneling geometries~b!, ~c!.
It is assumed that the short-distance cutoff for the long-range
tential V(r ) is much larger than the scale at which the geometr
~b! and ~c! differ.
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The fieldw can be now trivially integrated out, and we arriv
at the final form of quadratic action for this geometry,

S̃q5
T

4p (
vn

uvnuK̃~vn!uDunu2, K̃~vn!5
1

K~vn!
.

~14!

This result can be generalized for systems with several ju
tions, where the couplingK(v) is replaced by a matrix
which is inverted when all junctions are replaced by th
duals.28

This simple calculation shows that even in the presenc
long-range interactions the duality between weak tunne
and weak backscattering for the model described by Eqs.~2!,
~3!, ~4! coincides with the duality between weak and stro
coupling for the effective tunneling model~5!, independent
of the actual geometry of the system. The only assump
we made is that the geometries in Fig. 2~b! and Fig. 2~c!
should not differ ‘‘substantially,’’ that is, the size of a junc
tion near a saddle point should be sufficiently small~e.g.,
compared with a short-distance cutoff length, or, at sm
enough frequencies, with the wavelengthv/v), so that the
Coulomb potential would be the same in the poin
u0 , . . . ,u3.

IV. SCALE-INVARIANT MODELS

In the absence of long-range forces (e250), the proper-
ties of any system are determined only by the relative lo
tion of the tunneling points along the edges. If such a sys
has only one tunneling point, in the limit where both co
toursC1 andC2 in Fig. 2 become infinite, the system wou
not ‘‘know’’ the difference between the geometries in Fig
2~b! and 2~c!, and the duality implies that the coupling has
universal self-dual valueK(v)51, independent of the actua
geometry of the edges. Of course, this statement requires
vL/v@1, otherwise one can obtain28 for Figs. 2~b! and 2~c!,
respectively,

K ~2b)5@K ~2c)#215
1

2 UcothS vL1

2v D1cothS vL2

2v D U,
whereLi is the length of the contourCi , and a uniform edge
velocity v(x)5v is assumed for simplicity.

In the presence of Coulomb interactions, the functio
form K(v) has been previously found23–25only for two par-
allel edges (a→0 or a5p in Fig. 1!, where the translationa
symmetry of the quadratic part of the action is restored.
any other geometry the distanceux2yu measured along the
edges, and the geometrical distanceRxy[ur x2r yu in Eq. ~3!
are no longer equivalent, and an analytic computation of
average~6! with ‘‘noninteracting’’ quadratic actionS01S1
becomes virtually impossible.

Some simplification can be achieved for an idealiz
X-shaped geometry~see Fig. 1!, which can be also intro-
duced as the zero-bias limit of the edges in a vicinity o
saddle point with the opening anglea. The duality discussed
in the previous section implies thatKp2a(v)5K a

21(v), for
a given edge velocityv(x) and a given form of long-range
potential V(R). Therefore, in the self-dual geometry ata
5p/2, we expectKp/251 exactly, independent of the form
or the strength ofV(R).
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For the special case of unscreened Coulomb potentia

V~R!5~R21a2!21/2, ~15!

the long-range interaction term~3! scales the same way a
the local potential~velocity! term in Eq. ~1!. Then, if the
edge velocityv(x)5v is coordinate independent, simp
scaling shows that frequency can only enter in the dim
sionless combinationv̄5va/v, while the strength of the
Coulomb interaction is defined by the dimensionless c
pling constant23

x[ne2/~p\v«!. ~16!

Therefore, the tunneling properties of the junction@i.e., the
form of the dimensionless functionKa(v)] are fully deter-
mined by three dimensionless parameters, namely,

Ka~v;a,v,e2!5Ka~v̄;x!.

On general grounds one can argue that in the scale-inva
limit v̄!1 the functionKa(v̄;x) can depend on its firs
argument at most logarithmically.

To rewrite more explicitly the general Coulomb action~3!
for the infinite geometry in Fig. 1, let us introduce the coo
dinate x along each edge, with the origin at the tunneli
point and positive direction to the right. Then the char
densities along the top and the bottom boundaries are res
tively r1(x)5An]xu1(x)/(2p) and r2(x)5
2An]xu2(x)/(2p) ~the sign in the second expression diffe
because the coordinate is now chosen in the direction op
site to the edge velocity!. The Coulomb part of the action
becomes

S15
x

8pE dtE
2`

`

dx dy (
i , j 51,2

~21! i 1 j]xuiVi j ~x,y!]yuj ,

where the potentialVi j (x,y)[V„ur i(x)2r j (y)u… denotes the
interaction energy between unit charges at the pointsx andy
at the edgesi andj, respectively, and we changed the units
distance: from now onv51. For symmetric geometrie
Vi j (x,y)5Vi j (y,x), V11(x,y)5V22(x,y), and the obtained
expression can be diagonalized by introducing the symme
and antisymmetric combinationsw5u12u2 , q5u11u2.
The quadratic part~2!, ~3! of the Euclidean action become

Sq5
T

8p (
n

H E dx@2vnw̄~x!qx81uwx8u
21uqx8u

2#

1
x

2E dxE dy@w̄x8V1~x,y!wy81q̄x8V2~x,y!qy8#J ,

~17!

whereV6(x,y)[V11(x,y)6V12(x,y) and the coordinate in-
tegrations are performed along the entire real axis. Note
the first term of the integrand is not written asvn(w̄ qx8

2q̄wx8) as would be expected from the action~1!; the inte-
grand in Eq.~17! differs by a full spatial derivative, exactly
equivalent to the surface term in the second line of Eq.~2!.

The interaction potential is always an even function w
respect to simultaneous reflection of both coordinat
V6(x,y)5V6(2x,2y), and the fieldsw5ws1wa and q
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5qs1qa can be separated into symmetric~s! and antisym-
metric ~a! components. The first term of the action~17!
couples only the components of two fields with the oppos
symmetry:ws with qa , andwa with qs . Since the tunneling
term depends on the fieldw(0)5ws(x50) only, the compo-
nentswa(x) and qs(x) decouple and can be integrated o
independently of the valuew(0). In thefollowing, we shall
presume that this symmetrization has been done, and us

w~x!5w~2x!, q~x!52q~2x!, ~18!

with the indices ‘‘s’’ and ‘‘ a’’ dropped for convenience.

A. Exactly solvable example

To illustrate the properties of the symmetrized acti
~17!, consider a model problem where the interaction h
pens only between the points at equal distance from the
gin,

~x/2!V11~x,y!5v0d~x2y!1v1d~x1y!,

~x/2!V12~x,y!5v2d~x2y!1v3d~x1y!,

where the velocityv0 ~measured in units of bare velocityv)
denotes the strength of additional interaction at the sa
edge,v1 andv2 denote the interaction between the neighb
ing edges~left–right and top–bottom!, while v3 denotes the
interaction between the points at the opposing edges.~Physi-
cally, this set of interactions corresponds to four locally
teracting chiral edges, running along the surface of a se
infinite cylinder and meeting in the tunneling point at its ne
end!.

With interaction of this simple form we can use the sy
metry properties~18!, and the quadratic action~17! becomes
entirely local,

Sq5
T

8p (
n
E dx@2vnw̄~x!]xq1vwu]xwu21vqu]xqu2#,

with vw,q511v02v36(v12v2). Now the fieldq(x) can
be trivially integrated out, and Eq.~6! gives

K 21~vn!5
11v02v31~v12v2!

11v02v32~v12v2!
.

Clearly, under interchangev1↔v2 this expression goes to it
inverse according to the duality relation derived in Sec.
andK(vn)51 for the self-dual casev15v2 where all edges
are equivalent.

B. Coulomb interactions near a saddle point

Now let us consider more realistic long-distance inter
tions in the edge geometry shown in Fig. 1. We write t
intra- and interedge interaction potentials

V11~x,y!5u~xy!V~x2y!1u~2xy!V~Ra!,

V12~x,y!5u~xy!V~Ra!1u~2xy!V~x2y!,

where the bulk distanceRa[(x21y222xy cosa)1/2, u(x) is
the usual step function,u(x)51 for x.0 andu(x)50 oth-
erwise, andV(x) is, e.g., the Coulomb potential~15!. The
resulting effective action has the form~17!, with
e

t

-
ri-

e
-

-
i-
r

-

,

-

V15V~x2y!1V~Ra!, ~19!

V25@V~x2y!2V~Ra!#sgn~xy!. ~20!

In the limit a50, Ra5ux2yu, the antisymmetric part of
the potential vanishes,V2(x,y)50, while V1(x,y)52V(x
2y), and we obtain the usual translationally invariant acti
for two parallel edges. Integrating out the fieldq and diago-
nalizing the remaining part of the action with the help
Fourier transformation, we use Eq.~6! to calculate the cou-
pling,

Ka50
21 ~v!5

2v̄

p E
0

` dz

v̄21z2@112xK0~z!#
, ~21!

where the Fourier-transformed Coulomb potential~15!,
V(z)52K0(z), is expressed in terms of the modified Bess
function K0, and the reduced frequencyv̄5av/v. Perform-
ing the integration with logarithmic accuracy, we obtain,
agreement with Refs. 23–25

Ka505F112x lnS 2A2xe2g

v̄
D G 1/2

1O~ u ln v̄u21/2!,

~22!

whereg'0.577 is the Euler constant.
The casea5p corresponds to two semi-infinite nonchir

Luttinger liquids connected by a tunneling point (a→p in
Fig. 1!; by duality we expect25 Ka5p51/Ka50. This expres-
sion is proved again, specifically for this geometry, in A
pendix A.

We argued that in the self-dual casea5p/2, K(v)51
identically, independently of the properties of the potent
V(R), as long as it is appropriately regularized at short d
tances. We have also constructed a direct analytical solu
for this case. The major simplification comes from an obs
vation that the potentialV(Rp/2)5V(Ax21y2) is a symmet-
ric function ofx andy independently; the corresponding co
tribution vanishes from the action~17! by the symmetry~18!.
As a result, only the potentialsV(x6y) with the distance
measured along the edge enter the extremum equations
these equations can be solved exactly using the Wiener-H
method, as detailed in Appendix B. This direct solution co
firms the universal resultKa5p/251. In addition, the explic-
itly found extremum configuration of the fieldsw(x), q(x)
is used to get a perturbative expression forKa(v) near the
self-dual pointa05p/2. This yields~see Appendix B!

Ka~v→0!'11N~x!x cosa, ucosau!1, ~23!

whereN(x) is independent ofv. In the limit of weak Cou-
lomb interactions,N(x→0)'1.51, whileN(x51.0)'0.21.

To get a handle on the dependence of the couplingKa(v)
on the parameters and the cutoff scales, we have also ev
ated the average~6! numerically for the quadratic action~17!
with the Coulomb potential~15! at different frequenciesv,
and for different values of the anglea and the dimensionles
coupling constantx.

To perform this calculation we wrote a discretized versi
of the quadratic action~17! in terms of lattice valuesw(xn)
andq8(xn), 0,n,N21, and then integrated out the value
of the fields away from the origin, which only required in
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verting twoN3N matrices. In addition to the cutoff distanc
a in Eq. ~15!, the discretization involved two explicit cutof
scales: the total system sizeL and the lattice grid sizeh
5L/N. The calculations were performed in the regimeh
!a!L; the results are independent of these cutoff scale
the frequency rangeh!v/v!L. These inequalities substan
tially limited the dynamical range where the results are
curate.

Typical results of the calculations are illustrated in Figs
and 4. The curves in Fig. 3 with marked values ofa show
superimposed valuesKa(v̄), Kp2a

21 (v̄) calculated with the
lattice sizeN51600, for cutoff parametersa50.05, 0.1. A
slight deviation between the superimposed curves shows
our discretization violated the self-duality of the problem
both large and small cutoff scales. Nevertheless, as il
trated in Fig. 4, the self-duality holds with a very good n
merical accuracy near the middle of the dynamical ran
av/v;0.1.

FIG. 3. Superimposed values ofKa(v̄), Kp2a
21 (v̄) calculated

numerically for the Coulomb potential~15! at different values of the
opening anglea, with L520 and the lattice sizeN51600. The
self-duality of the original action~17! is violated by the finite sys-

tem sizeL at smallv̄[av/v, and by the discreteness of the lattic
spacing at largeav/v. Pluses show the numerical data ata50,
while the lines~a! and~b! respectively, correspond to Eqs.~21! and
~22! in the text.

FIG. 4. Duality for junctions in Fig. 1 illustrated numerically

Boxes and pluses show the superimposed valuesKa(v̄) and

Kp2a
21 (v̄), calculated with the Coulomb potential~15! at the lattice

sizeN51600,L520. Solid line with the slopeN(x51)'0.212 is
a fit to the data.
in

-

at
t
s-

e,

As indicated by finite-size scaling analysis of our da
~not shown!, at small enoughv̄, Ka(v̄) saturates to a
frequency-independent value in the range 0,a,p. This be-
havior is consistent with the small-angle expansion~23!. In
addition, Fig. 4 indicates that Eq.~23! provides a good ap-
proximation toKa(v) in a rather wide range ofa. For small
a!1, as the frequency is reduced, the numerical val
Ka(v̄) seem to closely follow the logarithmically divergen
line ~21!, but eventually cross over to a constant val
Ka(v̄50;x), which ~logarithmically! depends on the angle

C. Coulomb interactions in the cleaved-edge geometry

Here we consider the effect of long-range interactions
the cleaved-edge geometry,19,20 where the tunneling happen
between a three-dimensional~3D! metal and the edge of a
2DEG, located in the plane perpendicular to the surface
the metal. It is believed that the tunneling in these expe
ments is dominated by localized ‘‘hot’’ spots or impuritie
Chamon and Fradkin34 demonstrated that in the absence
interactions, a point contact between a 3D metal and a
edge with the filling fractionn is equivalent to a point tun-
neling junction between such an edge and an ideal nonin
actingn51 edge; furthermore, they mapped this latter pro
lem to that of tunneling between two identical edges w
filling fractions n* 52n/(11n).

The effect of the Coulomb interaction in this setup is lim
ited to the chiral Luttinger liquid, the ‘‘real’’ quantum Hal
edge, while the Fermi-liquid nature of quasiparticles in t
metal imply that they remain noninteracting for the purpos
of tunneling measurements. The metallic surface only p
vides additional screening charges, which modify the form
the interaction potentialV(ur x2r yu). Assuming characteristic
frequencies at the edge are small compared with the pla
frequency of electrons in metal~which is always true for a
good metal!, the retardation can be neglected, and the mo
fied interaction potential is obtained simply by adding t
appropriate image charges.

The quadratic part of the action for the translationa
invariant geometry shown in the left part of Fig. 5~i.e., the
casea50) is obtained by combining Eq.~2! with the Cou-
lomb energy

S15
x

8pE0

b

dtE
2`

`

dx dy]xuV̂~x2y!]yu, ~24!

where V̂(x)[V(x)2V(Ax214a2) is corrected for the im-
age potential, and the units of length are again chosen so
the edge velocityv51. Because we work with the chira
field now, the surface term in the second line of Eq.~2! is
absolutely essential even in an infinite geometry. To prope
account for this term, we formally separate the fieldu5f

FIG. 5. Two idealized geometries for calculating the effect
Coulomb interactions in cleaved-edge experiments. Edge quas
ticles interact with image charges induced on the metallic surfa
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1u into its symmetricf(x,t)5f(2x,t) and antisymmetric
u(x,t)52u(2x,t) compontents; then the surface term c
be absorbed after an integration by parts, and the action~2!
becomes

S05
1

4pE dtE
2`

`

dx@2i ]tf ]xu1~]xf!21~]xu!2#.

~25!

This transformation is equivalent to ‘‘folding’’ the chira
edge in half, which produces two nonchiral fields defined
a semiaxis, and simultaneously eliminates the zero mode
associated subtleties. The translationally invariant action
be now diagonalized by a Fourier transformation, and, a
integrating out the fluctuations away from the origin, we o
tain the single-edge contribution to the quadratic part of
effective action,

S q
(1)5

T

2p (
n

uvnuK̂~vn!uf1u2, ~26!

wheref1[u(0)5f(0) by definition, and

K̂21~v!5
2uvu

p E
0

` dk Z~k!

v21k2Z2~k!
, ~27!

Z~k!511
x

2
V̂~k!.

The argument34 that a point contact with a metal is equiv
lent to that with a noninteractingn51 edge holds indepen
dently of the interactions affecting the ‘‘real’’ edge. Ther
fore, the full effective action can be written as

S5
T

2p (
n

uvnu~K̂uf1u21uf2u2!1E dt Relei (gf12f2),

~28!

where we usedK̂51 for the auxiliaryn51 edge. The ca-
nonical form~5! of the tunneling action can be obtained b
introducing the tunneling degree of freedomw5gf12f2
with the corresponding effective couplingKeff calculated,
e.g., using the average as in Eq.~6!. As before, the resulting
model describes an overdamped particle in a washboard
tential; the corresponding non-Ohmic ‘‘friction’’ coefficien

keff~v![
Keff

g eff
2

5
2

g2/K̂~v!11
. ~29!

In the noninteracting limitK̂(v)51 this expression safely
goes into the result34 obtained by a different method.

Notice that the long-distance part of the Coulomb pot
tial V̂ in Eq. ~24! is screened by the metallic surface. Then,
sufficiently small frequencies,av!v r[Z(0)v, the momen-
tum dependence of the coefficientZ(k) can be ignored, and
the integral~27! gives precisely the noninteracting couplin
K̂51. This is not at all surprising, since the interaction ha
pens within a single chiral edge, and its long-range p
~most dangerous at small frequencies! is screened. As
usual,35 the only effect of the additional interaction in th
chiral system is the velocity renormalization,v→v r .
n
nd
n
r

-
e

o-

-
t

-
rt

The translational symmetry is lost for the ‘‘wedge’’ ge
ometry shown in the right part of Fig. 5. The Coulomb pa
of the corresponding action can be written in the form~24!

with the potentialV̂(x2y)→V2(x,y) given by Eq.~20!. In
the limit a→0, the potentialV2(x,y) vanishes identically,
and henceK̂(v)51 in this case as well.

At general values ofa we again use the ‘‘folding’’ trick
by introducing symmetric and antisymmetric variablesf, u.
Up to an overall coefficient, the resulting action looks lik
Eq. ~17!, with the exception that both componentsf andu
couple with thesamepotentialV2(x,y). The most promi-
nent difference is that ata5p/2 the symmetry no longe
leads to a cancellation of the partV(Ax21y2) of the total
potential, and the effect of the long-distance interactions
no longer trivial,K̂p/2(v)Þ1. Again, this comes as no su
prise, since there is no self-duality in this geometry.

Finally, in the limiting casea5p, the potentialV2(x,y)
becomes an even function of each argument; as a result
coupling with the symmetric fieldf ~antisymmetric deriva-
tive ]xf) vanishes by symmetry. Up to an overall coef
cient, the resulting action is identical to that considered
Appendix A, and we obtain@note that the extra coefficien
was already accounted for in the corresponding effective
tion, cf. Eqs.~26! and ~5!#,

K̂a5p~v!5Ka5p~v!5
2uvu

p E
0

` dk

v21k2
„11xV~k!…

.

This result is quite intuitive: metallic screening becom
noneffective in the case where a wire is perpendicular to
conducting surface.

Our calculations imply that the tunneling exponent
modified by the Coulomb interaction only if the edge is be
near the tunneling point. In an ideal sample, the edge r
along a straight line parallel to the surface of the metal, a
long-range interactions do not modify the tunneling exp
nents. In any real sample, however, imperfections near
tunneling point always reduce the effective couplingK(v),
or, equivalently, systematicallyincreasethe tunneling expo-
nent in Eq.~10!. Nevertheless, we do not believe this effe
would be sufficient to explain a 10% increase of the tunn
ing exponent observed20 by Grayson et al. near n51:
cleaved-edge samples are characterized by sharp con
ment and large drift velocities, meaning that the correspo
ing dimensionless coupling constantx @see Eq.~16!# is
small.

V. DISCUSSION

We have shown that the effect of long-range interactio
on transport through a QH tunneling junction depends c
cially on its geometry. In particular, in a self-simila
X-shaped junction~see Fig. 1! characterized by an openin
angle a, unscreened Coulomb interactions renormalize
effective Luttinger-liquid exponent,

g!
25g2/Ka~v50;x!,

whereg251/n for electron tunneling between the edges
2DEGs with Laughlin fractionsn. Therefore, the renormal
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ized exponent depends nonuniversally on the anglea and the
dimensionless Coulomb interaction strengthx.

This implies that the system should exhibit a ze
temperature delocalization transition at a critical angle ch
acterized byg!

251. This is in contrast with the transpo
properties expected in the absence of long-range interact
which are exclusively determined by the filling fractionn.
For integer QH systems withn51, the transition always
corresponds to a self-dual geometry, i.e.,ac5p/2, indepen-
dently of the details of the interaction. In fractional QH co
strictions, however, the transition~if any! occurs at a nonuni-
versal critical angleac,p/2, such thatKac

(0;x)5n21.
Properties of all charge transfer processes through

junction are defined by the parameterg! in the effective
action~13!, which determines the tunneling exponents5,7 @see
Eq. ~10!#, the form of the nonlinearI -V curve,8,9 as well as
the tunneling noise.10–12 In the limit of weak tunneling, the
quantization of transferred charge is ultimately determin
by gauge invariance, and a shot-noise measurement w
show current transferred by unit charges. However, the s
noise measured in the opposite, strongly coupled li
~reached, e.g., by driving a large tunneling current throu
the junction! is set36 by the instanton charge for the effectiv
tunneling action~13!. The value of this charge is determine
solely by the value ofg!. Hence, in this regime a nois
measurement would show a nonuniversal charge

e! /e51/g!
25nKa~0;x!,

clearly an interaction effect.
The described situation applies to ideal systems with

screening. More realistically, Coulomb interactions a
screened at some finite lengthj. Then, for a junction with
finite opening angle,ucosau,1, the correction to tunneling
exponents always vanishes in the static limit,K a

(scr)(0)51,
even though it may be significant at larger frequenciesv
*v/j ~this corresponds to a temperature 0.1 K forj
51mm andv5107 cm/s). Consequently, a system at a fra
tional n with originally metallic behavior would eventuall
localize at small enough temperatures.23,25 Contrarily, the
interaction-induced flow in an integer junction would grad
ally stop without changing its direction.

For anX-shaped junction with a given opening anglea,
the magnitude of the renormalization parameterKa(0;x) is
determined by the value of the dimensionless Coulomb
teraction constant~16!, which, in turn, is defined by the edg
wave ~drift! velocity. For mesaetched samples with expe
edly sharp confining potential, edge magnetoplasmon vel
ties have been measured37 by Ashoori et al., yielding v
;108 cm/s, which corresponds tox;0.05. On the other
hand, edge electric fields equivalent to drift velocities
small asv;106 cm/s have been measured by Maasilta a
Goldman,14 who analyzed discrete energy levels of a qua
tum antidot. This value of velocity results in a relative
large coupling constant valuex;5.

We must point out, however, that our discussion of Co
lomb interaction effects was based on a single-mode sh
edge, which implies large confining electric fields of ord
E;Eg /(el), whereEg is the energy gap associated with t
incompressible QH state, andl is the magnetic length. Using
the drift velocityv5cE/B, we obtain
-
r-
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d
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s
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-
rp
r

x5
ne2

p«\v
;S ne2

p« l DEg
21 , ~30!

which, for a typical QH sample, leads tox&1. Samples with
much larger values of the Coulomb coupling~small v, soft
confinement! are likely to have a tendency to edg
reconstruction.18 This would lead to additional polarizatio
at the edge due to neutral modes, and, consequently, a p
screening of Coulomb interaction.

Therefore, to observe the predicted effects, samples w
well-defined, but not too sharp edges are necessary.
excludes the cleaved-edge samples~where the drift velocity
v is large!, as well as the samples with electrostatically d
fined geometry~where confinement tends to be soft!. The
best choice would therefore be a Hall bar with lithograp
cally definedX-shaped constriction and a narrow local ga
to fine tune the tunneling. For a given base temperatureT,
the linear size of the constriction should be at least of or
j;\v/T, i.e., approaching a millimeter scale for a mK tem
perature range. Tunneling junctions with small openi
angles will give larger values ofKa @in principle, limited
only by the logarithm~22!, divergent at small frequencies#.
However, as illustrated in Fig. 3, for such junctions t
renormalized Luttinger parameterg!

2 is more likely to retain
some frequency~temperature! dependence, which would
modify the measured exponents.
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APPENDIX A: COUPLING AT aÄp

Here we derive the form of the couplingK(v) for the
saddle-point geometry shown in Fig. 1 in the special lim
a5p, which corresponds to two vertical semi-infinite wire
connected by a single tunneling point. In this case the d
tanceRa5ux1yu, and the contribution of the symmetric po
tential V1(x,y)5V(x2y)1V(x1y) to Eq. ~17! vanishes
by symmetry ~18!, so that only the partV2(x,y)5@V(x
2y)2V(x1y)#sgn(xy) remains. The symmetry of the de
rivative ]xq implies that both parts of the potentialV2 give
identical contribution, and the quadratic part of the acti
~17! can be written as

Sq5
T

8p (
n

H E
2`

`

dx@2vnw̄~x!]xq1u]xwu21u]xqu2#

1xE
2`

`

dx dy@]xq̄V~x2y!]yq sgn~xy!#J . ~A1!

Unlike the casea50, the nonlocal interaction in the secon
line cannot be diagonalized by a simple Fourrier transform
tion; we need to get rid of the sign function first. Naivel
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this could be done by multiplying bothw(x) and q(x) by
sgn(x). However, sincew(0)Þ0, the functionw(x)sgn(x)
would not be continuous at the origin, so that spuriousd
functions may be generated. Instead, we define auxil
continuous functionsu(x), g(x), so that

w~x!5w~0!1sgn~x!u~x!, g~x!5q~`!2sgn~x!q~x!,

andu(0)5g(`)50. After integrating out the fieldu(x), the
effective action becomes

Sq5
T

8p (
n

H 24vnw̄~0!g~0!1E dk

2p
ugku2@vn

21k2

3„11xV~k!…#J .

In the first term here we substituteg(0)5*dk gk /(2p) in
terms of the Fourier-transformed fieldgk , integrate this field
out, and obtain the effective action for the the fieldw(0)
alone,

Sq5
T

4p (
n

vnuw~0!u2F2vn

p E
0

` dk

vn
21k2

„11xV~k!…
G ;

comparing the result with the general form of the effect
action ~5!, and the result~21! for a50, we conclude that

Ka50~vn!Ka5p~vn!51

exactly, independent of the form of the potentialV(x).

APPENDIX B: SELF-DUAL TUNNELING JUNCTION,
aÄpÕ2

1. General Wiener-Hopf solution

Here we give a direct solution of the extremum equatio
for the self-dual casea5p/2. This solution gives the cou
pling Kp/251 directly, without utilizing the self-duality of
the problem. In addition, it allows us to calculateKa pertur-
batively for small values ofucos(a)u!1.

Begin with the Euclidean action~17! at a5p/2,

Sq5
T

8p (
n
E dxH2vnw̄~x!qx81E dy w̄x8Z~x2y!wy8

1E dy q̄x8Z~x2y!sgn~xy!qy8J , ~B1!

where the total potential

Z~x2y!5d~x2y!1
x

2
V~x2y!; ~B2!

note that due to the symmetry~18!, the contribution from the
part of the potential with geometrical distanceV(Rp/2)
5V(Ax21y2) was cancelled. The Euler-Lagrange equatio
~valid at xÞ0, where the nonlinear tunneling term gives
contribution! are

v]xq2]xE
2`

`

dy Z~x2y!]yw50, ~B3!
ry

s

s

v]xw2]xE
2`

`

dy Z~x2y!sgn~xy!]yq50. ~B4!

We assume that both fields are continuous everywhere,
thatw(x) and]xq(x) vanish at infinity. Multiplying the first
of the obtained equations byw̄(x), the second byq̄(x), and
subtracting the results from the integrand in the action~B1!,
with the help of the definition~B2! we obtain

Sq5
T

8p (
n
E dx ]xFvnw̄q1w̄~x!E dy Z~x2y!]yw

1q̄~x!E dy Z~x2y!sgn~xy!]yq G
52

T

8p (
n

w̄~0!Dw08 ,

Dw08[w8~01!2w8~02!, ~B5!

where the integration was performed over the entire axis
cluding the pointx50. The Euler-Lagrange equations~B3!,
~B4! can be simplified by defining linear combinations~sym-
metric with respect tox)

A,B~x!5@w~x!6q~x!sgn~x!#/2, ~B6!

then, multiplying Eq.~B4! by sgn(x) and taking symmetric
and antisymmetric combinations of the result with Eq.~B3!,
we obtain atxÞ0

v sgn~x!]xA2]xE
2`

`

dy Z~x2y!]yA50, ~B7!

and an identical equation~up to the substitutionv→2v) for
B(x). We integrate, keeping in mind that Eq.~B7! is valid
for xÞ0,

vA sgn~x!2E
2`

`

dy Z~x2y!]yA5Casgn~x!, ~B8!

where the integration constants in the intervalsx,0 andx
.0 were related using the symmetryA(x)5A(2x). The
value of the constantCa is determined by the boundary con
ditions; using the definition~B6! we obtain

2Ca5vw~0!2w8~01!2q8~0!5vq~`!. ~B9!

Similarly, the integration of the corresponding equation
the functionB(x) yields

2Cb52vw~0!2w8~01!1q8~0!5vq~`!. ~B10!

Together, Eqs.~B9! and ~B10! imply that

Ca5Cb52w8~01!/2. ~B11!

Because of the sign function multiplying the first term o
the left hand side~LHS!, Eq. ~B8! cannot be solved directly
by a Fourier transformation. It is, however, of the form so
able by the Wiener-Hoph technique.38 Following the stan-
dard prescription, we introduce the functionsA6(x)
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5A(x)u(6x), so that, e.g., A(x)5A1(x)1A2(x),
A(x)sgn(x)5A1(x)2A2(x). After this substitution we can
Fourier transform Eq.~B8!,

v@A12A2#1 ikZ~k!@A11A2#52iCaP
1

k
, ~B12!

where P denotes the principal value, and the Fourie
transformed functionsA6[A6(k) have no singularities
above and below the real axis, respectively~regularization at
infinity ensures that they are also analytic everywhere al
the real axis!. The functionsA6(x) are only discontinuous in
the origin, and the asymptotic form of their Fourier transfo
mations atuku→` is

A6~k!56
i

k
A6~06!1O~ uku22!56 i

w~0!

2k
1•••.

~B13!

The independent functions in Eq.~B12! can be rearranged
as follows,

A1~k!52R~k!A2~k!1
2Ca

kZ2 iv
P1

k
, ~B14!

R~k![
kZ1 iv

kZ2 iv
5

R2~k!

R1~k!
, ~B15!

where the functionR(k) was separated into the ratio of th
functionR2(k), which has neither singularities nor zeros
and below the real axis, andR1(k), which has the same
properties at and above the real axis. This separation is
sible because the functionR(k) is analytic in a vicinity of
the real axis@which is correct for anyv, assuming that the
interaction potentialV(x) is properly regularized at infinity#.
In the absence of the long-distance interactionsx50, the
decomposition is trivialR 6

0 5(k6 iv)21, where we assume
v.0. At very large values ofk the long-distance part of th
potential should not matter. Therefore, to ensure the regu
ity of the decomposition~B15! at x.0, we can use the
Cauchy formula

ln r 6~q!5E
2`

` dk

2p i

ln r ~k!

q2k6 i0
, r 6~q![

R6~q!

R 6
0 ~q!

~B16!

for the ratior (k)5R(k)/R 0(k). Sincer (k)→1 at largek,
this expression implies thatr 6(k)→1 ~and hence thatR6

;1/k) as uku→`.
Multiplying Eq. ~B14! by R1 , and separating the fre

term of the obtained expression into a sum of functions a
lytic above and below the real axis, respectively, we obta

A1~k!R122Cah152A2~k!R212Cah2 . ~B17!

Here the functionsh6[h6(k), analytic in the upper~lower!
complex half-plane, are defined so thath1(k)1h2(k)
5h(k), where

h~k![
R1~k!

kZ2 iv
P1

k
5

R2~k!2R1~k!

2iv
P1

k
; ~B18!

these functions can be found using the Cauchy formula
-

g

-

t

s-

r-

a-

h6~q!57
1

2p i E2`

`

dk
h~k!

q2k6 i0
. ~B19!

We assumed thatR6(k) are nonsingular in the origin~and
elsewhere along the real axis!, therefore, using the identity
R2(0)5R(0)R1(0)52R1(0), weobtain

h6~k!56 i
R6~k!

2v~k6 i0!
. ~B20!

By construction, the LHS of Eq.~B17! has no singulari-
ties at and above the real axis, while its right hand s
~RHS! has no singularities at and below the real axis. The
fore, the whole expression is analytic everywhere in the co
plex plane, and, as long as it is uniformly limited at infinit
it can only be a constant. Moreover, since both sides of
~B17! actuallyvanishat infinity @as follows from Eq.~B13!
and the properties of the functionsR6 , h6], this implies
that the whole expression can only be zero everywhere a
complex planek. We obtain

A6~k!52Ca

h6~k!

R6~k!
56

iCa

v~k6 i0!
, ~B21!

and by matching with the asymptotic expansion~B13!, we
get

Ca5
vw~0!

2
, A6~k!56

iw~0!

2~k6 i0!
. ~B22!

Comparing to Eq.~B11!, we obtain

Dw0852w8~01!522vw~0!

and the contribution at the frequencyv.0 to the effective
action ~B5! becomes

Sq~v!5
T

4p
uvu uw~0!u2.

One can also obtain an identical contribution atv,0, so that

Ka5p/2~v!51, ~B23!

as expected by the self-duality of the problem.
The analog of Eq.~B7! for the functionB(x) differs only

by the sign ofv, which leads to a replacementR→1/R,
R6→1/R6 . Instead of Eq.~B17! we get

B1~k!R 1
2122Cbf 152B2~k!R 2

2112Cbf 2 .
~B24!

By analogy with Eq.~B20!, we obtain

f 6~k!57 i
R 6

21~k!

2v~k6 i0!
. ~B25!

By the same analyticity argument, both sides of Eq.~B24!
are analytic everywhere in the complex plane; atuku→` they
asymptotically approach a constant valueiw(0). Therefore,

B6~k!56 iw~0!FR6~k!2
1

2~k6 i0!G ,
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and, combining with Eq.~B22!, we can use the definition
~B6! to restore the original fields in the extremum,

w~x!5w~0!E dk

2p i
@R2~k!2R1~k!#e2 ikx, ~B26!

q~x!5sgn~vx!@w~0!2w~x!#, ~B27!

where the sgn(v) in the second line is needed because
casev,0 is equivalent to the interchange ofA andB, which
changes the sign ofu(x).

It is easy to verify that the obtained functions obey t
boundary conditions assumed when deriving Eqs.~B5!, ~B9!,
~B10!. This self-consistency check ensures that the obtai
expressions give us the exact formal solution of the probl

To understand the structure of this solution, let us int
duce the expansion

xV~x!5(
l 51

N
Al

al
e2al uxu, xV~k!5(

l 51

N
2Al

k21al
2 , ~B28!

which, for sufficiently largeN, gives an adequate regularize
representation of any non-pathological even functionV(x).
For example, the Coulomb potentialV(x)51/uxu can be re-
written as follows,

1

uxu
5 lim

a→0

a

12exp~2auxu!
5 lim

a→0
a(

l 50

`

e2aluxu,

so that, given a finitea, any partial sum provides a regula
ization of the form~B28! with al5al andAl5xa2l .

We obtain

Z511
x

2
V~k!511(

l 51

N
Al

k21al
2 ,

kZ2 iv5P2N11~k!)
l 51

N

~k21al
2!21,

where the polynomial

P2N11~k!5 )
s51

2N11

~k2 iks!

has precisely (2N11) purely imaginary distinct rootsks
[ iksÞ0. One can also show that forv.0 exactlyN roots
lie below the imaginary axis; we shall assumeks,0 for 1
,s,N. The Cauchy integral~B16! is readily evaluated, and
we obtain

R15
~k2 ik1!3 . . . 3~k2 ikN!

~k1 ikN11!3 . . . 3~k1 ik2N11!
; ~B29!

using the form similar to that in the first part of Eq.~B18!,
the extremum solution~B26! can be explicitly rewritten as

w~x!52uvuw~0!E dk

2p

~k21a1
2!3 . . . 3~k21aN

2 !cos~kx!

~k21kN11
2 !3 . . . 3~k21k2N11

2 !
.

~B30!
e

d
.

-

2. Expansion around the self-dual solution

To get an approximate expression forK(a) in a vicinity
of a5p/2, we expandV6(x,y) to first order in cosa, and
employ perturbation theory. The solution of the extremu
equations ata05p/2 is unique, and the lowest-order nond
generate perturbation theory suffices. This amounts to ev
ating the Euclidean action~17! along the nonperturbed solu
tion w(x), q(x),

dSq[
T

4p (
n

uvnudKauw~0!u2

5
T

4p (
n

x

2E dx dy@w̄x8dV1wy81q̄x8dV2qy8#,

where the integration is performed everywhere except
origin, and the potentials

dV152
xy cosa

Ax21y2
V8~Ax21y2!,

dV252dV1sgn~xy!,

were found by expanding Eqs.~19!, ~20!.
According to our solution~B27!, the functionsw8(x),

2q8(x)sgn(vx) are identical, and the two terms give equ
contributions, leading to

dKa52
x cosa

uvuuw~0!u2E2`

`

dx dyw̄x8wy8y]xV~Ax21y2!.

For the Coulomb potential~15!, this gives

dKa5
4x cosa

uvu uw~0!u2E0

`

dxE
0

`

dy
xyw̄x8wy8

~x21y21a2!3/2
.

This integral converges at small distances even if we sea
→0; in this scale-invariant limit the ‘‘wave functions’’w(x)
can depend only on the dimensionless quantitiesuvux andx,
w(x)[w(0)fx(uvux). Scaling out the frequency leads to
frequency-independentcorrection,

dKa~v,x!5xN~x!cosa1O~x2cos2a!, va!1,

N~x![4E
0

`

dxE
0

`

dy
xyf̄x8~x!fx8~y!

~x21y2!3/2
. ~B31!

This result supports the numerical data, which indicates
Ka(v) is independentof v at small enough frequencies
This statement is true for all finite angles,ucosau,1, while
Ka50(v) diverges logarithmically according to Eq.~22!.

The specific value of the correction depends on the c
pling constantx. In the weak-coupling limit,x!1, the func-
tion fx→0(x)5exp(2uxu), and the integration produces

N~x→0!'1.51.

For finitex.0, and any givenN in the expansion~B28!, the
explicit form of the integrand in Eq.~B31! can be found with
the help of Eq.~B30!, and the corresponding valueN(x) can
be evaluated numerically.
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