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The strongly interacting Hubbard model on the square lattice is reduced to the low energy plaquette boson
fermion model(PBFM). The four bosongan antiferromagnon triplet anddawave hole pair, and the fermions
are defined by the lowest plaquette eigenstates. We apply the contractor renormalization method of Morning-
star and Weinstein to compute the boson effective interactions. The range-3 truncation error is found to be very
small, signaling short hole-pair and magnon coherence lengths. The pair-hopping and magnon interactions are
comparable, which explains the rapid destruction of antiferromagnetic order with emergence of superconduc-
tivity, and validates a key assumption of the projected®B@heory. A vacuum crossing at larger doping marks
a transition into the overdoped regime. With hole fermions occupying small Fermi pockets and Andreev
coupled to hole pair bosons, the PBFM yields several testable predictions for photoemission, tunneling asym-
metry, and entropy measurements.
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[. INTRODUCTION damental “mechanism” problem remains: What creates and
holds togetherd-wave hole pairs in the presence of local

In 1987, shortly after the discovery of high temperaturerepulsive interactions, without the benefit of retardation and
superconductivity in cuprates, Andersopmroposed that the phonons? Even assuming that hole pairs move coherently,
key to this perplexing phenomenon hides in the large posiwhat is their hopping rate, and is it of the same order as the
tive Hubbard interactions in the copper oxide planes. Indeed;leisenberg exchange energy as assumed byp®@®(5)
at zero hole doping, the Hubbard model captures the Mottheory?
insulator physics of the parent compounds, e.g,QLED,. Here we address these questions and affordpt®©(5)
The doped Hubbard model, however, has so far resisted #eory and its phase diagram a microscopic foundation. We
definitive solution, primarily because its spins and holes ar@!so include the hole fermions which provide gaplessda)
highly entangled with no obvious small parameter to sepa€xcitations in the square lattice. Their band structure is ob-
rate them. Whether the Hubbard model even supports supei@ined from previously published numerical results, and their
conductivity without additional interactions remains a sub-coupling to the bosons is estimated by symmetry and micro-
ject of controversy. Different mean field theories suggesscopic considerations.
conflicting ground state order parameters and correlations.
Numerical methods are restricted to finite clusters where hole
pairing is found®~* but off-diagonal long range order has not
been ascertained.

This paper charts a route from the microscopic Hubbard
model on the square lattice to an effective lower energy
plaquette boson fermion modé?BFM) at low hole doping.

We apply the contractor renormalizati@ORE method of
Morningstar and Weinsteirto the plaquettized latticésee
Fig. 1) in a one step transformation.

We find that the bosonic part of the effective Hamiltonian
is closely related to the projected &D[pSO(5)] theory®’

a theory of four bosons: a hole pair andamtiferromagnon
triplet. The pSO(5) model describes the competition be-
tween antiferromagnetism and superconductivity in a quan-
tum mechanical framework. Its mean field theory yields
some broad features of the cuprate phase diagram at low
doping. At low temperature, the hole pairs are governed by a

phase fluctuations actibfl which explains the(non BCS . . . . . .
proportionality between superfluid density, transition tem-

perature, and hole concentration. In the superconducting riG. 1. Local bosons and fermions on the plaguette lattice. The

phase, the magnons are massive and give rise to an antifefinglet RVB vacua are depicted as solid squares. Holes are depicted

romagnetic resonance in neutron scattering. These massig9 circles. The triplets, single hole and hole pairs Hubbard eigen-

magnons were argued to produce a resistance peak seriesstates define the degrees of freedom of the effective plaquette

Josephson junctiorilg. boson-fermion model. Interplaquette couplings are computed using
Nevertheless without a microscopic foundation, the fun-contractor renormalization.
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The resulting plaquette boson fermion mo@@BFM) de-  tials and may be associated with a transition from under-
scribes two coupled charged systefi)sHole pair bosons, doped to the overdoped regime.
which Bose condense beloW, and induce a proximity gap In Sec. lll the contractor renormalizatig@ORE method
on the holes.(ii) The hole fermions, which occupy small is reviewed. The method requires exact diagonalization of
Fermi pockets around#{ 7/2,+ 7/2) and have a large van Mmultiplaquette clusters, in principle up to infinite range. Of
Hove peak in density of states neat 4,0),(0~ ), the course, the method is useful only if it converges rapidly in a
“antinodal” points. feasible range of interactions. We have tested the conver-

We discuss the thermodynamics of the coupled systengience of the low spectrum for the Hubbard models on open
with the constraint on the total doping density. Previouslyladders, with satisfying results. These tests confirm our belief
proposed boson-fermion mod¥isliffer from the PBFM by that the convergence depends on a short boson coherence
their Hilbert spacée.g., by having a large Fermi surface, andlength, of order one plaquette size. This is very encouraging
Counting Occupations from the electron VaCl)UIﬁOf the for the useful application of CORE to our problem, since the
PBFM, in the weak coupling approximation, some straight-experimental superconducting coherence length of cuprates
forward experimental implications are obtained. also appears to be particularly short in the underdoped sys-

(1) Hole spectral weight in Luttinger theorem-violating tems. We discuss the artifacts of tfiermal translational
momenta(outside the “large” electron Fermi surfagee.g., Symmetry breaking within CORE. In Appendix B, we use the
on the line ¢r,0)— (7, ).} This weight survives abov&, tight binding model as a pedagogical example of how longer
and is associated with excited holes moving in the correlate@nge interactions of CORE serve to restore an unphysically
RVB vacuum. broken symmetry.

(2) Asymmetry in tunne]ing conductance. At low doping, In Sec. IV the plaquette boson-fermion model is derived.
x<1, particle-hole symmetry is expected to be violated, i.e.We discuss the hole pairs integrity, as evidenced from the
the positive bias Conductanémjection of e|ectr0nsis sup- numerical results, and how it is related to the sizeable pair
pressed by a factor proportional tprelative to the negative hopping energy. The pair kinetic energy is crucial in stabiliz-
bias conductancénjection of holes. Such a trend indeed ing superconductivity. The full four boson Hamiltonian is
appears in tunne"ng da}a giVen in Appendix A. The hole fermionS band structure and

(3) The pseudogap doping dependence. The pseudogdpteractions with the bosons are added. The thermodynamics
energy in photoemissidf*® and tunnelind® is at the van of the weakly coupled PBFM yields a relation between the
Hove peak of antinodal fermions. The decrease of pseudogd}eudogap energy, the bosons and fermions compressibili-
with doping follows the increase in fermion chemical poten-ties, and the evaporation of hole pairs into fermions at higher
tial. Its derivative with respect to doping measures the comtemperature. We conclude with a summary and a discussion
bined hole fermions’ and hole pair bosons’ compressibilitiesOf future directions in Sec. V.

(4) Nodal transverse velocity. The quasiparticles proxim-
ity gap near the nodal directions determines their transverse Il. PLAQUETTE STATES
velocity. This velocity can be measured by photoemission
and optical conductivity’ We expect it to vanish af., and
to be proportional to the Bose condensate order parameter.
Thus it should scale as, o« T.(X).

(5) Hole dependent entropy. At temperatures above the
superconducting transition, hole pairs evaporate into hole
fermions, because of the difference in their density of statesvherec/s,n;s are electron creation and number operators at
The doping dependent entrdpys dominated by the fermion sitei on the square lattice. We will occasionally refer to its
contribution. Gutzwiller projected version, theJ model

The paper is organized as follows. In Sec. Il we introduce
the eigenstates of the Hubbard model on a plaquette. The
local bosons and fermions are defined as the creation opera-
tors of these eigenstates. The physics learned from the four
site problem is instructive: Undoped, the ground state is & is the projector of doubly occupied states, ahd 4t%/U
local resonating valence bondsr projectedd-wave BCS  at largeU/t. 7' is the term of orderd that includes next
state. The four bosons create the lowest triplet and the holeearest neighbor hole hoppihyFor one electron per site
pair singlet. There are two degenerate spin half plaquettéhalf filling), the short range antiferromagnetic correlations
fermion states with symmetrys(,0) and (O7). are apparent when diagonaliziri@) and (2) on two sites.

It has long been appreciated that in the Hubbard modelThe dimer states were used to construct effective models on
two holes cannot bind on a dimer bond, but they can bind onthe ladde?®?! and for spin-Peierls phases on the square
a plaquette(and on larger clusters® The hole pair wave lattice?? The projected S®) model was defined on a ladder
function hasd,2_,2 symmetry for /2 rotations. The next using empty dimer states as the hole pair boddrewever,
step is to compute their interplaquette hopping rate in ordethere isno hole pair bindingfor the Hubbard model on a
to see whether they can preserve their integrity on the infinitelimer. Naively, this suggests that pairs could readily disinte-
square lattice. A short discussion is included about plaquettgrate into single holes once interdimer hopping is turned on.
“vacuum crossing,” which occurs at large chemical poten-Moreover, if one wishes to captutewave symmetry in the

We study the Hubbard model

sl

H=—t%‘,s (chejs+ H.c.)+U§i: NNy, 1)

HtJ:_tP<2 (ciTSch+H.C.)P+J<Z> S-§+7. (2
ij),s 1]
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ENM 0 holes 1 hole 2 holes P ; ; ; ; R
o 50 — Q)= Tz ClmonCimon C(0.m)1C(0m)1)C(0.0)1S(0.0.10)-
_sg ST T ¢ (4)
—s-l2 D
=2 _s=3p g9 O Om Z is the wave function normalization factdf)) is ad-wave
s=12 00) (mm) s B0 O BCS state, where doubly occupied states are suppressed by a
S=1 S=1 S=0 s=3p 0.0 partial Gutzwiller projectionP(U/t). (At large U, P be-
s1p @) O) comes a full projection.
S=1_(nm) =l S=0 (0,0) In the RS representation, see Fig|Q) is depicted as the
Siy 4 > resonating valence bondRVB) ground state of the Heisen-
Q) 5000 J berg model plus small contributions from doubly occupied
sites. In the two dimer basi§)) contains a large contribu-

i i i =T1PlA Y.
FIG. 2. Lowest spectrum of the Hubbard model on a plaquette'.[Ion from a triplet pair. The prodgct stak@,) H.' |Q>' ) 1S
Eigenstates are labeled by total sgnand plaquette momentum ©OUr vacuum state for th_e full lattice, upon_whlch Fock states
Qy.Q,=0,7. The shaded area is over all high energy truncatedc@n be constructed using second quantized boson and fer-

states. The vacuum is defined i), and the second quantized MION creation operators.
operators connect the vacuum to the lowest eigenstates as shown.

B. Magnon triplet
hole pair wave function, the basic unit block must possess at
least fourfold rotational symmetry.

The smallest such block that can cover the square lattic
is the four site plaquette. It is a trivial task to diagonalize the P
VI—\iI:\tl)ga;lr%g}gg:I on a plaquette and obtain its spectrum and tZ|Q>:\/_Z % CgsUSSrCQHw,w)s'm)' a=xy,z,

The spectrum is depicted in Fig. 2. Since it is cumber- (5)
some to write the full wave functions explicitly, we represent ) ) )
their dominant correlations as follow® Real spaceRS) whereo are Pauli matrices. The:éen_tlferrqam_agnons hav_e
description using holes, dimer singlets and dimer triplets aglaquette momentur@= (=, 7). Their excitation energy is
depicted in Fig. 3(ii) Plaquette momentéPM) representa- close to the superexchange enetgy4t?/U. An antiferro-
tions usingQ=(Q,,Q,), Q,=0,7, the four points on the magnetic state can be constructed by a product of plaguette
plaguette Brillouin zone. The electron operator of plaquiette coherent states
is given by

The magnons are defined by the lowest tripletSsf 1
gtates. In PM representation they are

plaq
.1 o pafm :H (cosf+sinemat! )| Q), (6)
Chis=3 . €Tl ©
7=0xyxty where|m|=1. This state supports a finite staggered moment
It is instructive to examine the plaquette eigenstates and en-
ergies in some detail before proceeding to couple them. 1 )
N(Sf“mﬂ)>(,,ma=ﬁ&n“cosasln6$0.306. 7

A. The vacuum ) o )
Note that the maximal magnetization per site supported by

The ground state of the 4-site Hubbard model at half fill-\yAFM 5 |ess than the classical value of 0.5, since it does not
ing (ne=4) is called|Q). In the PM representation it can be ¢gntain higher spin states up 8=2.
described by(suppressing the plaquette index

C. Single hole fermions

|Q> ~ I I T T I I +%§‘ g, px The ground states for a single hole.&3) are two de-
N generate doublets described by plaquette mome@ta
L=~ 1-11 = (0,m),(m,0):
bl=~.1-o+1.-T 0 = ot 10), =11, ®
-] *—e o (-] © \/Z_Q
FIG. 3. Real space representation of plaquette bosons. Dominagjhere . . . represent higher order electron operators. The

spin and charge correlations in the plaguette bosons wave functionggle fermion Bloch state can be constructed as
Bold lines represent singlet dimefs|;—|;T;, and double lines

represent the triplet;|;+1;l;, TiTj=lil;, wherei andj are on plag
i i i T _ ik-xieT
zilis::g_lceSA and B, respectively. Holes are depicted by open fk+Qs|Q>—zi el X'fQis|Q>- )
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For a lattice ofdisconnectecplaquettesf(TWYO) creates an
eigenstate with a photoemission spectral weight given by

QU (.0)sC(m 008l QY P=Z (0 (10 0.1

where, e.g., for thé-J model, 1/4<Z . »<1/2 is a function

of t/J. This weight is further renormalized by interplaguette

couplings in the effective Hamiltonian. At
Incidentally, there is another degenerate pair of doublets

at higher energyof orderJ) at momenta=(0,0), (7, 7). It

turns out that by symmetry, ther() state has vanishing 0

hole spectral weight, that is to say for all valueslft

Z(’IT,’JT):|<Q|f(7T,’7T)SC(’77,7T)S|Q>|2:0' (11)
_ , , -0.05 :
Since these states couple by interplaquette hopping to the 0 2 4 6 8
. - un
lower doublet, this produces an asymmetry of the quasipar-
ticle weight between momenta close to (0,0) and ). FIG. 4. Pair binding energy on a plaquetts, of Eq. (15) cal-

This asymmetry may explain the difficulty in observing culated for the Hubbard model for different interaction strengths.
“shadow bands,” i.e., quasiparticles on the Fermi pocketsor A <0 the hole pair is more stable than two single holes on a
surfaces closer torf, ).2 disconnected plaquette lattice.

It is interesting to note that the twofold degeneracy of the
fermion doublets is a property of the plaquette. The four sitevacuum. For the relevant range 0ft, the state normaliza-
Hubbard and-J Hamiltonians happen to commute with the tion is 1/3<Z[<2/3. The important energy to note is the pair
plaquetted-density wave operattt binding energy defined as

A A,=E(0)+E(2)—2E(1), 15
D:'PES (CLr,0)5C(0:m)s™ Cl0.m)sC(m0)s) P- (12 b=E(0)+E(2) (1) (15

whereE(N,) is the ground state dfl;, holes.A, is depicted

D connects between the doublet pairs,@)« (0,7r) and in Fig. 4. In the rangdJ/t < (0,5), it is bounded by-0.04
(0,0) (r,7). Thus a possible ground state of one hole is<Ap<0. It has been well appreciated that the Hubbasd,

the current carrying state and even Cu@ models have pair binding in finite clusters
starting with one plaquett€.In larger clusters, such as the

plag 4% 4 lattice, pair binding is seen for up to 6 hdldshree
‘I’SZH (Flr0yisTif {o.m.isl Q) (13)  hole pairg for U/t=<20. This does not yet explain the integ-

rity of pair correlations on the infinite lattice since the elec-

which is a staggered fluxor d-density wave state. For a tron hopping energy is much larger than the pair binding
single hole in 4< 4 periodic lattices, this state does not seemenergy. In Sec. IV B and Appendix A, we show numerical
to be the lowest energgsee Sec. IV . However, a large evidence that plaquette paissirvivedisintegration into fer-
susceptibility for such currents is expected since the hol@nions.

dispersion has a valley between the antinodal poimt®) A d-wave superconducting state can be written as the co-
and (07), which is weakly dispersive and contains a largeherent state

admixture of the two plaquette fermion states. It is thus con-
ceivable that the staggered flux combination of the plaquette
fermions would be selected in a vortex core or near the
sample edge.

plag
WIsF=TT (cosf+sinhe #b])|Q), (16)
I
with the superconductor order parameter
D. Hole pair boson
The ground state of two holesi{=2) is described by (Wldijciicj) | W)= Zje'#sin6 cosd. (17)
It is worthwhile to reemphasize the following point which
has important implications in interpreting both experiments
and numerics of Hubbard-like models. The fermions and
hole pairs have chargese and +2e respectively. Their
1 number is counted from the correlated half-filléRVB)
- \/? vacuum. The operatoifsand b should not be confused with
b the electron and Cooper pair operatofsandclc!, respec-
whered;; is +1 (—1) on vertical(horizonta) bonds, and - tively, whose numbers are counted up from the electron
are higher ordet)/t-dependent operators. This, creates a  vacuum. In numerical calculations, it is preferable to use the
pair with internal d-wave symmetry with respect to the operatorh’, as defined by the Hubbard plaquette eigenstates,

bT|Q)=i7>cJr Cloo)|0)
@ \/Z—b (0,0)1~(0,0)|

] dijcicy +- - |[Q), (14
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as the superconducting order parameter. It should have larger Hren
matrix elements than the customafywave pairing operator _ — — 12,3)
dijCiTle . \:\ \=\ \=\ )
/\(_ — —
Mstates N— N\ N\ S

E. Underdoped to overdoped transition

Throughout this paper we restrict ourselves to low dop- NN NN N a4
ing, i.e., a small number of hole pairs and hole fermions per
plaquette. Nevertheless, the plaquette states basis leads us toFIG. 5. The reduced Hilbert space of a plaquette cluster used in
expect an interesting transition at higher hole doping for theCORE. The calculation oH7% ; requires diagonalization of the
following reason. Hubbard model on the cluster highlighted by the shaded region.
When the chemical potential is large enough to bring thed™" reproduces the exact spectrum within the reduced Hilbert
hole pair(two electron state to be lower than the four elec- SPace:

tron vacuum, avacuum crossingakes place. On a single |ocq| hosonic correlations in the translationally invariant lat-
plaguette, the vacuum crossing is when the levels of zero angte? we argue no.

one boson intersect. Since hole pairs are somewhat larger in There is convincing evidence from various numerical ap-
size than a single plaquette, the lattice vacuum Crossmﬁroaches, that two holes remain on the same plaquette in
should takg pIape at somewhat less tixan0.25 holes per 26 /26 latticed and on 8<6 t-J ladders> However, in
square lattice site. order to understand how many pairs behave on the infinite

Once the two hole state turns into the new vacy@l)',  |attice, we must determine the pair hopping energy, and de-
all excitations are defined with respect to it using differentye their effective Hamiltonian.

boson and fermion creation operators. For.exgmple, the old A guitable approach for this task is provided by the con-
RVB vacuum becomes a Cooper pair excitation above thgactor renormalizatiofCORE method described below.
new vacuum. The small parameter of CORE is the ratio of the hole pair
separation, i.e., coherence length to the range of the effective
interactions.

|Q)~ PiEj djclicl+- - ]1Q). (18)
A. Contractor renormalization algorithm

It is plausible that the vacuum crossing is a true quantum Given a microscopic Hamiltoniak on the square lattice

phase transition, and not merely a mathematical artifact ofye choose a plaguette covering and proceed by the following
using different plaquette bases to construct the same groungepg:

state. A candidate for such a phase transition is the restora- Step 1: Defining the reduced Hilbert space. We diagonal-
tion of square lattice symmetry, if this symmetry is truly j;¢ 3/ on a single plaguette and truncate all states above a
broken by plaquettization in the underdoped regime as merspgsen cutoff energy. This leaves us with the lowdsttates

tioned in Sec. Il B. M . : .
. The reduced lattice Hilbert space is spanned by ten-
The overdoped side is far from half filling, where effects {s|;>}plroducts of retained plaquette pstate§ P a) X

of the Gutzwiller projection are small. That is to say, thecase in point is the Hubbard model spectrum, which for the

eigenstates can be approximateq by applying electron.olperﬁélf filled case has 70 states. We truncate 66 states and keep
tors to the electron vacuum. With interplaquette hybridiza-

) the ground state and lowest triplet, i.&4=4. Thus, the
tion of the two electron plaquette vacua, the ground state Callbert space is considerably reduced at the first step.

be adiabatically connected to the quarter filled electron Step 2: The Renormalized Hamiltonian of a cluster. The

Zsrr:iglitSaulgsceeiLISttitrTeeilt)r?sngeemO;bseu?srcgpr?#gﬂngcg WIIIreduced Hilbert space on a given connected clusteN of
9 9 ying- ' plaquettes is of dimensioM=MN. See Fig. 5 for an illus-

tration. We diagonaliz&{ on the cluster and obtain the low-

I1l. CONSTRUCTION OF THE EFFECTIVE estM eigenstates and energief),€,), n=1, ... M. The
HAMILTONIAN wave functions|n) are projected on the reduced Hilbert
space and their components in the plaquette basis

Having described the low lying plaquette states, we ar
faced with the challenge of constructing an effective Hamil-
tonian for the full lattice. Motivated by the pair binding on a
plaquette, one might initially wish to compute the effective
hopping of a hole pair between plaquettes using second order - 1 - -
perturbation theory in the interplaquette hopptrig | ) = 7 |y = 20 |l ) | (19

This naive approach yields pair hopping of ord&y " m=n
«t'?/A,. The perturbative expansion is controlledtbyA,.  where Z,, is the normalization. The renormalized Hamil-

aq, ...,ay) are obtained. The projected staigsare then
Gramm-Schmidt orthonormalized, starting from the ground
state upward:

This suggests failure of perturbation theory for=t>A,. tonian is defined as

Indeed, by looking at the exact spectrum of two connected M

plaquettes, we find that second order perturbation fails in a ren_ TN 20
sizable domain of’ <t. Does this imply dissociation of the Tt % enl ) (i, 29
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which ensures that it reproduces the lowésteigenenergies

exactly. Herl 7= (hj+ 77i©i(j1))+<2k> (hjx+ ”ioi(izlg)
Representing ™" in the real space plaquette basis ! !

|y, ... ,ay), defines the(reducible interplaquette cou- ~(3

plings and interactions. +<%> (hj+ 705 - - - +O(n?)

Step 3: Cluster expansion. We define connedtepoint

interactions as “
=Ho+ EI 708"+ O(7?)

..........

i O=0(+ 3 OF+ 3 Ofe - (29

where the sum is over connected subclusterg of. . . ,iy). -

eff : A
The full lattice effective Hamiltonian can be expanded as thé i '€presents the linear perturbati@ in the truncated
sum Hilbert space

M
Har=3 ht 2 hy+ 3yt (@2 OF=2, (|| m) ) (25
i i i

o _ o The two-point dynamical correlation function at low tem-
h is simply a reduced single plaquette Hamiltoniap.con-  peratureT < e, is given by the Lehmann representation
tains nearest neighbor couplings and corrections to the on-

site termsh; . h;;, contains three site couplings and so on. 2m e A A
i he e Si(@)= 75 2 &/ NnlO/|my(mlOIm) 8w+ &~ en)

hi, ... i,, Will henceforth be calledange-N interactionWe
expect on physical grounds that for a proper choice of a o e
truncated basis, randé-interactions will decay rapidly with _cm —en T/ 1AM N/ (AT
N. This expectation needs to be verified on a case by case ZN Z‘n € (Yl O )Yl OF o)
basis.
Morningstar and Weinstein, by retaining up to range-3 Xo(w+en—€p), (26)

interactions’i, demonstrated that the CORE renorma”zationwherez is the partition function’ and the second sum is
group flow, obtains an excellent value for the ground stateswaluated in the truncated Hilbert space, using the cluster
energy of the spiry- Heisenberg chain. This is encouraging, expansion(24) for the matrix elements.
since the spin half chain has long range, power-law decaying t, s for the full lattice cluster®¢" recovers the exact
Spin correla}tlons: P|ec!<areW|cz and Shepatdsted CORE correlations of therue low energy eigenstates. B4) the
for the 12 site spiri- Heisenberg ladder. They got better thanIinearized cluster expansion involves multisite operators
1% accuracy for all lowest 64 states using a plaquette basis

;. (27)

keeping only up to range two interactions. om =oh
n
,,,,, " beyond a short truncation range is

In general, there is na priori quantitative estimation of
the truncation error. Nevertheless, if it decays rapidly withA rapid decay oh;
interaction range, we deduce that there is a shoherence  essential for the feasibility of the CORE scheme for the spec-
length related to our local degrees of freedom, e.g., in OUfym Similarly, to calculate the correlations ®f we require
case the hole pair bosons and the triplesund states of two a rapid d B with hich d all ¢ I
Spinons. pid f(facay 0 with n, w ic wgu .a ow us to ca
CORE of wave function correlationshe CORE process CculateOf" by small clusters diagonalizations. We have pre-
is designed to reproduce the low |y|ng spectrum’ while thé”ously argued that a small truncation error results from a
wave functions may be significantly distorted during theshort coherence lengt, for the coarse grained degrees of
truncation of the Hilbert space. Does this hinder calculatiorffeedom. For example, the size of the hole pairs in the
of correlation functions within this scheme? The answerslightly doped Hubbard model. Thus, the opera@oshould
depends on the operators whose correlations we wish tbe chosen to have large matrix elements within the reduced

calculate. _ . Hilbert space, and the multisite operatdd$”
The correlations are calculated by adding external sourcgecay rapidly beyond the range &f S

terms 1o the original Hamiltonian, In other words, if the truncated wave functions retain the
relevant local operator content, the cluster expansion for the
H[ 7]]=H[0]+E 70:, (23 operators converges rapidly, and the effecf[ive Hamiltonian
i can reproduce the long wavelength correlations correctly. In
A this paper, the truncated plaquette states, for example, con-
whereQ; is a microscopic linear perturbation operator whosetain d-wave hole pairs on plaquettes. If these hole pairs turn
correlations we wish to determine. We apply the CORE clusout to be tightly bound in the exact eigenstates of the full
ter expansion of Eq(22) to the perturbed Hamiltonian and lattice, their creation operator has small multisite corrections
obtain ¢ %] which is expanded to linear order i , in the renormalized basis, i.e., it has a rapidly decaying clus-
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- consistent with Berry phase arguméfitior the spin liquid
1) I:l D I:l I:l I:l phase of spin half Heisenberg models.
The symmetry breaking, appears as minigaps near the
_ _ _ edges of the plaquette lattice Brillouin zo(RLBZ) «,,«,
|RVB> = _ | | | _ | _ e (—m/2,7/2). In Appendix B, we see how the minigaps of

. the tight binding model, decrease as longer range interactions
+ permutatlons are included. For the triplet and hole pair bosons, minigaps
do not matter much since their low energy states are around
FIG. 6. Restoration of translational symmetry on the ladd®. (0,0) and 6r,), respectively; the farthest possible from the
is the plaquette lattice vacuum which breaks twofold lattice transfP|.BZ edges.
lational symmetry|RVB) is the dimer resonating valence bonds  On the other hand, low energy fermions happen to be
state which has translational symmetry, and is relatd€oby an  centered around the PLBZ cornet ¢r/2,= w/2), where the
exponential of triplet pairs, see EC9). effects of plaquette symmetry breaking on the spectrum are
large. Although by rotational symmetry, the two bands which
ter expansion. In this case, long rangivave pair correla-  contain the r,0) and (Orr) states are degenerate at the
tions are well represente@p to an onsite renormalization pBLZz corner, the other two bands have minigaps. These
facton, by the boson-boson correlations of the four bosonsyould distort the elliptical shape of the Fermi pockets, an
model. effect which if it exists, could be detected by angular re-
solved photoemission.
B. Lattice translational symmetry

The CORE algorithm formally requires explicit breaking V. THE PLAQUETTE BOSON-FERMION MODEL

of lattice translational symmetry at the first step. The We first start with the bosons, and compute their inter-

plaquette lattice vacuum breaks lattice translational symmeplaquette couplings and interactions using CORE. Later we
try as follows: each plagquette vacuum contains a triplet paiintroduce the hole fermions, whose parameters are taken
contribution, but the product state does not contain interfrom published numerical data on large clusters, and estimate
plaquette triplets, and hence differs from the state translatetheir coupling to the bosons using symmetry arguments. Fi-
by one square lattice spacing. In order to restore the latticaally we discuss the properties of the combined Hamiltonian.

symmetry, interplaquette triplet pair correlations can be rein-

troduced by triplet pair creation operators in the effective A. Computing boson interactions

Hamiltonian. . -
As an illustration, let us consider the plaquette vacuum of For the purpose of this paper, we have limited the CORE

A . : . calculations to range-2 boson interactions, while projecting
the two leg ladder, in Fig. 6 which can be written in the form out the fermion states. This required a modest numerical di-

agonalization effort of the Hubbard model on up to eight site

1 .
QV=Pexpg = >t I 0):, 28 clusters. The resulting range-2 four boson model can be
) F<3 Z 2la 2'+1’“)H O @8 separated into bilinear and quartiateractior) terms

where|0); is a singlet on rung, andt] |0); is a rung triplet. H*P=H[b]+H[t]+H "[b,t], (30)
P projects out multiple occupation of triplets. where the bosons obey local hard core constraints
The translational invariant RVB state in Fig. 6, can be
constructed fromQ) by applying the operator bf“bi+2 tlitai$1- (31)
IS LG The bil
|RVB) = Pex 52 i 1ath o 1Q). (29) e bilinear energy terms are
In the triplet bosons representation of the Heisenberg ex- Hb:(eb_ZM)Z biTl3i—Jt><i§J_:> (bfbj+H.c),

change there are anomalous interplaquette tefmﬁ&titj .

In the mean field theory the Bogoliubov transformation in- J;

troduces a partial “symmetry restoring” exponential opera- Ht=et2 tht,i— > 2 (tZitaj+H-C-)

tor, which resembles E¢29). However symmetry cannot be e «{if)

fully restored to the wave functions in the reduced Hilbert Ju

space because of the elimination of higher spin states. Is this Y 2 (tlitzj +H.c). (32

a problem? Well, it depends on what one is interested in. a(ii)

CORE is constructed to obtain accurate effective interacin Fig. 7 we compare the magnitudes of the magnon hop-
tions. Unphysical symmetry breaking effects can be intropingsJ;,J;; and the hole pair hopping, for a range olU/t.
duced by truncating the longer range interactions, as exFirst, we observe that,~J,;~0.6J, i.e., the magnon terms
plained by a toy model in Appendix B. Therefore it is hard tohave similar form as those previously obtained for the
rule outa physical “plaquettization” of the true ground state. Heisenberg model in the bond operatbrand plaquette
Incidentally, such a fourfold discrete symmetry breaking isoperator’’ representations. Second, the region of intersection
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0.65 - - - - Why is & so short? There are two effects which bind pairs:
0.6t a classical magnetic energy from minimizing the number of
broken Heisenberg bonds, and a quantum kinematic pairing
0.55f for holes moving on two sublattices of a quantum disordered
05l antiferromagnet. The first effect is supported by finding pair
2 binding on a single plaquette. However, this energy also fa-
§0-45‘ vors clumping many holes together. The quantum pairing
2 04t effect was proposed by Weigmann, Lee, and Wen, who inte-
2 grated out spin fluctuations in a quantum disordered phase,
0.35 to induce a long range electrodynamical attraction between
0.3l holes on opposite sublatticés?® The kinematic effect pro-
duces pairing rather than phase separation, and is robust
25 against additional short range repulsion. It also can explain

0.2 : : : : pair binding on large clusters in a regime 0ft>4.51%

2 4 6 u 8 10 Bose condensatiohe relative large hopping in the pair
kinetic energy—JbEm)binj is crucial for understanding the
FIG. 7. Boson hopping energies versus Hubbdrd); andJ,;  cuprate phase diagram.
are the magnon’s normal and anomalous hopping enettjés the (i) The pair kinetic energy competes effectively with the

hole pair hopping energy. The intersection region néar8 is  antiferromagnetic order. While uncorrelated single fermion
close to the projected S8 symmetry point. All energies are in  kinetic energy is not inhibited by the presence of long range
units oft. antiferromagnetic order(in fact it strengthens it by a
Nagaoka-like mechanisithe pair kinetic energy is substan-
tially lower in a background of short range singlet correla-
tions. This effect was clearly demonstrated in variational

4 ! ) . SMonte Carlo studies of pair kinetic energy in doped RVB
hopping energy scales. This equality which was assumed Wave functions® and is also a property of the variational

the pSO(5) theor)?, previously appealed to phenomenologi- treatment of the four boson model. The destruction of anti-

pal congideratipns. Here, the equality emerges in a phySical%rromagnetic order into a quantum spin liquid with massive
interesting regime of the Hubb_ard model and has Importam'Eriplets, also helps in the kinematical pairing process as dis-
consequences on the phase diagram as shown below. cussed above.

.Hm_t inclu_des negrest neighbor triplet-triplet, _pair-pa?r, and (i) Having destroyed antiferromagnetic order, the pair ki-
pair-triplet interactions. In Appendix AH® with all its e energy competes with charge localization due to disor-

terms is displayed in its fL.J" glory, and a table of its com- der, or solidification(charge density wayeand with disin-
puted coupling constants is provided for the valuedJoéf tegration into unbound hole fermions.

=3,6,8,10. We also compute the truncation error of discard- i) o jarge J, stabilizes a superconducting phase at finite
ing range-3 terms. This is done by comparing the HUbbarQemperatures. It determines the superfluid density

model atU/t=6, with Ofénd 2 holes on 12 sites, to that of =2J.(b)|?, and the phase ordering transition temperature
corresponding range-2 *°. Relative shifts of less than 1% T.~p
s

in the ground state and first excitation energies, correspond®
to a very small truncation error.

nearU/t=8, is close to the projected $& symmetry point.
We emphasize that although there is no quantun6s&ym-
metry inH*", there is an approximate equality of the boson

C. Four boson mean field theory

B. Mechanism of superconductivity The mean field theory is separated into two pajjsCal-
culation of the order parameters as a function of doping,
sting variational coherent statés) Determination of mag-
non resonance energy from a soft interaction version. The
Gesults are qualitatively similar to the projected (SOphase

There are two important effects which together can lead t
superconductivity:(i) pairing and(ii) Bose condenstion of
the pairs. An important energy scale for both effects is th
pair hopping rately, . diagram®3!

The small range-3 truncation error was found at a large Here, we choosé)=8t, and evaluate the energy of the

interactionU/t=6, where there is actually no pair binding f; ho50n Hamiltoniar(A3), (Ad) in the variational coherent
on a single plaguettésee Fig. 4. The convergence of effec- statesy”™M(6) and ¢9%6) of Egs. (6) and (16), respec-

tive |nter'act|ons., implies short bqson cqherencg Ier‘gth‘ﬁvely. These states represent the antiferromagnetic and su-
&.,€p - & is the distance between spindifscalized spin half o (ongycting phase. The critical chemical potenfial

configurations which comprise a magnorg, is the hole | ere the ground state energies cross, and quantum fluctua-

pairing distance. Both coherence lengths appear to be of th[ﬁ)n anale § are determined by minimizina the ener
order of one plaquette size. This conclusion is supported b gle o) y g 9

; ; ; : he spin stiffness and superfluid density are given, respec-
numerical observation of short distan¢a&ttice constantcor- P P y 9 P

relations between two holes on large lattiéést is interest- tively, by

ing that the short pair coherence length is dynamically gen- par=2Jy(t)?,

erated in the Hubbard model, even fdVt>4.5 where the

pair binding energy on an isolated plaquette is positive. psc=2Jy(b)?, (33
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FIG. 8. Variational solution of the four boson model. Results
correspond to Hubbard interaction strengtft=8. wis the an-
tiferromagnetic resonance energy,r is the spin stiffness in the
antiferromagnetic phase, angd is the superfluid density in the
superconducting phasew-u. is the chemical potential difference
from the first order transition g, andx is the hole density. The
estimated vacuum crossing point is discussed in Sec. Il E.

FIG. 9. Hole fermions band structure. Contours of the single
hole spectrum Eq(36) modeled by fitting to published numerical
results. For a dilute number of free holes, Fermi pockets will be
created around the pointst(@/2,= 7/2). A flat valley near the
magnetic zone edge dominates the low energy spectrum.

where we use Eqd7), (17) for the magnon and hole pair Thjs dependence, as plotted in Fig. 8, is qualitatively consis-
expectation values. These coefficients, which determine thg i with inelastic neutron scattering data.

transition temperatures, as well as the doping concentration
are plotted as a function of chemical potential in Fig. 8. We
emphasize that the results should not be quantitatively com-
pared to experiment, since they are variational approxima- In the previous section we have computed the bosonic
tions to a simple model, and neglect effects of low energyinteractions of EQ.(30) from the Hubbard model using
hole fermions. CORE. In that computation, we have eliminated the fermion
The variational theory yields a first order transition be-(single hole states. We expect, however, that for the two

tween zero doping angd.=x(u.)=~0.125, where the stag- dimensional square lattice, low energy fermion excitations
gered magnetization abruptly vanishes and the superfluidre important. While the fermion holes short range effects on
density jumps to a finite value. For charged holes, this firsthe boson couplings were included in the range-2 CORE
order transition(phase separatipnis forbidden by long calculations, their long wavelength excitations, require di-
range Coulomb interactions. Instead one expects high conagonalizing larger clusters which are beyond this paper’s
pressibility, incommensurate mixed phases and sfffpes computational scope. We therefore resort to including the

D. Fermion Hamiltonian

the intermediate doping regime= (0X.). hole fermions dispersion “by hand,” i.e., use the single hole
Even a weak disorder potential is very efficient in break-band structure computed previously for large clusters. We
ing the intermediate phase into “quantum melf§®*i.e.,  then estimate their interactions with the bosons.

puddles of superconductor inside antiferromagnetic domains. It is important to emphasize that the definition of the hole
Above x.., the superfluid density increases with doping, inpair bosons and the hole fermions is simply a matter of sepa-
agreement with London penetration depth measurenfientstation: two hole fermions are odifferent plaquettes. When
The overdoped regime is beyond the expected vacuum crosthey hop into the same plaquette they turn into one boson via

ing point (see Sec. Il E the Andreev coupling defined below.
The magnon dispersion in the superconducting phase is For the relevant range &d/t the numerically determined
obtained by decoupling a soft core interactidh band structures for the single hole can be fit by two hopping
energies
HM=W, ;| blb+ X thity]: (34)
I “ Hf:z (GL*,U,)fEkaS,

where W is fitted to yield the order parameter magnitudes

calculated variationally. In the superconductor, the magnons f_ ., k.a)+ k 24 ¢n k.a)— K 2
acquire a gap at the antiferromagnetic resonanggewhich ei=t'lcogk.a) +coskya) [P+t codk.a) —cog ya)](3'6)
increases with doping as

k runs over the square lattice Brillouin zo(see Fig. 9. The
wre= 2\ (= o) (e — pet 230 %X — Xe. (35  valuest’~J, andt"~0.1J are taken from the numerical
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Quantum Monte Carlo data for theJ model on a 2424 gd:.

(36 g ; b7y
lattice;™ find that for the physically relevant range df o 5 o, v
e[0.4t,0.6t], the dispersion values até=0.7J, t"=0.1t". ol; J i 0 J

The magnitude of’ ~J (rather than the bare valug and
the position of the minima on the magnetic zone edge FIG. 10. Andreev coupling between hole pairs and fermions.
(7,0)— (0,7) were explained by theories of holes in the T_he micros_copic origin of the hole pair-hole fermign coupling is a
short range antiferromagnetic environm&hThe semiclas- Simple unbinding process. Because of the hole gaiave symme-
sical theor§9 finds that holes are highly dressed local Spintry, the. coupling matrix elemerd;; is odd unders/2 rotations on
polarons, which effectively hop on one sublattice. the lattice.
From the CORE’s perspective, the flat valley between
(7,0) and (Om) is related to the original degeneracy be-
tween the two lowest plaquette fermions. Thus we expect the Couplings between bosons and fermions can be derived
wave functions of the fermions on the lattice to contain aby microscopic considerations and symmetry. Taking into ac-
large component of these two states. Consequences of this @ount thed-wave symmetry of the hole pair state yields an
the quasiparticle weight and possible staggered orbital curAndreev couplingsee Fig. 10
rents were mentioned in Sec. Il C.
The holes have hard core interactions among themselves,
and with the bosons. At low doping, however, it is still mean- Hbf=gb2 (dk+q,2bgfka,k+qi+ H.c), (37
ingful to describe their states by excitations about small k.q
Fermi pockets around={ 7/2,*= 7/2). Lt
Thepfermion densityj(of states 02‘ E€@6) is plotted in Fig.  Whered,=cosk,)—cosk,), and bgzziplaqelq b is a Fou-
11. We see a large peak at low energies order 4" rier component on the plaquette lattice. o
<4t') from the saddle points near the antinodal points. " the superconducting phas)#0. This implies a

These dominate the hole spectral function, and tunnelin@"@Ximity induced pairing of fermions in the small pockets,

density of states at the “pseudogap,, energy above the and an opening of a superconducting gap with the Bogoliu-
chemical potential. Within this frameworl,,, does not de- bov dispersion

scribe the pairing correlation per g&.only feels the change

in boson density through changes in the common chemical Ev=*+(ex—p)?+AZ

potentia). Even in the superconducting phase where hole
pairs Bose condense, near antinodal points the Bogoliubov
particle-hole admixture is small, and quasiparticles have a
character oholesin the RVB vaccuum. This has important

experimental implications.

(1) Angular resolved photoemission. The large Fermi sur
face of electrons, given by Hartree-Fock approximations, in
cludes mostly the first magnetic Brillouin zofthe diamond
connecting antinodal pointsLuttinger’s theorem for a Fermi
liquid of electronsexcludesany hole spectral weight outside
this area. In contrast, spectral weight of our fermions can b
found anywhere outside the small Fermi pockets near
(£ m/2,=7/2). Indeed, broad quasiparticle weight, abdye
has been observed in photoemission data at momenta h
way on the line ¢,0)— (7, ).12

A direct evidence of small Fermi pockets would be sharp’L
gapless quasiparticle modes on both sidesmd®(w/2). The
“shadow” quasiparticles closer to7, ) are harder to ob-
serve than the ones closer to (0,0), because of vanishing vloc\/T—coc N (39
quasiparticle weight as discussed following Efl).

(2) Tunneling conductance should exhibit an inherentAt higher temperatures thah,, A, vanishes and a broad-
asymmetry between injecting electrofjsositive bia$ and ened signature of the small Fermi surface emerges in the
injecting holes(negative bias The negative bias peak at the spectral function. In contrast, near antinodal points, Bogoliu-
pseudogap voltage is larger than the positive peak, since ifbov particle-hole mixing is negligible and spectral weight is
jecting electrons is suppressed by Hubbard interactions. Idue to hole fermions. This is consistent with photoemission
other words, electrons can only be injected into existingdata which finds that abovE, the gap closes only in a small
holes, whose density is of order at low doping the ratio of region around the nodal directidh.
weights should scale witlk. A review of (unsymmetrized The Andreev coupling37) couples the superconducting
tunneling data published by several grotisé reveals such phase fluctuations to nodal quasiparticles. Similar interac-
an asymmetry, although we have not seen yet a systematimns were used to calculate the temperature dependent Lon-
study of its doping dependence in the literature. don penetration lengt!. That calculation found the fermions

E. Boson-fermion couplings

AR°=gpdi(b). (39

To be consistent with the range-2 CORE method, we must
not include close-by holes on nearest neighbor plaquettes.
These excitations were already taken into account in the ef-
fective hole pairs hopping energy. The remainder Andreev
coupling is therefore between second nearest neighbor hole
fermions, with a coupling constarg,<0.1J,, estimated
from the magnitude of the range-3 terifsee Appendix A

We emphasize thal. is not the“usual” BCS gap, since
it couples to hole fermions, not electrons. Through its depen-
&ence on the Bose condensate order paran{&pgr,, we
can deduce the transverse quasiparticle velocity at the nodes
=dA/ok, . v, —0 atT., and it should vary with doping
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to be more dominant at low temperatures than thermal phase
fluctuations in destroying the superfluid density. The effects
of this term on the fermions abovie., were recently argued
to give rise to marginal Fermi liquid spectral pedRs.

Lastly, the fermion-magnon coupling is given by

N,

Htf:gtmggq ((tqu""tfqu)flsfk+q+;—s+m+ H-C-)-
(40)

This singlet interaction term, flips fermion spins and scatters
them with momentum 4, 7) while emitting or absorbing 28 A
magnons. It produces signatures of the antiferromagnetic

resonance in the fermions self-enefgy? Equation(40) is Condensate
similar to fermion-magnon terms which were considered for p < :p
predicting antiferromagnetic resonance signatures in tunnel- b f

ing and photoemlssmﬁ FIG. 11. Hole fermions and hole pair bosons density of states.

_ ' The fermion density of states is calculated for dispersions(&).
F. Boson-fermion thermodynamics for the normal statddashed ling and superconducting state Eq.

The end result of the previous sections is a system of fouf3® (solid lin). The low energy scalt’ creates a large peak in the
bosons and a gas of hole fermions in thermochemical equpole density of states. Hole pair bosons single particle density of
librium, i.e., the charged bosons and fermions share a Con:l;_tates is approximated as a constant corresponding to the noninter-

. - I ing bilinear terms of® in Eq. (32). A, and A, refer to the
mon chemical potentigl. Combining Eqs(30), (36), (37), acting . sc Pg
(40) yields thep compzlagte plaquettg bgsén—)fegmi)on( F?amiI-SUperconducmg gap of E(B8) and pseudogap of E(7), respec-

tonian tively.
PBEM__ A 4b. f bf tf The boson compressibilitiusing thexy model representa-
H =HULR2p]H H L]+ HE AR (41 tion of hard core bosonss approximately
In a uniform phase, the fermions and and hole pair bosons
obey a global charge density constraint 1
Kh™ 577 - (45)
323,
2np(2p, T) +ne(p, T)=x. (42)

At zero temperature, ignoring boson-fermion interactions,
An important missing parameter, in the absence of a consiswe use Eqs(43) and (42) to obtain the change in chemical
tent calculation of the fermions bands, is the relative positiorpotential to linear order in doping
of the lowest fermion and hole pair energies.

Numerical evidence for % 4 Hubbard clustefsshow that X

for up to three hole pairs, there is a negative pair binding p(x) = p(0)= (ZKb—JrKf) (46)
energy, i.e., the lowest fermion state at/2,7/2) is still
above the boson condensate. However, at finite doping whette the underdoped regime, whexe<1, the energy distance
superconductivity wins over antiferromagnetism, the repulbetweenu and the fermion saddle poinkS™ (,0) defines
sively interacting bosons may have higher energy than théhe pseudogap ,, as measured in tunneling and photoemis-
bottom of the fermion bands. This will produce gapless nodakion(see Fig. 11. Its doping dependence is simply connected
fermions in the superconductor. Here we shall assume thab the chemical potential shift
already at very low doping these energies match, and bosons
and fermions coexist. Apg(X)=Eysr— u(x,T), (47)

The boson and fermion compressibilities are ) ) )
which yields a steady reduction of the pseudogap as a func-

kp=0NplI(2u), tion of doping as plotted in Fig. 12. In the normal state above
T., we have a theory of two decoupled, noninteracting

(43 gases. For the bosons, we use a constant density of states
pp(w), and for the fermions we choogg(e) from the dis-

wheren, ,n; are boson and fermion densities per square latpersion(36) (see Fig. 11 In this simplified theoryu(T,x)

tice site. The zero temperature fermion compressibility, up tecan be found using Eq42) and solving

a Landau parameter correction, is approximately equal to the

Kf:(?nf/(?,u,

Fermi pockets density of states, by Eg§6): pp(®) pi(€)
Zf do—— f e———=X. (48
e(w—Z;/,)/T_l e(s—p,)/T+1
L 44)
N ( The grand potential and entropy are given by
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gapped at the antiferromagnetic resonance energy, and the

o4 " & remaining gapless excitations consist of a small density of
03 * hole pair bosons and spin half hole fermions. The PBFM
0'8'Apgo.2 1 brings us closer to understanding low temperature correla-
0.1 tions of cuprates. It is amenable to mean field, low density,
0.6 5 | and variational approximations which do not lend themselves
0 0.1 02 x=0.18 directly to the higher energy Hubbard model and its various

S extensions.

0.4r

comil il Here, the PBFM was only preliminarily explored. It

would be interesting to study its thermodynamics and trans-
x=0.06 port properties in more detail.

X
0.2f / ]
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Q(M)=-

APPENDIX A: THE COMPLETE FOUR BOSON MODEL

Tf dwpp(w)In(1— e lem2#DIT) Here we present the complete four boson model including

all interactions generated by CORE up to two plaquette

terms. Coupling parameters are listed for square lattice and

ladder geometries. We then estimate the magnitude of the

truncated three plaquette terms.

S(T)=—0Q/dT. (49) The four boson model can be separated into a bilinear part
and a quartic part in the bosonic operators

+Tj deps(e)in(e” (e AT4+ 1),

In Fig. 12 the excess hole entrof3(T,x) in the nonsuper- _
conducting state is shown for the density of states given in HAP=HP[b]+H [t]+H ™ b,t], (A1)

Fig. 11. The picture which emerges is that above the super-
conducting transition temperature, bos@vaporatento the

where the bosons obey local hard core constraints

fermions gas. The evaporation is driven by the larger density

of states of

hole fermions than the bosons. This evaporation b b +2 thitys<1. (A2)

also implies a rapid increase in magnetic susceptibility. Its

effects on transport have not yet been calculated.

This paper is primarily aimed at demonstrating the appli-

The kinetic(bilinean terms as written in Sec. IV A are

V. SUMMARY AND DISCUSSION
Hb=(eb—2,u)2i b?bi—Jb<i2j> (b{b;+H.c),

cation of CORE to the Hubbard model, which allows us to
extract its low energy degrees of freedom and derive the t_

: . - = +H.
plaguette boson-Fermion model. The CORE calculation H etz thita 2 (tyt al ¢)
could be improved by diagonalizing larger clusters within

contemporary computational capabilities. A consistent com- _ ﬁ E (
putation of both the boson and fermion parameters would be 2 o

t't" +H.c). (A3)

aitaj

useful. It would permit systematic studies of extended Hub-
bard models and the effects of additional interactions. The higher order interaction terms are

The d-wave hole pairs are already present in the Hubbard
model on a single plaquette. Fortunately, due to the shorty int_,, N+ Va(tt )5ttt Va(tt) T (1
coherence length and large hopping rate, the pairs maintain bi21> biTb] <I2J> [Voltito(tity)o+ Valtit)1(tity)s
their integrity in the square lattice.

The PBFM, at the simplest level of approximation, pro- +V2(t-t-)Z(titJ 2]_‘]th b btht +H. c)

jtajtai

vides a phase diagram which shares the basic features of
underdoped cuprates: the antiferromagnetic Mott insulator
and ad-wave sup_erconductor with nodal_ hole fermions. In +Vm2 (bTthtaJﬂLbTb tT. t), (Ad)
the superconducting phase, the local spin one magnons are
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TABLE |. Parameters for the four Boson model, in unitst @n
the square lattice and ladder. The parameters were computed from -22r
the Hubbard model using range-2 CORE. Values for the ladder are —222 Tl »
given in parenthesis where they differ from the square lattice. _o0.4} _ssgc:”—’ %
_22_5.S=1 \-::—::::: g
U=3t u=6t U=8t u=1ot ooglso ~
€ —6.613 —8.332 —9.865 —11.549 EA -23r
(—6.019) (—7.983) (—9.593) (—11.324) -23.21
€ 0.152 0.183 0.174 0.162 -23.4f = "Tr==a= g’
(0.192 (0.263 (0.253 (0.233 236f Sof  — =
€y 1.178 2.081 3.557 5.183 -23.8) “‘—;
(0.440 (3.212 (4.839 (6.567) oaf S0 T <
Ji 0.615 0.397 0.309 0.249
Ju 0.590 0.379 0.297 0.242 Effective H Exact
Vo —-0.361 —0.152 —-0.114 —0.099

FIG. 13. Low energy spectrum of exact compared to effective

Vi —0.203 —0.117 —0.095 —0.082 Hamiltonian on three plaquettes. The comparison is presented for
Va 0.214 0.099 0.071 0.055 the Hubbard model witky = 6t in the 0-hole and 2-hole sectors. An

Jb 0.413 0.340 0.311 0.289 arbitrary chemical potential was used to set the 2-hole energies
Jpt —0.383 —0.233 -0.173 —0.134 slightly above the plotted 0-hole energies.

Vit —0.133 —0.286 —0.143 —0.191

Vip 0.884 1.061 1.145 1.213 Estimation of the truncation errorin Fig. 13 we compare

between the low energy spectrum of the exact and the trun-
cated effective Hamiltonian for three collinear plaquettes.
where ([itj)g creates two triplets on plaquetteand;, which This comparison may be used to estimate the magnitude of
are coupled into total spils When Vy=2V,=—2V, the the higher order three plaquette terimg, defined by Eq.
triplet interactions may be written using spin-1 operators a2l
V,S-S;. Similarly, for J;=J;;, which is close to the value
giﬁn lJ)y COREéee Tatlblet)tl, the bilinear two site triplet hij=Hii— (i +hyje+hi+hy+hy) = irﬁ?_HFif'i' AG
terms may be simplified ta,n; - n;, with n,=1/\2(t +t,). (A6)

The full Hamiltonian(A1) may serve as a starting point Recall thatH{;' has the exact low lying spectrum of the
for various approximations or numerical studies. Its paramoriginal Hamiltonian on the three plaquettes. Thus expecta-
eters were computed using CORE from the Hubbard modeion values ofh;;, in the ground state and first excited states
with U/t=3,6,8,10. The parameters are listed in Table I.  are calculated by subtracting energiesl-qﬂ from corre-

Note that the on-site terms for the ladder geomégiyen  sponding exact energies of the three plaquette problem. We
in parentheses in Tableg differ from the square lattice case estimatq hij> in a similar way, by Comparing energies of two

due to contributions of two plaquette terims. For example  dijsjoint plaquettes to the exact energies of two coupled
let &0 be the bare on site triplet energy from the single

plaquette spectrum andle; the correction due to the inter- 0
plaquette interaction as described in Sec. Il A. The renor-
malized on-site energy at sitas e?+ z;5¢; Wherez; is the
coordination number of site The values ofs? and Se; may

be extracted from the table. For example,

=2}
Se.= (esquare_ Eladdewz E
t t t ) _3»
6?= etsquare_456t_ (A5) _4———
range 1
TABLE 1l. Convergence of the cluster expansion. The ratio -5 z
(hi;)/(hij) given for different sectors in the Hamiltonian with 0 ¢ >

=6t indicates excellent convergence of CORE on a ladder. ) o ) ) )
FIG. 14. Tight binding dispersion from a CORE calculation. The

S=0 S=1 model is coarse grained into dimers, and the cluster expansion is
truncated at increasing hopping ranges. Away from the dimer Bril-
0 holes 330 7.7 louin zone edge, the approximate dispergisalid lineg converges
2 holes 27 19.5 rapidly to the exact solutiofdashed ling Its convergence is much

slower at the dimer zone edge.
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plaguettes. Small expectation valugs) relative to(h;;)  We apply CORE to the single electron sector of this model,

suggest rapid convergence of the cluster expansion. coarse graining it to blocks of two sites. In each block we
Table Il gives a summary of the ratigh;;)/(h;j) in the  retain only the empty staf®); and the single electron sym-

lowest states of the different sectors of the Hamiltonian. Thanetric state of energy-t:

satisfactory convergence of the cluster expansion, implies the

integrity of bosonic states on the lattice, at least for ladder

geometry. Interestingly, it is still very good for the Hubbard filoy=

model withU =6t where pair binding energy is positive on a :

plaquette. This strengthens the argument that binding is gen-

erated dynamically on the lattice. The holes remain tightly

bound because correlated motion reduces their kinetic e

ergy.

1
—=(ch+chi,y). (B2

2

Hence we can only hope to reconstruct the lowest of the 2
'bands in the folded Brillouin zonk=[ — m/2,/2].
The effective Hamiltonian generated by CORE at any

range of the cluster expansion is of the general form
APPENDIX B: CORE CALCULATION FOR THE TIGHT

BINDING MODEL

In Sec. Il B we discussed the effects of breaking lattice HEM=2 b (1 + 1)), (B3)
translational symmetry within the reduced Hilbert space. We 1

argued that interactions of increasing range gradually reduce

the effects of symmetry breaking on the spectrum. It is in-Such a Hamiltonian cannot reproduce the sharp band edge at
structive to study this process in a simple model where &= + 77/2 at any finite range of hopping. However, as dem-
CORE calculation can be carried easily to long ranges. Sucbnstrated in Fig. 14, CORE calculations of increasing range
an opportunity is provided by the tight binding model on aintroduce higher harmonics that successively approximate

chain the sharp edge. If one is interested in the properties of the
model far from the dimerized zone edge then by Fig. 14 the
i iltoni - RE should
H=— cfe+cf ¢ B1 effe_ctlve Hamiltonian generated by range-3 CO
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