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Correlations in doped antiferromagnets

Moshe Havilio* and Assa Auerbach†

Department of Physics, Technion, Haifa 32000, Israel
~Received 3 January 2000!

A comprehensive study of doped resonating valence bond states is performed. It reveals a fundamental
connection between superconductivity and quantum spin fluctuations in underdoped cuprates:Cooper pair
hoppingstrongly reduces the local magnetizationm0. This effect pertains to recent muon spin rotation mea-
surements in whichm0 varies weakly with hole doping in the poorly conducting regime, but drops precipi-
tously above the onset of superconductivity. The Gutzwiller mean field approximation~GA! is found to agree
with numerical Monte Carlo calculations. The GA shows, for example, that for a bond amplitudeu(r )

5e2r /j, spin-spin correlations decay exponentially with a correlation length}e3pj2/2. The expectation value of
the Heisenberg model is found to be correlated with the average loop density.
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I. INTRODUCTION

When holes are introduced into the copper oxide plane
high-Tc cuprates, spin and charge correlations change
matically. Thelocal magnetizationm0, measured by muon
spin rotation1 (mSR) on, e.g., La22xSrxCuO4, reveals a
qualitative difference between the insulating and superc
ducting phases:m0 is rather insensitive to doping in th
poorly conducting regime 0<x<0.06, but drops precipi-
tously above the onset of superconductivity atx.0.06, be-
coming undetectable at optimal dopingx'0.15. Theoreti-
cally, holes can causedilution and frustration in the
Heisenberg antiferromagnet, which create spin textures
ther random~‘‘spin glass’’! or with ordering wave vector
away from (p,p) ~sometimes called ‘‘stripes’’!.3 However,
the apparent reduction of local magnetization by the onse
superonductivity is a novel and poorly understood effe
Theory must go beyond purely magnetic models, and invo
the superconducting degrees of freedom.

We find that this problem is amenable to a variation
approach, using hole-doped resonating valence bond~RVB!
states.4 The RVB states were originally suggested by And
son to describe the spin and charge correlations in the h
Tc cuprates.5 They are excellent trial wave functions for th
doped Mott insulators, with large Hubbard repulsionU since
~i! configurations with doubly occupied sites are exclud
and~ii ! Marshall’s sign criterion for the magnetic energy6 is
satisfied, and the Heisenberg ground state energy and
ferromagnetism at zero doping is accurately recovered.7,8

The hole-doped RVB state is a new class of variatio
states, in which spin and charge correlations are par
etrized independently, without explicit spin or gauge symm
try breaking. Such parametrization allows states with m
netic and independentlyd or s wave superconducting~off-
diagonal! order or disorder, thus permitting anunbiased
determination of ground-state spin and charge correlat
appropriate for the cuprates. These are important advant
over commonly used spin-density-wave, Hartree-Fock,
BCS wave functions.

A comprehensive study of the state is performed us
Monte Carlo and mean field calculations. A phenomenolo
PRB 620163-1829/2000/62~1!/324~13!/$15.00
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cal low-energy effective Hamiltonian is proposed, with tw
major components: Heisenberg interaction for spins a
single or Cooper pair hopping kinetic energy for fermio
holes.

Regarding this model our key results are the following
~i! For the magnetic energy alone, the local magnetizat

m0 is weakly dependenton doping concentration. This hold
independently of interhole correlations for either random
localized or extended states.

~ii ! In contrast to~i!, m0 is strongly reduced by the kineti
energy ofCooper pair hopping, which correlates the reduc
tion of m0 with the rise of superconducting stiffness an
hence,9 the transition temperatureTc .

These results agree with the experimentally reported c
relation betweenm0 and Tc .1 This relation appears to b
weaklydependent on the precise hole density.

We also find that RVB states have the following prope
ties.

~i! The magnetic energy is correlated with the avera
loop density: G5L2m0

2/~average radius of gyration of
loop!2, whereL is the linear size off the lattice.

~ii ! The Gutzwiller mean field approximation~GA! for
magnetic correlations is in good agreement with the Mo
Carlo results.

~iii ! Long-range magnetic correlations in RVB states a
extremely sensitive to changes in the singlet bond amplit
u. For example, withu(r )5exp(2r/j) the spin-spin correla-
tion function decays exponentially with correlation leng
jex} exp@(12x)(3p/2)j2#, wherex is the hole concentration

The paper is organized as followed: Section II introduc
the hole-doped RVB state, and discusses the numerical
cedure. Section III defines our variational parameters. S
tion IV deals with the antiferromagnetic and superconduct
order parameters. Section V deals with the component
the effective Hamiltonian. Section VI correlates between
perconductingTc and local magnetization. Section VII is
summary and discussion.

The paper has three appendixes. Appendix A reduces
hole part of the doped RVB to a numerically convenie
format. Appendix B derives expressions for expectation v
ues. Particularly, an alternative procedure to calculate
324 ©2000 The American Physical Society
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PRB 62 325CORRELATIONS IN DOPED ANTIFERROMAGNETS
magnetic correlation is derived and used to check the c
puter program. In Appendix C, the GA is performed analy
cally.

II. HOLE-DOPED RESONATING
VALENCE BOND STATES

A valence bond~VB! state is

ua&5 )
( i , j )Pa

~ai
†bj

†2bi
†aj

†!u0&, ~1!

where a is a pair covering of the lattice,ai
† ,bj

† are
Schwinger bosons, andi 51, . . . ,L2 is a site index on a
square lattice.

RVB states are superposition of VB states. We restrict
disscussion to

uC@u#&5(
a

)
( i , j )Pa

ui j ~ai
†bj

†2bi
†aj

†!u0&, ~2!

where u(r i j )>0 is a variational singlet bond amplitude
which connects sites of different sublatticesA and B only.
This ensures Marshall’s sign.6

The hole-doped RVB state is defined by

uC@u,v;x#&5PG~x!uc̄@u,v#&
~3!

uc̄@u,v#&[expF (
i PA, j PB

@v i j f i
†f j

†1ui j ~ai
†bj

†2bi
†aj

†!#G u0&,

wheref i
† are spinless hole fermions,ui j >0, andv(r i j ) is an

independenthole bond parameter. The Gutzwiller project
PG(x) imposes two constraints: a constraint of no dou
occupancy

na
i 1nb

i 1nf
i 51 ; i , ~4!

and a global constraint on the total number of holes,

(
i

nf
i 5xL25Nh . ~5!

Due to PG(x), C can be written as a sum over bond co
figurations of singlets and hole pairs which cover the latt
as depicted in Fig. 1.

An overlap of two VB states,̂aub&, is expressed in term
of a directed loop covering of the lattice~DLC!,7,10,15 and
hence

FIG. 1. A bond configuration in the doped RVB statesC@u,v#.
Solid ~open! circles represent spins~holes! with bond correlations
ui j (vkl).
-
-

e

e

e

^C@u#uC@u#&5(
L

VL , ~6!

whereL is a DLC,

VL[ )
lPL

S 2 )
( i , j )Pl

ui j D , ~7!

andl is a directed loop.
With the results of Appendix A, the norm of the dope

RVB state is

^C@u,v;x#uC@u,v;x#&5 (
g,L(g)

W„g,L~g!…, ~8!

whereg is a distinct configuration ofNh holes sites:

g[$~ i kPA, j kPB!%k51
Nh/2: ;k,k8i k, i k8 , j k, j k8 ,

Lg is a DLC which coveres the lattice but the hole sites,

W~g,Lg!5H det2V~g!VLg
, x.0,

VL , x50,
~9!

andV is anNh/23Nh/2 matrix with

V~g!kl[v i kj l
. ~10!

Expectation value of an operatorO is expressed as a
weighted sum

^O&5
1

^CuC& (
g,Lg

W~g,Lg!O~g,Lg![Ō, ~11!

whereO(g,Lg) is defined by Eqs.~9! and ~11!.
We use standard Metropolis algorithm11 for the evaluation

of sum ~11!. The basic Monte Carlo step for updating th
DLCs is the one used by Ref. 7: Choose at random a site
one of its next-nearest neighbors and exchange, with tra
tion probability that satisfies detailed balance, the bonds c
necting each of them, either to the next site~forward bond!
or the previous site in their loops. In Ref. 12 we show, th
for ur.0 ;r , these steps areergodic; that is, any DLC can
be reached from any other by a sequence of Monte C
steps.

For the fermion holes our update scheme is a simple g
eralization of the ‘‘inverse-update’’ algorithm of Ceperle
Chester, and Kalos.13 According to Eq.~10!, changing a po-
sition of anA (B) sublattice hole amounts to changing o
row ~column! in the matrixV. In our calculation boundary
conditions are periodic.

For the dimer-doped RVB state, where

ui j 5v i j 5H 1, ur i j u51,

0, otherwise,
~12!

we obtained exact results using the transfer matrix techniq
For a 4340 undoped lattice14 the magnetic energy isEmag
520.320 744J/bond. The Monte Carlo result is20.3210
60.0002.^S0Sr& is exponentially decaying with correlatio
length ofjdimer50.724; the Monte Carlo result is 0.738. Ex
act and Monte Carlo results for the doped 2364 ladder12
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326 PRB 62MOSHE HAVILIO AND ASSA AUERBACH
appear in Fig. 2. Our program successfully reproduced ex
ing data for RVB states.7,8,12 Other tests of the program ap
pear below.

We also use the GA to evaluate expectation values in
doped RVB state. The GA is discussed in Appendix C.

III. VARIATIONAL PARAMETERS

In the undoped,x50, case we treat three classes of t
singlet bond amplitudeu:

up~r !5
1

r p
, ~13!

uex~r !5usr~r !
1

r 0.4
expS 2

r

j D , ~14!

ug~r !5usr~r !exp~2Qr2!, ~15!

with u(1)51 and

usr~r !5a1 expS 2
r

jsr
D1a2 , ~16!

where, foruex (ug), jsr
2151.7(2) anda250.05~0.018!. Here

usr determines the short-range decay ofuex and ug .12 We
also useu5uMF . HereuMF is derived from the Schwinger
boson mean field theory of the Heisenberg model.15,8 For x
.0 we useup , Eq. ~13!, anduex , Eq. ~14!.

For the functionv the following cases of interhole corre
lations are treated:

v ins
g ~r i j !5H 1, ~ i , j !Pg,

0, ~ i , j !¹g,

FIG. 2. Exact and numerical Monte Carlo results of magne
energy and correlation length of the spin-spin correlation funct
vs hole dopingx ~Ref. 12!. Dimersv andu, Eq. ~12!, are used on a
2364 ladder.
t-

e

v r
met5

1

L2 (
kPS

vk
mete2 ik•r,

va~r !5(
ĥ

ca~ĥ !d r ,ĥ , a5s,d, ~17!

where uvk
metu51, ĥ are nearest-neighbor vectors on t

square lattice,cs51, andcd5ĥx
22ĥy

2 .
v ins

g puts theNh holes on random sites. This state d
scribes an insulator with disordered localized charges.

vmet describes weakly interacting holes in a ‘‘metallic
state:

)
kPS

f k
†u0&5PG~x!expS (

k
vk

metf k
†f 2k1(p,p)

† D u0&

5PG~x!expS (
i j

v i j
metf i

†f j
†D u0&, ~18!

where the product is overNh states,

vk
met5H sgn~k!, kPS,

0, k¹S,
~19!

andv i j
met5(kvk

mete2 ik(r i2r j ). Here we checkS which is cen-
tered atkmin5(6p/2,6p/2). See Fig. 3. Results forS cen-
tered at kmin5(0,6p), (6p,0) are not qualitatively
different.12 vmet obey

vk1(p,p)52vk ; ~20!

hencev i j
met only connectsi PA to j PB. Correlations in a

state withv5vmet were previously computed by Boneste
and Wilkins.16

vs andvd describe tightly bound hole pairs in relatives-
andd-wave symmetry, respectively.

IV. ORDER PARAMETERS

A. Local magnetic moment
and long-range magnetic correlations

The local magnetization is

m0
25

1

L4 (
i j

^Si•Sj&e
2 i (p,p)(r i2r j ), ~21!

where, e.g.,S15Sx1 iSy[a†b. With respect to Eq.~11!,
^Si•Sj&[S(r i j ) is calculated using7

c
n

FIG. 3. v5vk
met. S is centered at Fermi pockets aroundkmin

5(6p/2,6p/2). Within the pocketsvmet561; otherwisevmet

50. Note thatvmet hasdx22y2 symmetry.
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PRB 62 327CORRELATIONS IN DOPED ANTIFERROMAGNETS
Si•Sj~g,Lg!15H 6 3
4 , i j are on the same loop inLg ,

0, otherwise,
~22!

where the sign is1 if i and j are on the same sublattice. T
check our program we also used an alternative procedur
calculate magnetic cerrelations. See Appendix B 1.

In Fig. 4~a!, m0
2(p) is plotted for C@up ;x50# and

C@up ,v;x50.1# for various choices ofv. Finite-size scaling
in Fig. 4~b! for x50.1 indicates vanishing long-range orde
m0→0, at pc53.3. It lowers the bound given previously b
Ref. 7: at pc<5. In Fig. 4~c!, m0

2(j21) is plotted for
C@uex ;x50# and C@uex ,v;x50.1#. Finite-size scaling in
Fig. 4~d! indicatesm0→0, at j2150.3. In all the cases the
GA ~lines! works well.

Good agreement between GA and Monte Carlo is a
seen in Figs. 5~a! and 5~b!, whereS(r ) is plotted forup , and
uex , respectively. Note how slowS(r ) decays forj2150.3.
By Fig. 4~b!, m0(L);L20.42 in this state. Exponentially de
caying spin correlations are seen, both by Monte Carlo sim

FIG. 4. ~a! The local magnetization squared,m0
2(p), of doped

and undoped RVB wave functions vs the variational powerp, de-
fined by Eq.~13!. The lattice size is 40340, and in the doped cas
the hole concentration is 10%. Results agree with the Gutzw
approximation~lines!. The hole bond parametersv are defined in
Eq. ~17!. m0

2 is weakly dependent onv. ~b! Finite-size scaling of
m0(L) for p53.3 which indicates vanishing local magnetization
L→`. ~c! m0

2(j) vs the variational correlation lengthj, defined by
Eq. ~14!. ~d! Finite-size scaling ofm0(L) for j2150.3 which indi-
cates vanishing local magnetization atL→`.
to

o

u-

lations and the GA, forup with p*3.7 anduex with j21

*0.4.12 Details of usr , Eq. ~16!, have a strong effect on
long-range spin correlations.

We use the GA to extrapolate Monte Carlo calculatio
for S(r ). In Appendix C1 we find for the exponential bon
amplitudeu(r )5exp(2r/j) andj@1 thatS(r ) decays expo-
nentially with correlation length:

jex}expS ~12x!
3p

2
j2D . ~23!

For the Gaussian bond amplitudeu(r )5exp(2mr2) with m
!1, we find in Appendix C2 thatS(r ) decays exponentially
with correlation length:

jg}
1

Am
expS ~12x!

p

4m D . ~24!

For up , Appendix C 3 suggests vanishing long-range ord
m0→0, at pc<3.

The correlation lengths~23! and ~24! explain the slow
decay ofS(r ) in Fig. 5~b!. It also indicates that in theL
5` system, a small change in the ground-state parame
brings an extremely sharp change in long range magn
correlations.

B. Superconducting order parameter

The superconducting singlet order parameters are

D i
s,d5(

ĥ
cs,d~ ĥ !, ~25!

where

D i j 5 f i
†f j

†~aibj2biaj !/A2. ~26!

The expressions ofD matrix elements are discussed in A
pendix B3. By gauge invariance imposed by the Gutzwil

r

t

FIG. 5. ~a! Calculations of the spin-spin correlation functio
@S(r )# with Monte Carlo simulations and the GA~lines! for un-
doped states withu5up , Eq. ~13!. The size of the lattice isL
5128. ~b! Calculations ofS(r ) usingu5uex , Eq. ~14!. Note how
slow S(r ) decays. In both cases there is a good agreement betw
Monte Carlo and GA, andS(r ) weakly effected by doping.
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328 PRB 62MOSHE HAVILIO AND ASSA AUERBACH
projector, ^Ds,d&50. However,C@u,vs(d) ;x.0# describes
trues- (d-) wave superconductors as seen by the singlet
correlation function^(D r

a)†D0
a&, a5s,d, in Fig. 6. For v

5va , limr→`^(D r
a)†D0

a&5” 0, andC has~off-diagonal! long-
range order in Da . In contrast, the insulator state
C@u,v ins ,x# and the ‘‘metallic’’ statesC@u,vmet,x# have
no long-range superconducting order of either symmetry

V. EFFECTIVE HAMILTONIANS

A. Magnetic energy and related parameters

Magnetic order is driven by the diluted antiferromagne
quantum Heisenberg model

H J5J(̂
i j &

Si•Sj . ~27!

Magnetic energy for x50: In Fig. 7~a!, Emag(p),

Emag(j), andEmag(Q) are plotted as a function ofm0
2(p),

m0
2(j), andm0

2(Q) for uex , up , andug , Eqs.~13!, ~14!, and
~15!, respectively. Inx50, all the three bond amplitude
yield a lowest magnetic energy of

E0520.33560.0005J/bond, ~28!

For up , the optimal value ofp is poptimal52.7, andm0
2(p

52.7)50.10560.005. The ground-state parameters of
Heisenberg model on anL540 lattice areE(ground state)
50.3347J/bond and m0

2(ground state)50.109.17 Table I
contains a summary of results for the optimal choice of
rameters in all the classes.

Magnetic energy for x50.1: In Fig. 8, Emag(p) and
Emag(j) are plotted as a function ofm0

2(p) and m0
2(j), for

x50.1 and various choices ofv from Eq. ~17!. Within nu-
merical errors, all states minimizeH J at the same optima
parameters as forx50 ~Table I!. For up , by Fig. 4~a! it
yields a local magnetization ofmp

2(x50.1)50.08. Foruex ,
Fig. 4~c! shows m2(x50.1)50.1. Thus we conclude tha

FIG. 6. The singlet pair correlation function.^(D r
a)†D0

a&. D i
a is

defined in Eq. ~25!, and a5s,d. In this graph u51/r 3.3.
C@u,va ;x# has superconducting~off-diagonal! long-range order
~ODLRO! only of symmetrya. C@u,vmet;x# has no ODLRO in
either symmetry.
ir

e

-

aside from the trivial kinematical constraints,the hole den-
sity and correlations have little effect on the magnetic ene
at low doping.

A better understanding of the properties of the optim
bond amplitude forH J is gained by theaverage loop density
defined below. From Eq.~22!, a DLC contributes tom0

2, Eq.
~21!, its number of pairs of sites, which share the same lo
hence

m0
25

3

4L4S (
lPLg

l l
2D 5

3

4L4S (i ¹g
l l i D , ~29!

FIG. 7. ~a! Magnetic energy (Emag) vs local magnetization
squaredm0

2. Variational parameters are forx50 ~left y scale!,
up(p), Eq. ~13!, uex(j), Eq. ~14!, and ug(Q), Eq. ~15!. For x
50.1 ~right y scale! vmet andup . lattice size isL540. The optimal
parameters for eachu appear in Table I. The minimal magneti
energy forx50 is 20.33560.0005J/bond.~b! The average density
of a loop per siteG, Eq. ~32!, vs m0

2 for variational cases as in~a!.
In all the casesG is correlated withEmag.

TABLE I. Minimal magnetic energy (E0), optimal choice of
parameters, and square of the ground-state magnetization (m0

2), for
various bond amplitudes in the undoped,x50, case. The size of the
lattice is L540. uMF is derived from the Schwinger-boson mea
field theory ofH J. The ground-state parameters of the Heisenb
model on anL540 lattice areE(ground state)50.3347J/bond and
m0

2(ground state)50.109~Ref. 17!.

state E0(x50)@J/bond# E0 parameters m0
2(x50)

uex , Eq. ~14! 20.33560.0005 j2150.1760.005 0.12560.005
ug , Eq. ~15! 20.33560.0005 Q50.01460.001 0.1260.005
up , Eq. ~13! 20.33560.0005 p52.760.05 0.10560.005
uMF 20.334460.0002 0.08760.005
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PRB 62 329CORRELATIONS IN DOPED ANTIFERROMAGNETS
wherel l5( i Pl1 is the loop length, andi Pl i . ThusL2m0
2

5S(p,p) is proportional to the average loop length per si
The average radius of gyration of a loop is

r g[S 1

nL
(

lPLg

r g
lD , ~30!

where

~r g
l!25

1

l l
(
i Pl

~r i2r c.m.
l !25

1

2l l
2 (

i , j Pl
~r i2r j !

2, ~31!

with r c.m.
l 5(1/l l)( i Plr i , andnL is the number of loops in

the DLC L. With Eqs.~29! and ~30! we define the averag
density of a loop per site:

G[
L2m0

2

r g
2

. ~32!

The average loop densityG is plotted in Fig. 7~b!, in the
undoped case for all the bond amplitudes~13!, ~14!, and
~15!; and in the doped case forC@up ,vmet;x50.1#. Com-
parison with Fig. 7~a! shows thatG is correlated with the
magnetic energy. For vanishingm0 , G converges to its value
in the dimer RVB state, Eq.~12!, whereG~dimer RVB!'9.6.
This value ofG is only slightly larger than that of an en
semble of DLCs, which include only configurations wi
two- ~or four-! site loops with dimer bonds. For such loop
r g

l50.5 ~or A2/2) andG5 l l /r g,l
2 58.

The occurrence of loop lengths (l l) is interesting. In Fig.
9 we plot an histogram of the number of loops (n̄l) versus
the number of sites on a loop (l l). The size of the lattice is
L5128, andu5uMF , which is derived from the Schwinger
boson mean field theory ofH J.15 For all the bond amplitudes
and lattice sizes we have checkedn̄l( l ) decays either alge
braically or exponentially.

FIG. 8. Magnetic energy (Emag), for up Eq. ~13!, anduex Eq.
~14!, vs local magnetization squaredm0

2, using various hole distri-
butions from Eq.~17!. The density of holes isx50.1 and lattice
size isL540. Emag is weakly dependent on interhole correlation
For up (uex), Emag is minimized atm0

2(p)'0.08(0.1),p52.7(j21

50.17).
.

B. Single-hole hopping energy

A single-hole hopping in the antiferromagnetic~AFM!
background has been shown by semiclassical arguments18,15

to be effectively restricted at low energies to hopping b
tween sites on the same sublattice:

H t85 (
^ ik&PA,B

t ik8 f i
†f k~ak

†ai1bk
†bi !, ~33!

where i ,k are removed by two adjacent lattice steps, andt8
.0. Unconstrained, the single-hole ground state ofHt8 has
momentum on the edge of the magnetic Brillouin zone,
agreement with exact diagonalization oft-J clusters.19 Pre-
vious investigations have found thatintersublatticehopping
~the t term in thet-J model! is a high-energy process in th
AFM correlated state.18,15 We thus expect the same to ho
even in RVB spin liquids with strong short-range AFM co
relations but no long-range order. The primary effects at l
doping may be to shift the ordering wave vector.

We denote bytd8 (th8) the coefficients of second~third!
nearest-neighbor hopping terms. Forth8.td8/2 the single-hole
bend minimum is atkmin5(6p/2,6p/2); otherwisekmin

56(0,p),6(p,0). Here we putth851, td850.5.

Results for the expectation value ofHt8 are plotted in Fig.
10. The single-hole hopping, Eq.~33!, prefers the metallic
statesv5vmet over states withv5vs ,vd .12 It also prefers
longer-rangeu(r ) and thus actuallyenhancesmagnetic order
at low doping. This is a type of a Nagaoka effect, whe
mobile holes separately polarize each of the sublattices
romagnetically.

C. Double-hopping energy

We consider Cooper pairs hopping terms

H J852J8S (i jk D i j
† D ik1 (

^ i j &,i 8 j 8
D i j

† D i 8 j 8D . ~34!

Calculation ofH J8 matrix elements is discussed in Append
B3. The first term inH J8 is derived from the largeU Hub-

FIG. 9. The average number of loops (n̄l) vs the number of
sites on a loop (l l). The state is withu5uMF , which is derived
from the Schwinger-boson mean field theory ofH J. The size of the
lattice isL5128. Forl l&130,nl} l l

22.7.
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330 PRB 62MOSHE HAVILIO AND ASSA AUERBACH
bard model to orderJ85t2/U.15 It includes terms~a! and~b!
in Fig. 11. Term~a! is a rotation of the singlet pair. It is
positive forvs ~Ref. 12! and hence prefersvd overvs . Term
~c! in Fig. 11 is a paralleltranslation of singlets. It prefers
superconductivity withv5vd or v5vs over metallic states
with v5vmet.

20 For x50.1, H J8 is minimized byvd .
In Fig. 12 the ground-state energyEph of Eq. ~34! is plot-

ted for v5vd , u5up , and u5uex . Here x50.1, and the
size of the lattice isL540. The variational energy is mini
mized atp53.35 andj2150.35, for uex and up , respec-
tively. In both cases, by the finite-size scaling of Figs. 4~b!
and 4~d!, it indicates vanishingm0 at L→`. Thus, Cooper
pair hopping drives the ground state toward a spin liqu
phase.

The Gutzwiller approximation fails to predict this effec
According to the GA, the minimum of the double-hoppin
energy roughly coincides with the minimum of the magne
energy (̂ H J&). This is understood by~see Appendix C!

^Si
1Sj

2&GA52^ai
†bj

†&GA
2 ,

wherei PA, j PB. The GA agrees with Monte Carlo resul
for matrix elements oflong-rangepair hopping.

The matrix element of~d! in Fig. 11 and^ni
fnj

f& also
drives the ground state toward a spin liquid, and prefers

FIG. 10. The single-hole hoping energyEhop , Eq. ~33!, vs local
magnetization squaredm0

2 for metalic hole distributions, and spi
bond amplitudesup and uex . The density of holes isx50.1 and

lattice size isL540. In Ht8, th851, td850.5, and the single-hole
band minimum is atkmin5(6p/2,6p/2). The single-hole hopping
prefers longer-rangeu(r ) and hence higher local magnetic mome
It also pefers metallic states overv5vs ,vd ~Ref. 12!.

FIG. 11. ~a!, ~b!, and~c! are the terms ofHJ8, Eq. ~34!. Dashed
line and open circles5 D. Term~a! is a rotation of a singlet pair; it
distinguishes betweens- to d-wave superconducting order param
eters. The term~c! prefers vd(s) over metallic states withvmet.
Term ~d! dependence on the variational parameters is similar to
of ~c!; it is excluded due to thermal noise.
u-

perconducting over metallic states.12 These terms are ex
cluded due to relatively large thermal noise.

VI. RELATION BETWEEN SUPERCONDUCTING Tc

AND LOCAL MAGNETIZATION

SinceH J8 is the effective model which drives superco
ductivity, it produces phase stiffness, which in the continu
approximation is given by

H J8'
V0

2 E d2x~¹f i !
2. ~35!

The stiffness constantV0 can be determined variationall
from the doped RVB states. Imposing a uniform gauge fi
twist onD, D i , j→D i , j exp@ i (xi1xj )f/2L#, ^H J8& becomes,
to second order inf/L,

Eph5
V0f2

2
,

V05
d2Eph

df2
52J8~^D0,ŷ

†
D0,x̂&1^D0,x̂

†
D0,2 x̂&1^D0,ŷ

†
D x̂1 ŷ,x̂&!.

~36!

Following Ref. 9, at low doping for the square latticeV0 is
roughly equal toTc .

In Fig. 13 we show our main result: The staggered m
netizationm0(p) for H J1H J8 is plotted against the super
conducting to magnetic stiffness ratioV0(p)/J for different
doping concentrationsx50.05,0.1,0.15, v5vd , and u
5up . The actual free parameter in the graph isJ8/J, from
which m0 andV0 are determined variationally. Two primar
observations are made:~i! The local magnetization is sharpl
reduced at relatively low superconducting stiffness~and
Tc /J). ~ii ! The relation betweenm0 andV0 /J appears to be
independent ofx.

at

FIG. 12. The expectation value ofHJ8, Eq.~34!, Eph , vsm0
2, for

up anduex . In contrast to the magnetic energy, Fig. 8,Eph prefers
a vanishing m0 at L→`. Note how similar the graphs are foruex

andup .
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For uex , Eq. ~14!, it requires V0(j)/J50.49 for ^H J

1H J8& to be minimized atj2150.3. By Fig. 4~b! this leads
to m0

L5`50.

VII. SUMMARY AND DISCUSSION

In this paper we used extensive Monte Carlo calculati
to study properties of hole-doped RVB states. We found t
an effective model which includes Heisenberg and pair h
ping terms is consistent with the experimental connect
between superconductivity and the reduction of the lo
magnetic moment. Within checked variational options
showed that the properties of the model are independen
the particular choice of parameters for the state. T
Gutzwiller mean field approximation for magnetic corre
tions was found to agree with Monte Carlo calculations, a
used for analytical extrapolation of the numerical results.
showed that long-range magnetic correlations in RVB sta
are extremely sensitive to variational parameters. We fo
that the average loop density is well correlated with the m
netic energy. We conclude this paper with several argum
and insights regarding our results.

Magnetic energy and long-range magnetic correlatio
Note the contrast between correlation lengths~23! and ~24!,
and the ‘‘shallowness’’ of the minima of the magnetic e
ergy in Fig. 8. It implies that a very weak pair hopping ter
in the Hamiltonian causes a dramatic change in long-ra
magnetic correlations.

Magnetic energy and loop density:A comparison be-
tween loops~a! and ~b! in Fig. 14 shows that large ampli
tudes (VL) of DLCs with ‘‘denser’’ loops enhance the prob
ability to find nearest-neighbor sites on the same loop
reduce the magnetic energy.

The loop density shows that the optimal bond amplitu
is determined by an intricate balance betweenm0 and r g .
This relatesquantum spin fluctuationsto the average loop
density of the ensemble.

Effective model for doped system:H J1H J8 describes the

FIG. 13. The relation between thermodynamic local magnet
tion m0

L5` and superconducting phase stiffnessV0 ~related toTc ;
see text!. u5up , Eq. ~13!. J is the Heisenberg exchange energ
The points are consideredupper boundson m0, which, forup , may
even vanish forV0 /J>0.2. For uex , Eq. ~14!, m0 vanishes for
V0 /J>0.5.
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low-energy physics of the lightly doped cuprates. As the l
tice is doped, its variational ground state is ad-wave super-
conductor, with a sharply reduced local magnetic mome
The model includes built-in pairing. Such a model is su
ported by the existence of a pseudogap in the normal sta
the highTc materials.

Relation between phase stiffness and local magnetizat
Because of finite-size uncertainty,m0

L5` in Fig. 13 is an
upper bound on the thermodynamic local magnetization.
sharper reduction of the local magnetization occurs if~a! the
GA result of Appendix C3,m0(ur5r 23)50, is correct to
the discrete lattice. In that casem0 vanishs already atV0 /J
>0.2, or~b! in finite doping the optimal bond amplitude fo
H J1H J8 decays exponentially. In that casem0 vanishes for
V0 /J*0.5. Variationally, we cannot rule out this possibilit
In both of these cases there is a qualitative agreement
the doping dependence of the local magnetization andTc , as
measured by Refs. 2 and 1.
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APPENDIX A: THE FERMION PART
OF THE DOPPED RVB STATE

The fermion part ofuC@u,v,x#& is

uC~x!& f5PG~Nh!expF (
i PA, j PB

v i j f i
†f j

†G u0&

5
1

Nh

2
!
F (

i PA, j PB
v i j f i

†f j
†GNh/2

u0&, ~A1!

whereNh5xL2. We write this state as

uC~x!& f[(
g

C~g!)
k51

Nh/2

f i k
† f j k

† u0&, ~A2!

whereg is a distinct configuration ofNh holes sites:

-

FIG. 14. Two kind of loops:~a! ‘‘dense loops,’’ which fully
cover small regions of the lattice, and many nearest-neighbor p
Bond amplitudesu which maximize the weight (VL) of loop con-
figurations with such loops minimize the magnetic energy.~b! ‘‘Di-
lute loops,’’ which contribute very few nearest-neighbor bonds
the magnetic energy, Eq.~22!. Loop ~a! is denser, in the sense tha
it covers more sites on roughly the same ‘‘area’’[(r g

l)2, Eq. ~31!.
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g[$~ i kPA, j kPB!%k51
Nh/2:;k,k8i k, i k8 , j k, j k8 .

From Eq.~A1!

uC~Nh!& f5
1

Nh

2
!
(
g

va1b1
3•••3vaNh/2bNh/2

f a1

† f b1

†

3•••3 f aNh/2

† f bNh/2

† u0&,

where a lP$ i k%k51
Nh/2,b lP$ j k%k51

Nh/2 . For eachg we commute
pairs of operators, without any affect of sign, and orderA
holes operators in an increasing order of their site index

uC~Nh!& f5(
g

(
s

v i 1 j s(1)
3•••3v i Nh/2j s(Nh/2)

f i 1
† f j s(1)

†

3•••3 f i Nh/2

† f j s(Nh/2)

† u0&,

wheres5s(Nh/2→Nh/2). Commuting theB operators we
get

C~g!5detV~g!,

whereV is anNh/23Nh/2 matrix with

V~g!kl[v i kj l
.

When v connects same-sublattice sites the determinan
replaced by a Pffian.12
is

APPENDIX B: EXPRESSIONS
FOR EXPECTATION VALUES

1. Alternative calculation of magnetic correlations

We use the operator identity15

2D i j
† D i j 5FSi•Sj2

1

4G~12 f i
†f i !~12 f j

†f j !, ~B1!

whereD i j 5 f i
†f j

†(aibj2biaj )/A2, to expresŝSi•Sj&.
We show that fori PA, j PB andu(r ).0 ;r

FIG. 15. According to Eq.~B4!, Mi j
† Mi j ub1&5Mi j

† Mi j ub2&
5ua i j &. Mi j [aibj2biaj .
Si•Sj~g,Lg!22
1

4
1

x

2
55

2
1

2 S (
( l ,n)Pa

l 5” i

ul j uin

ulnui j
12D , ~ i , j !Pa~Lg!,

1

4
, i , j Pg,

0, otherwise,

~B2!
na-

ket

ing
wherea(Lg) is the set of forward bonds inLg , of the sites
on sublatticeA.

We demonstrate Eq.~B2! for a half-filled lattice (̂ f i
†f i&

50). With Mi j [(aibj2biaj ),

Mi j M i j
† u0&52u0&, ~B3!

Mi j M ik
† Mm j

† u0&5Mmk
† u0&, ~B4!

and hence

Mi j
† Mi j uC@u#&5(

a i j F S (
( l ,n)Pa i j

l 5” i

ul j uin

ulnui j D 12G
3S )

( l ,n)Pa i j

ulnD ua i j &,
whereua i j & is a valence bond state, with (i , j )Pa i j .
The term in the square brackets requires further expla

tion. From Eq. ~B4!, for any pair (l ,n)Pa i j : l 5” i , ua i j &
5Mi j

† Mi j ub&, where (i , j ), (l ,n)¹b, (l , j ), (i ,n)Pb, and
otherwiseb5a; see Fig. 15. InuC@u#&, eachub& carries a
factorul j uin . Equation~B3! indicates an additional option to
get ua i j & , from ua i j & .

Taking the overlap witĥ C@u#u, we get the matrix ele-
ment which is expressed in terms of Eq.~B2!. Herea i j rep-
resents the ket. A possible definition of the bonds of the
is the forward bonds of the sites on sublatticeA.

2. Matrix element of single-hole hopping term

Figure 16 describes the effect of a single-hole hop
term on a hole-pair configuration. Using definition~11!, for
i ,kPA,
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f i
†f k~ak

†ai1bk
†bi !~g,Lg!

5H detV~gk!

detV~g!

uil

ukl
ski , if i Pg, k¹g,

0, otherwise,

~B5!

wherei ¹gk , kPgk , and otherwisegk5g; (k,l )PLg is the
forward bond ofk ~i.e., originated in the ket!, andski561
comes from reordering the fermion operators. Relation~B5!
is simplified using12

detV~gk!ski5detV~g,i→k!, ~B6!
he

,

with

V~g,i→k!rp5H v~k, j p!, i r5 i ,

V~g!rp , otherwise.
~B7!

3. Matrix elements of the double-hopping terms

For ur.0 ;r we expresŝ Dkl
† D i j &, whereD is given in

Eq. ~26!. HereDkl
† creates a singlet bond.D i j creates a pair

of holes. With the results of Appendix , fori PA, j PB,
Dkl
† D i j ~g,Lg!55

s

2ukl

detV~ga!

detV~g! S (
(r ,n)Pa(g)

r 5” k

ur j uin

urn
12ui j D if ~k,l !Pa~g!,

i Pg if i 5” k,

j Pg if j 5” l ,

0, otherwise,

~B8!
Where s521 if i 5k exclusive or j 5 l and 1 otherwise;
V(ga)[V(g,i→k, j→ l ) is defined like Eq.~B7!, with a
possible replacement of a rowanda column, anda(g) is the
set of forward bonds ofA sublattice sites inL(g).

APPENDIX C: THE GUTZWILLER APPROXIMATION

The Gutzwiller approximation amounts to dropping t
projector P(x) in definition ~3! and setting uC@u,v;x#&
→uc̄@yu,zv#&5uyu& ^ uzv&. The constantsy5y(u) and z
5z(v) are determined by the global constraint equations

^ai
†ai&5^bi

†bi&5~12x!/2, ~C1!

^ f i
†f i&5x, ~C2!

for y, z, respectively. In this section ^•••&
[^c̄u•••uc̄&/^c̄uc̄&.

uyu& is a Schwinger bosons mean field wave function15

on which we preform the Marshall transformation15 aj→
2bj , bj→aj , j PB. Hence

uyu&→expS y(
i j

ui j ~ai
†aj

†1bi
†bj

†! D u0&. ~C3!

FIG. 16. The operatorf i
†f k(ak

†ai1bk
†bi) turns a hole-pair con-

figurationgk , a(gk) ~left!, with kPgk , (i ,l )Pa(gk), to the right
configurationg, a(g) with i Pg and (k,l )Pa(g). In f i

†f k(ak
†ai

1bk
†bi)uC&, this configuration has the coefficientsuil and

detV(gk).
Operators are transformed accordingly, for example,Sj
2→

2aj
†bj for j PB.

From Eqs.~C1! and ~C2!,

^Si
1Si

2~12 f i
†f i !

2&5^ni
a~11ni

b!&^~12ni
f !2&

5
12x

2 S 11
12x

2 D ~12x!2, ~C4!

whereas^CuSi
1Si

2(12 f i
†f i)

2uC&/^CuC&5(12x)/2. Thus
we use

~12x/3!21^Si
1Sj

2& ~C5!

as the GA for the long-range magnetic correlations andm0 in
the doped RVB state.Empirically we omit the (12x/3)21

factor in the estimates of magnetic energy.
Using the extended Wick theorem,21 for i PA,

^Si
1Sj

2&

5H 2^ai
†biaj

†bj&52^ai
†aj

†&^bibj&[2r i j
2 , j PB,

^ai
†bibj

†aj&5^ai
†aj&^bj

†bi&1d i j /2[s i j
2 1d i j /2, j PA,

~C6!

where we used, for example,^ai
†bj&5^ai

†bj
†&50.

Expandinguk5( je
ik ju0 j , rk5( je

ik jr0 j and a similar
expression forsk ,21

rk5
yuk

12y2uk
2

~C7!

and

sk5
y2uk

2

12y2uk
2

. ~C8!

The constraint equation~C1! becomes
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y2

L2 (
k

uk
2

12y2uk
2

5
12x

2
. ~C9!

We consider three cases.

1. Exponential bond amplitude

We calculate the spin-spin correlation function for

u~r !5H exp~2r /j!, r bipartite,

0, otherwise,
~C10!

with j@1.

uk5H E d2r exp~2r /j!exp~2 ik•r !52pj21/~k21j22!3/2, kPMBZ,

uk52ukÀp , otherwise,
~C11!
e
l-

.

tl

.

er

m-
eal
where MBZ5 magnetic Brillouin zone. Equation~C9! be-
comes

2y2

j2 EMBZ

d2k

~k21j22!32~2pj21y!2

5
py2

j2 E
j22

` dk

k32~2pj21y!2
5

12x

2
, ~C12!

where we multiplied the left side in 2 to account for th
integration over the complete Brillouin zone. In all our ca
culations we took the continuum limit~lattice constant→0!,
where the upper bound of the integration→`. This approxi-
mation works very well for slow decaying bond amplitude12

Equation~C12! gives22

1

3~2p!1/3S y

j D 2/3

3H 2pA322A3 arctanF 1

A3
S 11S 2

p2y2j4D 1/3D G
1 lnF4S py

j D 4/3

12S 2p2y2

j8 D 1/3

1
22/3

j4 G
22lnF21/3

j2
22S py

j D 2/3G J 5
12x

2
. ~C13!

The argument of the last logarithm has to be sufficien
close to zero for Eq.~C13! to be satisfied. Therefore

21/3j2222~pyj21!2/3'0⇒y'
1

2pj2
. ~C14!

Hence we can neglect on the left side of Eq.~C13! all terms
but the last logarithm. Consequently,
y

y2>
1

~2p!2j4 H 12
3j2

21/3
expF2~12x!

3pj2

2 G J [
1

~2p!2j4
D.

~C15!

Equation~C6! becomes

s r52E
MBZ

d2ksk exp~ ik"r !

5
D

2pj6E dk
kJ0~kr !

~k21j22!32j26D , ~C16!

whereJ0 is the Bessel function.22 Since the integrand in Eq
~C16! vanishes ask→0, we can replaceJ0 with its approxi-
mation forkr@0. Expanding the denominator to first ord
in k2,

s r>
D

6pArpj2E0

`

dk
Ak

k21a2
@cos~kr !1sin~kr !#

[
D

6pArpj2
Y0 , ~C17!

wherea25(12D)/(3j2). In the definition

Y1[E
0

`

dk
Ak

k21a2
exp~ ikr !,

Y05ReY11Im Y1. Let us consider the integral

Y25 R dz
Az

z21a2
exp~ izr !5E

eip`

`

dk
Ak

k21a2
exp~ ikr !,

where the close contour encircles the upper half of the co
plex plane. The part of the contour along the negative r
axis is
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E
eip`

0

dk
Ak

k21a2
exp~ ikr !5 i E

0

`

dk8
Ak8

k821a2
exp~2 ik8r !

5 iY1
! ,

where we substitutedk85e2 ipk. HenceY25Y11 iY1
!5(1

1 i )(ReY11Im Y1)5(11 i )Y0. Using the residue metho
for Y2,

s r}
exp@2rA~12D!/~3j2!#

Ar
, ~C18!

and with Eq.~C15! we find for the correlation length of th
spin-spin correlation functionjex :

jex'A 3j2

4~12D!
521/3expF ~12x!

3p

2
j2G . ~C19!

2. Gaussian bond amplitude

We calculate spin-spin correlation function for

ur5H exp~2mr 2!, r bipartite,

0, otherwise.

For kPMBZ,

uk5
p

m
expS 2

k2

4m D . ~C20!

Equation~C9! is

m

2pE0

1 dt

m2

p2y2
2t

5
12x

4
, ~C21!

with the solution

y25
m2

p2 H 12expF2~12x!
p

2mG J [
m2

p2
G. ~C22!

Calculation ofs r is identical to the exponential case. Subs
tuting in Eq.~C17! a252m(12G),

s r}
exp@2rA2m~12G!#

Ar
, ~C23!

and hence the spin-spin correlation function decays expo
tially with correlation length:

jg5
1

A8m~12G!
5

1

A8m
expF ~12x!

p

4mG . ~C24!
v

-

n-

3. Power law bond amplitude

For the bond amplitude

ur5H e3

~r 21e2!3/2
, r bipartite,

0, otherwise,

~C25!

we show, in the continuum limit, that for 0,e,e0 , S(p,p)
is finite and hencem050.

Calculations of the GA on lattices of sizeL<512 show
that for anye, the spin-spin correlation function calculate
with function ~C25! decays slower than withu51/r 3. This
suggests thatm050 for u51/r 3.

S~p,p!5(
j

u^Sr j

1S0
2&u5(

j
s r j

2 1r r j

2 1
1

2

5
1

L2 (
q

~sq
21rq

2!1
1

2
,

where we used Eq.~C6!. For kPMBZ,22

uk52pe2e2ek. ~C26!

From Eqs. ~C7! and ~C8!, rk →
k→`

e2ek and sk →
k→`

e22ek.
HenceS(p,p) might diverge only if there isk0 such that
(12ae22ek)k5k0

50, where a5a(e)5(2pye2)2. There-

fore, if a,1, S(p,p) is finite.
Equation~C9! for y is

a

pE0

`

dk
ke22ek

12ae22ek
5

a

pE0

`

dk
k

e2ek2a
5

12x

2
,

~C27!

which becomes22

(
p51

`
ap

p2
5pe2~12x!. ~C28!

The right side of Eq.~C28! is y independent, and increase
with e; hencea increases withe. Thereforea(e0)51. For
a51, the left side of Eq.~C28! is p2/6 and

e05A p

6~12x!
, ~C29!

and fore,e0 , S(p,p) is finite and hencem050.23
,
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