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Correlations in doped antiferromagnets
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A comprehensive study of doped resonating valence bond states is performed. It reveals a fundamental
connection between superconductivity and quantum spin fluctuations in underdoped cupoaigs: pair
hoppingstrongly reduces the local magnetizatiog. This effect pertains to recent muon spin rotation mea-
surements in whichm, varies weakly with hole doping in the poorly conducting regime, but drops precipi-
tously above the onset of superconductivity. The Gutzwiller mean field approxim{@idhis found to agree
with numerical Monte Carlo calculations. The GA shows, for example, that for a bond amplifude
=e~ "¢, spin-spin correlations decay exponentially with a correlation Iengﬁf‘?z’z. The expectation value of
the Heisenberg model is found to be correlated with the average loop density.

[. INTRODUCTION cal low-energy effective Hamiltonian is proposed, with two
major components: Heisenberg interaction for spins and
When holes are introduced into the copper oxide planes adingle or Cooper pair hopping kinetic energy for fermion
high-T. cuprates, spin and charge correlations change draioles.
matically. Thelocal magnetizationrm,, measured by muon Regarding this model our key results are the following.
spin rotatiod (xSR) on, e.g., La ,SrCuQ,, reveals a (i) For the magnetic energy alone, the local magnetization
qualitative difference between the insulating and superconmg is weakly dependerdn doping concentration. This holds
ducting phasesmy is rather insensitive to doping in the independently of interhole correlations for either randomly
poorly conducting regime €x=<0.06, but drops precipi- localized or extended states.
tously above the onset of superconductivityxat0.06, be- (i) In contrast ta(i), my is strongly reduced by the kinetic
coming undetectable at optimal dopimg=0.15. Theoreti- energy ofCooper pair hoppingwhich correlates the reduc-
cally, holes can causalilution and frustration in the tion of my with the rise of superconducting stiffness and,
Heisenberg antiferromagnet, which create spin textures: ehence’ the transition temperaturE, .
ther random(“spin glass™) or with ordering wave vector These results agree with the experimentally reported cor-
away from (r,7) (sometimes called “stripes’® However, relation betweerm, and T..* This relation appears to be
the apparent reduction of local magnetization by the onset ofveaklydependent on the precise hole density.
superonductivity is a novel and poorly understood effect. We also find that RVB states have the following proper-
Theory must go beyond purely magnetic models, and involvéies.
the superconducting degrees of freedom. (i) The magnetic energy is correlated with the average
We find that this problem is amenable to a variationalloop density:F=L2m§/(average radius of gyration of a
approach, using hole-doped resonating valence HBiwB) loop)?, whereL is the linear size off the lattice.
states' The RVB states were originally suggested by Ander- (i) The Gutzwiller mean field approximatiofGA) for
son to describe the spin and charge correlations in the highmagnetic correlations is in good agreement with the Monte
T. cuprates. They are excellent trial wave functions for the Carlo results.
doped Mott insulators, with large Hubbard repulsldrsince (i) Long-range magnetic correlations in RVB states are
(i) configurations with doubly occupied sites are excludedextremely sensitive to changes in the singlet bond amplitude
and (i) Marshall’s sign criterion for the magnetic enefdg  u. For example, withu(r) =exp(—r/¢) the spin-spin correla-
satisfied, and the Heisenberg ground state energy and antien function decays exponentially with correlation length
ferromagnetism at zero doping is accurately recovéfed. £, exf(1—x)(37/2)£?], wherex is the hole concentration.
The hole-doped RVB state is a new class of variational The paper is organized as followed: Section Il introduces
states, in which spin and charge correlations are paranthe hole-doped RVB state, and discusses the numerical pro-
etrized independently, without explicit spin or gauge symme-cedure. Section Il defines our variational parameters. Sec-
try breaking. Such parametrization allows states with magtion IV deals with the antiferromagnetic and superconducting
netic and independentlgl or s wave superconductin¢pff- order parameters. Section V deals with the components of
diagona) order or disorder, thus permitting amnbiased the effective Hamiltonian. Section VI correlates between su-
determination of ground-state spin and charge correlationperconductingT, and local magnetization. Section VIl is a
appropriate for the cuprates. These are important advantageammary and discussion.
over commonly used spin-density-wave, Hartree-Fock, and The paper has three appendixes. Appendix A reduces the
BCS wave functions. hole part of the doped RVB to a numerically convenient
A comprehensive study of the state is performed usindormat. Appendix B derives expressions for expectation val-
Monte Carlo and mean field calculations. A phenomenologi-ues. Particularly, an alternative procedure to calculate the
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FIG. 1. A bond configuration in the doped RVB stat&pu,uv].
Solid (open circles represent spindoles with bond correlations
uij (via)-

magnetic correlation is derived and used to check the comg,
puter program. In Appendix C, the GA is performed analyti-

cally.

Il. HOLE-DOPED RESONATING
VALENCE BOND STATES

A valence bondVB) state is

lay=_11 (albj-biap|o), @

Ne

where « is a pair covering of the latticea’ b are
Schwinger bosons, an=1, ... L2 is a site index on a
square lattice.

RVB states are superposition of VB states. We restrict the

disscussion to

wiu=2> [l uja'b/—bla)o), )

a ())ea

where u(r;;)=0 is a variational singlet bond amplitude,
which connects sites of different sublatticAsand B only.
This ensures Marshall’s sidgh.

The hole-doped RVB state is defined by

[W[u,v;x])=Pe(x)|¥u,v])
3
|J[u,v]>zex;{ > vt/ +u;(a’b]—bla)1]|0),
A,jeB

ie

Whereffr are spinless hole fermions;;=0, andv(r;;) is an
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(VLU =2 Oy, 6)
whereA is a DLC,
=11 (21_[ Uij), (7)
AeA (i,j)ex

and\ is a directed loop.
With the results of Appendix A, the norm of the doped
VB state is

(Plu,vx]|Pluvix]y= X W(yA(y), (8
¥, A(y)

wherey is adistinct configuration ofN,, holes sites:

y={(ie A je B <i

A, is a DLC which coveres the lattice but the hole sites,

V<K' <iyr,

defV(y)Qy . x>0,

W(y,A,)= 9
(v A) 0, X=0, €)

andV is anNp/2X N,/2 matrix with
V(Y=vi- (10

Expectation value of an operat® is expressed as a
weighted sum

1 _
(0= g9y > W(y,A,)O0(y,A,)=0, (11

Ay

whereO(y,A,) is defined by Eqs(9) and(11).

We use standard Metropolis algoritfhfor the evaluation
of sum(11). The basic Monte Carlo step for updating the
DLCs is the one used by Ref. 7: Choose at random a site and
one of its next-nearest neighbors and exchange, with transi-
tion probability that satisfies detailed balance, the bonds con-
necting each of them, either to the next giterward bond
or the previous site in their loops. In Ref. 12 we show, that
for u,>0Vr, these steps arergodic that is, any DLC can
be reached from any other by a sequence of Monte Carlo

independentole bond parameter. The Gutzwiller projector St€pS. _ _ .
Ps(X) imposes two constraints: a constraint of no double For the fermion holes our update scheme is a simple gen-

occupancy

nL+nL+ni=1 Vi, (4)
and a global constraint on the total number of holes,
Z ni=xL?=Nj,. (5)

Due to Pg(x), ¥ can be written as a sum over bond con-

eralization of the “inverse-update” algorithm of Ceperley,
Chester, and Kalo$§ According to Eq.(10), changing a po-
sition of anA (B) sublattice hole amounts to changing one
row (column in the matrixV. In our calculation boundary
conditions are periodic.

For the dimer-doped RVB state, where

1, Irijl=1,

0 (12

R otherwise,

we obtained exact results using the transfer matrix technique.

figurations of singlets and hole pairs which cover the latticeFor a 4x 40 undoped latticé the magnetic energy Bmag

as depicted in Fig. 1.

An overlap of two VB stateg,a|B), is expressed in terms
of a directed loop covering of the lattig®LC),”*%* and
hence

—0.320744/bond. The Monte Carlo result is 0.3210
+0.0002.({S,S;) is exponentially decaying with correlation
length of £4imer= 0.724; the Monte Carlo result is 0.738. Ex-
act and Monte Carlo results for the dopetk @4 laddet?
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FIG. 2. Exact and numerical Monte Carlo results of magnetic
energy and correlation length of the spin-spin correlation function

vs hole doping« (Ref. 12. Dimersv andu, Eq.(12), are used on a
2X 64 ladder.

appear in Fig. 2. Our program successfully reproduced exist-
ing data for RVB state§®1? Other tests of the program ap-

pear below.

We also use the GA to evaluate expectation values in the

doped RVB state. The GA is discussed in Appendix C.

Ill. VARIATIONAL PARAMETERS

In the undopedx=0, case we treat three classes of the

singlet bond amplitude:

1
1 r
uex(r) = usr(r) meXF{ - E) ) (14)
ug(r):usr(r)exq_Qrz)a )
with u(1)=1 and
Ug(r)y=a; ex;{ — gL +ay, (16)

where, forug, (ug), &,"=1.7(2) anda,=0.05(0.018. Here
us, determines the short-range decayuf, and uy.™* We
also usau=uy . Hereuy is derived from the Schwinger-
boson mean field theory of the Heisenberg mdaélFor x
>0 we useu,, Eq.(13), andue,, Eq.(14).

For the functiorw the following cases of interhole corre-
lations are treated:

1, (Lpew,

vins(1ii) =) o (i) &y,
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FIG. 3. v=0v®". 3 is centered at Fermi pockets aroukgli,
=(x=m/2,=w/2). Within the pockets o= *1; otherwisev et
=0. Note thatv ¢ hasd,2_,2 symmetry.

1 :
met mete—|k<r
v =3 v ,
' L2 kgz k

V(D=2 c(M&;, a=sd, (17)
n
where [v]"®|=1, 7 are nearest-neighbor vectors on the
square latticegs=1, andcy= 75— 7} .
vihs puts theN, holes on random sites. This state de-
scribes an insulator with disordered localized charges.

Umet describes weakly interacting holes in a “metallic”
state:

;(1;[2 fl|0>:,PG(X)eXF< ; vrknerflfik-%—(w,ﬂ')) |0>

:PG(x)exp< > v{}“e?ﬁf}) |0), (18
ij
where the product is ove,, states,
sgnk), keX,
met_
Uk [ O, k ¢ E, (19)

andv{[®'= 2w *e K71 Here we check which is cen-
tered atk,i,= (+ 7/2,= w/2). See Fig. 3. Results f& cen-
tered at ky,in,=(0,=7), (=m,0) are not qualitatively
different? v o, obey

Ukt (mm)= — Uk (20)

hencevi“j1et only connectsi e A to j e B. Correlations in a

state withv =v,; Were previously computed by Bonesteel
and Wilkins!®

vs andv 4 describe tightly bound hole pairs in relatige
andd-wave symmetry, respectively.

IV. ORDER PARAMETERS

A. Local magnetic moment
and long-range magnetic correlations

The local magnetization is

1 )
mSZF; <3.5j>efl(mv)(rrrj), (21)

where, e.g..S"=S+iSY=a'b. With respect to Eq(11),
(S-S)=9(r;;) is calculated using
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FIG. 5. (a) Calculations of the spin-spin correlation function
[S(r)] with Monte Carlo simulations and the G#ines) for un-
. doped states witu=u,, Eq. (13). The size of the lattice i
=128. (b) Calculations ofS(r) usingu=u.,, Eq.(14). Note how
0.1 slow S(r) decays. In both cases there is a good agreement between
Monte Carlo and GA, an&(r) weakly effected by doping.
lations and the GA, fou, with p=3.7 andug, with &1
. =0.412 Details of ug,, Eq. (16), have a strong effect on
99,4 02 0.4 long-range spin correlations.

g" We use the GA to extrapolate Monte Carlo calculations
for S(r). In Appendix C1 we find for the exponential bond

FIG. 4. (a) The local magnetization squareaj(p), of doped  amplitudeu(r)=exp(-r/& and&>1 thatS(r) decays expo-
and undoped RVB wave functions vs the variational popede- nentially with correlation length:
fined by Eq.(13). The lattice size is 4840, and in the doped case
the hole concentration is 10%. Results agree with the Gutzwiller 3 5
approximation(lines). The hole bond parametersare defined in Eexr X (1_X)7§ : (23
Eq. (17). mg is weakly dependent on. (b) Finite-size scaling of
my(L) for p=3.3 which indicates vanishing local magnetization at For the Gaussian bond amplitudér)=exp(—ur?) with u
L—o0. (c) m3(&) vs the variational correlation length defined by <1, we find in Appendix C2 tha®(r) decays exponentially
Eq. (14). (d) Finite-size scaling oimy(L) for £~*=0.3 which indi-  with correlation length:
cates vanishing local magnetizationlats .

1 T
3 x—exp{(l—x)—). (29
S S(yAL) +2j are on the same loop i, ’ \/; 4
ORAA 0, otherwise, For u,, Appendix C 3 suggests vanishing long-range order,

(22 my—0, atp.<3.

The correlation length$23) and (24) explain the slow
where the sign is+ if i andj are on the same sublattice. To decay ofS(r) in Fig. Sb). It also indicates that in the
check our program we also used an alternative procedure 6 Systém, a small change in the ground-state parameters
calculate magnetic cerrelations. See Appendix B 1. brings an extremely sharp change in long range magnetic

In Fig. 4@, m3(p) is plotted for W[u,;x=0] and correlations.
W[u,,v;x=0.1] for various choices of . Finite-size scaling )
in Fig. 4b) for x=0.1 indicates vanishing long-range order, B. Superconducting order parameter
my— 0, atp.=3.3. It lowers the bound given previously by  The superconducting singlet order parameters are
Ref. 7: at p,<5. In Fig. 4c), mj(¢ %) is plotted for

WlUey;X=0] and W[ uey,,v;x=0.1]. Finite-size scaling in sd_ ~
Fig. 4(d) indicatesmy—0, at& 1=0.3. In all the cases the A En: Csa(7), (25
GA (lines) works well.
Good agreement between GA and Monte Carlo is als§'here
seen in Figs. & and 8b), whereS(r) is plotted foru,, and
gs. & and §b) (r)isp P A=t (ab;— b))/ V2. (26)

Uex, respectively. Note how slod(r) decays fore1=0.3.
By Fig. 4(b), mg(L)~L~%*?in this state. Exponentially de- The expressions ok matrix elements are discussed in Ap-
caying spin correlations are seen, both by Monte Carlo simupendix B3. By gauge invariance imposed by the Gutzwiller
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FIG. 6. The singlet pair correlation functiof(A®)TAg). Af is N L . e
defined in Eq. (25, and a=s,d. In this graph u=1/33 e 5 T
W[u,v,;x] has superconductin¢off-diagona) long-range order o o - ¥ s
(ODLRO) only of symmetrya. W[U,vme;X] has no ODLRO in — " o -
either symmetry. S s . s
S . %

;A 5 A -
projector, (A% =0. However,¥[u,vyqy ;Xx>0] describes o ‘ LS
true s- (d-) wave superconductors as seen by the singlet pair 3 " "x
correlation function((A®)AS), a=s,d, in Fig. 6. Forv ?{ () =
=v,, lim,_.((A")TAS)+#0, and¥ has(off-diagona) long- S0 0‘1 0'2 °

range order inA,. In contrast, the insulator states 2
W[Uu,vins.X] and the “metallic” states¥[u,vmer,X] have 1,

no long-range superconducting order of either symmetry. FIG. 7. (@ Magnetic energy Eyag Vs local magnetization

squaredmé. Variational parameters are for=0 (left y scale,

V. EFFECTIVE HAMILTONIANS up(P), EQ. (13), uex(é), Eq. (14), and uy(Q), Eg. (15). For x
_ =0.1(righty scalg vy, andu, . lattice size id. =40. The optimal
A. Magnetic energy and related parameters parameters for each appear in Table I. The minimal magnetic

Magnetic order is driven by the diluted antiferromagnetic€n€gy fox=0 is —0.335*0.0003)/bond.(b) The average density
quantum Heisenberg model of a loop per sitd”, Eq. (32), vs m; for variational cases as i@).
In all the cased’ is correlated WithE 5.

; aside from the trivial kinematical constrainthe hole den-
H :J; S-S (27) sity and correlations have little effect on the magnetic energy
D at low doping.
A better understanding of the properties of the optimal
Magnetic energy for x0: In Fig. 7@, EmadP),  bond amplitude fof” is gained by theverage loop density
Emad(€), andE.{Q) are plotted as a function ehj(p),  defined below. From Eq22), a DLC contributes tang, Eq.
mg(g), ande(Q) for uey, Up, andug, Egs.(13), (14), and (21), its number of pairs of sites, which share the same loop,
(15), respectively. Inx=0, all the three bond amplitudes hence
yield a lowest magnetic energy of

3 3
mé=—4( Ii) = —4(2 IM>, (29
Eo= —0.335+0.0005/bond, (28) 4L™\nen, AL Tey
TABLE I. Minimal magnetic energy E;), optimal choice of
For u,, the optimal value op is popiima=2.7, ande(p parameters, and square of the ground-state magnetizatigy, for

=2.7)=0.105+0.005. The ground-state parameters of thevarious bond amplitudes in the undope&e; 0, case. The size of the
Heisenberg model on abh=40 lattice areE(ground state) lattice isL=40. uyg is derived from the Schwinger-boson mean

=0.3347/bond and mg(ground state¥ 0.109Y7 Table | field theory ofH”. The ground-state parameters of the Heisenberg
contains a summary of results for the optimal choice of pamgd3| on arlL =40 lattice areE(ground statey 0.3340/bond and
rameters in all the classes. my(ground statej0.109 (Ref. 17.

Magnetic energy for x0.1: In Fig. 8, Emagz(p) and
Emag(€) are plotted as a function ah3(p) and m5(¢), for
x=0.1 and various choices of from Eq. (17). Within nu-  y_,, Eq.(14 -0.335:0.0005 ¢ 1=0.17+0.005 0.1250.005
merical errors, all states minimizg” at the same optimal ug, Eq.(15 —0.335-0.0005 Q=0.014+0.001 0.12-0.005

parameters as fox=0 (Table ). For up, by Fig. 4a) ity Eq.(13 -0.335:0.0005 p=2.7+0.05 0.1050.005
yields a local magnetization oh;(x=0.1)=0.08. Forue,, UpE —0.3344+0.0002 0.087 0.005

Fig. 4(c) shows m?(x=0.1)=0.1. Thus we conclude that

state Eo(x=0)[J/bond E, parameters mg(x=0)
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FIG. 8. Magnetic energyHy,g). for u, Eq. (13), andue, Eq. o
(14), vs local magnetization squaredf, using various hole distri- FIG. 9. The average number of loops,] vs the number of
butions from Eq.(17). The density of holes ix=0.1 and lattice  sites on a loop|(). The state is withu=uyg, which is derived
size isL=40. Ep,,4 is weakly dependent on interhole correlations. from the Schwinger-boson mean field theoryrof. The size of the
For U, (Ue,), Emag is minimized atm3(p)~0.08(0.1)p=2.7(¢ > lattice isL=128. Forl,<130,neI *".
=0.17).
) B. Single-hole hopping energy

wherel, ==, _,1 is the loop length, ande \;. ThusL?mj A single-hole hopping in the antiferromagneiaFM)
=S(r, ) is proportional to the average loop length per site.background has been shown by semiclassical argufiénts
The average radius of gyration of a loop is to be effectively restricted at low energies to hopping be-
tween sites on the same sublattice:
1
ro=|— rh, 30 ' ,
g (nA xg'\y g) 30 H'= >t it fi(ajai+bib), (33
(ik)eA,B

where wherei,k are removed by two adjacent lattice steps, &nd

>0. Unconstrained, the single-hole ground statedbf has
1 5 momentum on the edge of the magnetic Brillouin zone, in
W ijEd (ri=rps (3D agreement with exact diagonalization ted clusters'® Pre-
A vious investigations have found thiatersublatticehopping
(thet term in thet-J mode) is a high-energy process in the
AFM correlated staté®'® We thus expect the same to hold
even in RVB spin liquids with strong short-range AFM cor-
relations but no long-range order. The primary effects at low
doping may be to shift the ordering wave vector.
L2m3 We denote byt (t}) the coefficients of secongthird)
: (32 nearest-neighbor hopping terms. Efr-t;/2 the single-hole
bend minimum is ak.,ij,= (% 7/2,% 7w/2); otherwisekmin

The average loop densify is plotted in Fig. Tb), in the  — ~ (0:7), = (m.0). Here we put;=1,13=0.5. o
undoped case for all the bond amplitudds), (14), and Results for the expectation valuetdf are plotted in Fig.
(15); and in the doped case foF[U, v mer;X=0.1]. Com- 10. The single-hole hopping, E¢33), prelfzers the metallic
parison with Fig. 7a) shows thatl’ is correlated with the —Stale€Sv=uvpe OVer states withy =vs,vq.™ It also prefers
magnetic energy. For vanishimg,, I' converges to its value onger-rangeu(r) and thus actuallgnhancesnagnetic order
in the dimer RVB state, Eq12), wherel'(dimer RvB)~9.6. ~ at low doping. This is a type of a Nagaoka effect, where
This value of " is only slightly larger than that of an en- Mobile holes separately polarize each of the sublattices fer-
semble of DLCs, which include only configurations with fomagnetically.
two- (or four-) site loops with dimer bonds. For such loops
ry=0.5(or y2/2) andl'=1,/r,=8. C. Double-hopping energy

The occurrence of loop lengths, | is interes'@g. In Fig. We consider Cooper pairs hopping terms
9 we plot an histogram of the number of loops, ] versus
the number of sites on a loop,). The size of the lattice is
L=128, andu=uyg, which is derived from the Schwinger-
boson mean field theory 61 °.*° For all the bond amplitudes

and lattice sizes we have checkeg(l) decays either alge- Calculation ofH ' matrix elements is discussed in Appendix
braically or exponentially. B3. The first term i is derived from the larg&) Hub-

1
=1 3, (=rkm=

with rém.z(lll V) Zieali, andn, is the number of loops in
the DLC A. With Egs.(29) and (30) we define the average
density of a loop per site:

I'=

2
Iy

HY=—J ”Ek AiTinka(‘_)E. Ajdig | (39
ij ,I’j’
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FIG. 10. The single-hole hoping energy,,, Eq.(33), vs local ,
magnetization squareah3 for metalic hole distributions, and spin FIG. 12. The expectation value b’’, Eq.(34), E,, vsmj, for
bond amplitudess, and ue,. The density of holes ixk=0.1 and ~ Up @ndUe,. In contrast to the magnetic energy, Fig.B;, prefers
lattice size isL=40. In Ht'l t/=1, t,=0.5, and the single-hole a vanishing n3 at L—oo. Note how similar the graphs are fag,
band minimum is ak,= (= /2, m/2). The single-hole hopping &"dUp-
prefers longer-range(r) and hence higher local magnetic moment.
It also pefers metallic states overvg,vq (Ref. 12. perconducting over metallic statfsThese terms are ex-

cluded due to relatively large thermal noise.

bard model to orded’ =t%/U.*° It includes termga) and (b)
in Fig. 11. Term(a) is a rotation of the singlet pair. It is VI. RELATION BETWEEN SUPERCONDUCTING T,
positive forvg (Ref. 12 and hence prefersy overvg. Term AND LOCAL MAGNETIZATION
(c) in Fig. 11 is a paralletranslation of singlets. It prefers
superconductivity withv =v4 or v =vs over metallic states SinceH?' is the effective model which drives supercon-
With v =0 er.2° Forx=0.1,4”" is minimized byv. ductivity, it produces phase stiffness, which in the continuum
In Fig. 12 the ground-state energy, of Eq. (34) is plot-  approximation is given by
ted forv=vy, U=U,, andu=ue,. Herex=0.1, and the
size of the lattice id.=40. The variational energy is mini- v Vol ., )
mized atp=3.35 andé *=0.35, forue, andu,, respec- H ”7J d*x(V ). (35
tively. In both cases, by the finite-size scaling of Fig&)4
and 4d), it indicates vanishingn, at L —c. Thus, Cooper The stiffness constar¥, can be determined variationally
pfﬁlr hopping drives the ground state toward a spin liquid from the doped RVB states. Imposing a uniform gauge field
phase. . _ 7
The Gutzwiller approximation fails to predict this effect. ?g'iggn%' oArid'jeTi%fLexm (xi+x))$/2L], (H™) becomes,
According to the GA, the minimum of the double-hopping '
energy roughly coincides with the minimum of the magnetic

2
energy (#7)). This is understood bysee Appendix € h:V0¢
P 2

<S+Sj_>GA: _<ainJ'T>éA1
2

wherei e A, j e B. The GA agrees with Monte Carlo results VO:d Eph:23/(<ATAA0;>+<A*AA07;>+<ATAA;+9 D).
for matrix elements ofong-rangepair hopping. d g2 oy 0x=% Oy,
The matrix element ofd) in Fig. 11 and(n/n/) also (36)

drives the ground state toward a spin liquid, and prefers su- ] . o
Following Ref. 9, at low doping for the square lattieg is

j roughly equal tor. .
, I . . In Fig. 13 we show our main result: The staggered mag-
J 1 io—aj i A | o 3 3 .
I ! . o-d o—i netizationmgy(p) for H”+H> is plotted against the super-
i*-ok ko  jpo-op . . : : :
(@) () () () conducting to magnetic stiffness ratig(p)/J for different
doping concentrationsx=0.05,0.1,0.15, v=vy4, and u
FIG. 11. (a), (b), and(c) are the terms oH’', Eq.(34). Dashed = Up. The actual free parameter in the graphiigJ, from
line and open circles: A. Term(a) is a rotation of a singlet pair; it Which mp andV, are determined variationally. Two primary
distinguishes betwees to d-wave superconducting order param- Observations are _mad(it) The local magnetization Is sharply
eters. The term(c) prefersvgs over metallic states with,,. ~ reduced at relatively low superconducting stiffnegsd
Term(d) dependence on the variational parameters is similar to thal . /J). (ii) The relation betweemy andV,/J appears to be
of (¢); it is excluded due to thermal noise. independent ok.
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FIG. 13. The relation between thermodynamic local magnetiza
tion mb” and superconducting phase stiffné4s(related toT,;
see text u=u,, Eq.(13). Jis the Heisenberg exchange energy.
The points are consideraghper bound®n mg, which, foru,, may
even vanish forVy/J=0.2. Foru.,, Eq. (14), my vanishes for
Vo /3=0.5.

For Uey, EQ. (14), it requiresVo(&)/J=0.49 for (H’
+H?") to be minimized at~'=0.3. By Fig. 4b) this leads
to my~“=0.

VIl. SUMMARY AND DISCUSSION

In this paper we used extensive Monte Carlo calculation
to study properties of hole-doped RVB states. We found th
an effective model which includes Heisenberg and pair hop
ping terms is consistent with the experimental connectio
between superconductivity and the reduction of the loca
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dilute
(b)

dense
(a)

FIG. 14. Two kind of loopsi(a) “dense loops,” which fully
cover small regions of the lattice, and many nearest-neighbor pairs.
Bond amplitudess which maximize the weight(Q,) of loop con-
figurations with such loops minimize the magnetic enetgy:‘Di-
lute loops,” which contribute very few nearest-neighbor bonds to
the magnetic energy, EqR2). Loop (a) is denser, in the sense that
it covers more sites on roughly the same “aree(rg)z, Eq. (32).

low-energy physics of the lightly doped cuprates. As the lat-
tice is doped, its variational ground state is-avave super-
conductor, with a sharply reduced local magnetic moment.
The model includes built-in pairing. Such a model is sup-
ported by the existence of a pseudogap in the normal state of
the highT. materials.

Relation between phase stiffness and local magnetization:
Because of finite-size uncertaint;;n('foc in Fig. 13 is an
upper bound on the thermodynamic local magnetization. A
sharper reduction of the local magnetization occufg)ithe
GA result of Appendix C3mg(u,=r"3)=0, is correct to
the discrete lattice. In that case, vanishs already a¥,/J
=0.2, or(b) in finite doping the optimal bond amplitude for

I+ decays exponentially. In that casg vanishes for

%/0 /J=0.5. Variationally, we cannot rule out this possibility.

3 both

of these cases there is a qualitative agreement with
the doping dependence of the local magnetizationTandas
easured by Refs. 2 and 1.

magnetic moment. Within checked variational options we

showed that the properties of the model are independent of
the particular choice of parameters for the state. The

Gutzwiller mean field approximation for magnetic correla-
tions was found to agree with Monte Carlo calculations, an
used for analytical extrapolation of the numerical results. W
showed that long-range magnetic correlations in RVB state
are extremely sensitive to variational parameters. We foun
that the average loop density is well correlated with the mag

netic energy. We conclude this paper with several arguments

and insights regarding our results.

Magnetic energy and long-range magnetic correlation:
Note the contrast between correlation lengt®3) and (24),
and the “shallowness” of the minima of the magnetic en-
ergy in Fig. 8. It implies that a very weak pair hopping term
in the Hamiltonian causes a dramatic change in long-rang
magnetic correlations.

Magnetic energy and loop densitya comparison be-
tween loops(a) and (b) in Fig. 14 shows that large ampli-
tudes (1 ,) of DLCs with “denser” loops enhance the prob-
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APPENDIX A: THE FERMION PART
OF THE DOPPED RVB STATE

The fermion part of U'[u,v,x]) is

ability to find nearest-neighbor sites on the same loop and

reduce the magnetic energy.

The loop density shows that the optimal bond amplitude

is determined by an intricate balance betweanandr.
This relatesquantum spin fluctuationto the average loop
density of the ensemble.

Effective model for doped systeﬁi:’+HJ' describes the

|W(X)>f:PG(Nh)eXF{i AEJ BUijfiniThm
e eA,je
1 Nh/2
N ieAZJEB v i 10), (A1)
7.
whereN,=xL?. We write this state as
Np/2
[wo)=2 cinll it} (A2)
> .

wherey is adistinct configuration ofN,, holes sites:
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Np/2 . .
y={(ixeA,jxeB)}, "1 :Vk<K'i\<ip, jk<ji . ; l l l ll I ] ]
From Eq.(Al) IJ n— —mn—
Toet BI Ui
|\I}(Nh)>f_ 2 Vaypy X 'Xv“Nh/zﬁNhlzf%fﬁi
. 1 . lz
1 2 i
K| A1
X - sz f}; |0), n —e n,
Np/2 PNy /2 _ _—
where «; e{ik}l’:ﬁ’f,m e{jk}kgl. For eachy we commute BZ O
pairs of operators, without any affect of sign, and order
holes operators in an increasing order of their site index: FIG. 15. According to Eq.(B4), Mi*jMij|Bl)=Mﬁ|v|ij|ﬁz)
=|aij). Mianibj_biaj .
W(Np) )= . Xy fhef
[ (N = E E Piadow " Vit 11 o APPENDIX B: EXPRESSIONS
w1 t |O) FOR EXPECTATION VALUES
N2 Ja(Nh/Z) !

1. Alternative calculation of magnetic correlations

where o= o (N,/2—Ny/2). Commuting theB operators we We use the operator identHy

get
C(y)=detV(y), L
whereV is anNp/2x Np,/2 matrix with —AfA;; =[s.s,-— L—J(l—frfi)(l— fft),  (BY
V(Y=vi;,-
When v connects same-sublattice sites the determinant iwhereA;; =f[f/(ajb;—b; aJ)/\/E to expresgS- S).
replaced by a Pffial? We show that fon eA,jeB andu(r)>0Vr

L () ea(A,),
2| (3 (i,j)ea(A,)

4 _}( 2 uljuin+2
I#i

1 x
Z! I!J E ’y!
0, otherwise,
|
wherea(A ) is the set of forward bonds iN,,, of the sites where|aij) is a valence bond state, with,{) € @;; .
on sublatticeA. The term in the square brackets requires further explana-
We demonstrate EqB2) for a half-filled lattice (f;rfi> tion. From Eq.(B4), for any pair (,n)e ajj:1#i, |aj)
=0). With M;;=(a;b; —b;a;), M,JM,J|B> where {,j), (I,n)«B, (1)), (i,n)eB, and
R otherwiseB= a; see Fig. 15. IfW[u]), each|B) carries a
Mj|0)=2/0), (B3)  factoruyu;, . Equation(B3) indicates an additional option to
- . get|ajj), from|aj)).
MijM M pi[0)=Mp,J0), (B4 Taking the overlap with'W[u]|, we get the matrix ele-

and hence ment which is expressed in terms of EB2). Herea;; rep-

resents the ket. A possible definition of the bonds of the ket

is the forward bonds of the sites on sublattie

aij (I,n)eaij l‘I|nu|J
| #i

MMy P TuT) =S {( p) M)+2]

2. Matrix element of single-hole hopping term

X

H U|n> i), term on a hole-pair configuration. Using definitighl), for
(In) o ikeA,

Figure 16 describes the effect of a single-hole hoping
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fif(afai+bib)(y,A,)
detV(y,) ﬁs _

= detV(‘)/) Uy ki

0, otherwise,

if iey, kevy,
Y Y (B5)

wherei ¢ vy, ke v, and otherwisey,=vy; (k,1) e A, is the
forward bond ofk (i.e., originated in the ketands,j= =1
comes from reordering the fermion operators. Relati®b)
is simplified using?
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with

U(krjp)v ir:i:

Vni=k)p= V(¥)p, otherwise.

(B7)

3. Matrix elements of the double-hopping terms

Foru,>0Vr we express{Ak,A,,) whereA is given in
Eq. (26). HereAkI creates a singlet bond;; creates a pair

detV(y,)ski=detV(y,i—k), (B6) of holes. With the results of Appendix , foe A, j € B,
|
i detV( ‘ya) urjum +2 1] :fE i’kil |)fe al(l)é
ALA(7.A,)= B L F jey if jq&l: (B8)

0, otherwise,

Wheres=—1 if i=k exclusive orj=1 and 1 otherwise;
V(ya)=V(y,i—k,j—I1) is defined like Eq.(B7), with a
possible replacement of a reanda column, andx(y) is the
set of forward bonds oA sublattice sites in\ ().

APPENDIX C: THE GUTZWILLER APPROXIMATION

The Gutzwiller approximation amounts to dropping the

proj_ector P(x) in definition (3) and setting|¥[u,v;x])
—|ylyu,zv])=|yuy®|zv). The constanty=y(u) and z
=z(v) are determined by the global constraint equations

(afa))=(bb))=(1-x)/2, (Cy

(f1f)y=x, (C2)

for vy, z this

E<$|..

respectively. In

[)I(I]).

section (- --)

lyu) is a Schwinger bosons mean field wave function,

on which we preform the Marshall transformatiora; —
—bj, bj—a;, jeB. Hence

|yu)—>exp< y> u(afal+bfb))||0). (C3)
]

i

oY)

O +—e

o(y)

FIG. 16. The operatof/f(aja;+b]b;) turns a hole-pair con-
figuration y,, a(y,) (left), with ke y,, (i,1) € a(y), to the right
configurationy, a(y) with iey and k,I)ea(y). In f/f (ala

+blb))|¥), this configuration has the coefficients; and
detV(yk)

Operators are transformed accordingly, for examfie;~
—alDb; for j eB.
From Eqgs.(C1) and(C2),
(S's (1= ff)?)=(nf(1+n)))((L-n))?)
1 X
2

whereas(W¥|S"S (1—f1f,)2|W)/(¥|¥)=(1—x)/2. Thus
we use

1+ —) (1-x)%, (CH

(1-x13)"XS"S)) (C5)

as the GA for the long-range magnetic correlations @mgdn
the doped RVB stateEmpirically we omit the (+x/3)*
factor in the estimates of magnetic energy.

Using the extended Wick theorethfor i e A,

(s'sy)

—(ajbjafb))=—(alal)(bib)=—pf, jeB,
<aTbbTa,> (ala;)(blby) + 8j/2=0F+ 5,12, jeA,
(C6)
where we used, for exampléaafr =(a'by=0.

Expandingu,=ZX;e€' Juoj, Pk=2 ekl poj and a similar
expression foir, ,21

Y Uk

= C
Pk 1—y2u§ ( 7)
and
2,2
Yy Uy
o= . C8
Ty (c8)

The constraint equatiofC1) becomes
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2 2
y U 1-x
sz: 1—y2uﬁ= 2 9
We consider three cases.
1. Exponential bond amplitude
We calculate the spin-spin correlation function for
exp(—r/&), r bipartite, 10
u(n= 0, otherwise, (€10
with £>1.
fd2r exp(—r/&)exp —ik-r)=27& Y (k2+£72)%2 ke MBZ,
U= (C1)
Ug=—Ux—,, Otherwise,
|
where MBZ= magnetic Brillouin zone. EquatiofC9) be- 1 3¢ 37e? 1
comes = 1——exp{— 1—x } = D.
y (277)254{ 21/3 ( ) 2 ] (277)254
2y? d?k (€19
£ Jmez (K2+ ¢ 23— (2mé ty)? Equation(C6) becomes
_'n'y2 ® dk 1
T2 leaeamety? 2 (C12 0'r=2jMBZd2k0'k exp(iker)
where we multiplied the left side in 2 to account for the D dk kJo(kr)
integration over the complete Brillouin zone. In all our cal- _27756 (K24 £2)3— ¢ 6D’ (C16

culations we took the continuum limtattice constant-0),

where the upper bound of the integratierre. This approxi-

mation works very well for slow decaying bond amplitude.
Equation(C12) gives?

1 y 2/3
3(27T)1/3(E)
1 5 13
my |48 272y2 13 22/3
+In 4<?) +2( 58 ) +?
1/3 my| 23 1-x

The argument of the last logarithm has to be sufficientlyY

close to zero for Eq(C13) to be satisfied. Therefore

2WB¢=2_o(ry g~ 1) 2P~ 0=y~ el (C149

Hence we can neglect on the left side of EQ13) all terms
but the last logarithm. Consequently,

wherelJ, is the Bessel functiof? Since the integrand in Eq.
(C16) vanishes ag&—0, we can replacéd, with its approxi-
mation forkr>0. Expanding the denominator to first order
in k2,

[ K o) + sinkn)]
o= cogkr)+sin(kr
' 6myrme?lo  k?+a?
P (€17
_677\/r71'§2 o
wherea?=(1—"D)/(3&?). In the definition
=k
Y,=| dk explikr),
! fo k?+a? Fikr)
o=ReY;+ImY;. Let us consider the integral
Y 3§d vz dizr) fx dk a(ikr)
= z exp(izr)= exp(ikr),
? 7>+ a® e k?+a?

where the close contour encircles the upper half of the com-
plex plane. The part of the contour along the negative real
axis is
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0 N » JK’
dk expikr =iJ dk’ exp(—ik'r
fei”w k?+a? Pk o k'?+a? P )

—iv3,

where we substitutedt’ =e~'"k. HenceY,=Y,+iY]=(1
+i)(ReY;+ImY,)=(1+i)Y,. Using the residue method
for Y5,

exd —r\(1-D)/(369)]
o
\/F L
and with Eq.(C15 we find for the correlation length of the
spin-spin correlation functiode,:

(C19

Oy

3¢
4(1-D)

Eex™~

:21’3ex;{(1—x) 377752} (C19

2. Gaussian bond amplitude

We calculate spin-spin correlation function for

exp(—ur?), r bipartite,
=10, otherwise.
Fork e MBZ,
T K C20
uk—;ex —m. ( )
Equation(C9) is
pm (1 dt 1-x
2mle 2 4 (C21
—t
’772y2
with the solution
2 2
2 M. TR | P
y 772{1 exp{ (1 X)ZM”_WZQ' (C22

Calculation ofa, is identical to the exponential case. Substi-

tuting in EQ.(C17 a®=2u(1-0),

LA rV2u(1-0)]
N :

(C23

Oy
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3. Power law bond amplitude

For the bond amplitude

63

(r2+62)3/2'

0, otherwise,

r bipartite,
(C29

u,=

we show, in the continuum limit, that forQe<eq, S(r, )
is finite and henceny=0.

Calculations of the GA on lattices of size<512 show
that for anye, the spin-spin correlation function calculated
with function (C25) decays slower than withi=1/r3. This
suggests thamy=0 for u=1/r>.

B 1
S(mm=2 [S[S)=2 o +p+5

_ LS (s
124 \TatPa g

where we used EqC6). Fork e MBZ,%?

—ek

u=2me’e (C26)

K— 0

N e—25k.

k— oo
From Egs.(C7) and (C8), p, — e ¢ and oy
Hence S(r, ) might diverge only if there ik, such that
(1—ae *%),_,=0, where a=a(e)=(2mye’)® There-
fore, if a<<l, S(ar, ) is finite.
Equation(C9) for y is

afxdk ke 2<k _afwd k  1-x
mlo 1-ae 2k wlo e2k—gq 2 °
(C27)
which become®
> —=me(1-X). (C28
p=1p

The right side of Eq(C28) is y independent, and increases

with €; hencea increases withe. Thereforea(ep)=1. For
a=1, the left side of Eq(C28) is 7%/6 and

and hence the spin-spin correlation function decays exponen-

tially with correlation length:

1

1 T
gg—m—@ex;{(l—x)ﬂ} (C29

_ ™
Vs

and fore<e,, S(, ) is finite and henceny=0.2

(C29
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