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Plaquette boson-fermion model of cuprates

Ehud Altman and Assa Auerbach
Department of Physics, Technion, Haifa 32000, Israel

~Received 7 August 2001; published 14 February 2002!

The strongly interacting Hubbard model on the square lattice is reduced to the low energy plaquette boson
fermion model~PBFM!. The four bosons~an antiferromagnon triplet and ad-wave hole pair!, and the fermions
are defined by the lowest plaquette eigenstates. We apply the contractor renormalization method of Morning-
star and Weinstein to compute the boson effective interactions. The range-3 truncation error is found to be very
small, signaling short hole-pair and magnon coherence lengths. The pair-hopping and magnon interactions are
comparable, which explains the rapid destruction of antiferromagnetic order with emergence of superconduc-
tivity, and validates a key assumption of the projected SO~5! theory. A vacuum crossing at larger doping marks
a transition into the overdoped regime. With hole fermions occupying small Fermi pockets and Andreev
coupled to hole pair bosons, the PBFM yields several testable predictions for photoemission, tunneling asym-
metry, and entropy measurements.
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I. INTRODUCTION

In 1987, shortly after the discovery of high temperatu
superconductivity in cuprates, Anderson1 proposed that the
key to this perplexing phenomenon hides in the large p
tive Hubbard interactions in the copper oxide planes. Inde
at zero hole doping, the Hubbard model captures the M
insulator physics of the parent compounds, e.g., La2CuO4.
The doped Hubbard model, however, has so far resiste
definitive solution, primarily because its spins and holes
highly entangled with no obvious small parameter to se
rate them. Whether the Hubbard model even supports su
conductivity without additional interactions remains a su
ject of controversy. Different mean field theories sugg
conflicting ground state order parameters and correlatio
Numerical methods are restricted to finite clusters where h
pairing is found,2–4 but off-diagonal long range order has n
been ascertained.

This paper charts a route from the microscopic Hubb
model on the square lattice to an effective lower ene
plaquette boson fermion model~PBFM! at low hole doping.
We apply the contractor renormalization~CORE! method of
Morningstar and Weinstein5 to the plaquettized lattice~see
Fig. 1! in a one step transformation.

We find that the bosonic part of the effective Hamiltoni
is closely related to the projected SO~5! @pSO(5)# theory;6,7

a theory of four bosons: a hole pair and a~antiferro!magnon
triplet. The pSO(5) model describes the competition b
tween antiferromagnetism and superconductivity in a qu
tum mechanical framework. Its mean field theory yiel
some broad features of the cuprate phase diagram at
doping. At low temperature, the hole pairs are governed b
phase fluctuations action8,9 which explains the~non BCS!
proportionality between superfluid density, transition te
perature, and hole concentration. In the superconduc
phase, the magnons are massive and give rise to an an
romagnetic resonance in neutron scattering. These mas
magnons were argued to produce a resistance peak ser
Josephson junctions.10

Nevertheless without a microscopic foundation, the fu
0163-1829/2002/65~10!/104508~15!/$20.00 65 1045
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damental ‘‘mechanism’’ problem remains: What creates a
holds togetherd-wave hole pairs in the presence of loc
repulsive interactions, without the benefit of retardation a
phonons? Even assuming that hole pairs move cohere
what is their hopping rate, and is it of the same order as
Heisenberg exchange energy as assumed by thepSO(5)
theory?

Here we address these questions and afford thepSO(5)
theory and its phase diagram a microscopic foundation.
also include the hole fermions which provide gapless~nodal!
excitations in the square lattice. Their band structure is
tained from previously published numerical results, and th
coupling to the bosons is estimated by symmetry and mic
scopic considerations.

FIG. 1. Local bosons and fermions on the plaquette lattice. T
singlet RVB vacua are depicted as solid squares. Holes are dep
by circles. The triplets, single hole and hole pairs Hubbard eig
states define the degrees of freedom of the effective plaqu
boson-fermion model. Interplaquette couplings are computed u
contractor renormalization.
©2002 The American Physical Society08-1
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The resulting plaquette boson fermion model~PBFM! de-
scribes two coupled charged systems~i! Hole pair bosons,
which Bose condense belowTc and induce a proximity gap
on the holes.~ii ! The hole fermions, which occupy sma
Fermi pockets around (6p/2,6p/2) and have a large va
Hove peak in density of states near (6p,0),(0,6p), the
‘‘antinodal’’ points.

We discuss the thermodynamics of the coupled syst
with the constraint on the total doping density. Previou
proposed boson-fermion models11 differ from the PBFM by
their Hilbert space~e.g., by having a large Fermi surface, a
counting occupations from the electron vacuum!. For the
PBFM, in the weak coupling approximation, some straig
forward experimental implications are obtained.

~1! Hole spectral weight in Luttinger theorem-violatin
momenta~outside the ‘‘large’’ electron Fermi surface!, e.g.,
on the line (p,0)→(p,p).12 This weight survives aboveTc
and is associated with excited holes moving in the correla
RVB vacuum.

~2! Asymmetry in tunneling conductance. At low dopin
x!1, particle-hole symmetry is expected to be violated, i
the positive bias conductance~injection of electrons! is sup-
pressed by a factor proportional tox, relative to the negative
bias conductance~injection of holes!. Such a trend indeed
appears in tunneling data.13

~3! The pseudogap doping dependence. The pseudo
energy in photoemission14,15 and tunneling13 is at the van
Hove peak of antinodal fermions. The decrease of pseudo
with doping follows the increase in fermion chemical pote
tial. Its derivative with respect to doping measures the co
bined hole fermions’ and hole pair bosons’ compressibiliti

~4! Nodal transverse velocity. The quasiparticles proxi
ity gap near the nodal directions determines their transv
velocity. This velocity can be measured by photoemiss
and optical conductivity.16 We expect it to vanish atTc , and
to be proportional to the Bose condensate order param
Thus it should scale asv'}ATc(x).

~5! Hole dependent entropy. At temperatures above
superconducting transition, hole pairs evaporate into h
fermions, because of the difference in their density of sta
The doping dependent entropy17 is dominated by the fermion
contribution.

The paper is organized as follows. In Sec. II we introdu
the eigenstates of the Hubbard model on a plaquette.
local bosons and fermions are defined as the creation op
tors of these eigenstates. The physics learned from the
site problem is instructive: Undoped, the ground state i
local resonating valence bonds~or projectedd-wave BCS!
state. The four bosons create the lowest triplet and the
pair singlet. There are two degenerate spin half plaqu
fermion states with symmetry (p,0) and (0,p).

It has long been appreciated that in the Hubbard mo
two holes cannot bind on a dimer bond, but they can bind
a plaquette~and on larger clusters!.18 The hole pair wave
function hasdx22y2 symmetry forp/2 rotations. The next
step is to compute their interplaquette hopping rate in or
to see whether they can preserve their integrity on the infi
square lattice. A short discussion is included about plaqu
‘‘vacuum crossing,’’ which occurs at large chemical pote
10450
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tials and may be associated with a transition from und
doped to the overdoped regime.

In Sec. III the contractor renormalization~CORE! method
is reviewed. The method requires exact diagonalization
multiplaquette clusters, in principle up to infinite range.
course, the method is useful only if it converges rapidly in
feasible range of interactions. We have tested the con
gence of the low spectrum for the Hubbard models on o
ladders, with satisfying results. These tests confirm our be
that the convergence depends on a short boson coher
length, of order one plaquette size. This is very encourag
for the useful application of CORE to our problem, since t
experimental superconducting coherence length of cupr
also appears to be particularly short in the underdoped
tems. We discuss the artifacts of theformal translational
symmetry breaking within CORE. In Appendix B, we use t
tight binding model as a pedagogical example of how lon
range interactions of CORE serve to restore an unphysic
broken symmetry.

In Sec. IV the plaquette boson-fermion model is derive
We discuss the hole pairs integrity, as evidenced from
numerical results, and how it is related to the sizeable p
hopping energy. The pair kinetic energy is crucial in stabil
ing superconductivity. The full four boson Hamiltonian
given in Appendix A. The hole fermions band structure a
interactions with the bosons are added. The thermodynam
of the weakly coupled PBFM yields a relation between t
pseudogap energy, the bosons and fermions compress
ties, and the evaporation of hole pairs into fermions at hig
temperature. We conclude with a summary and a discus
of future directions in Sec. V.

II. PLAQUETTE STATES

We study the Hubbard model

H52t (
^ i j &,s

sl

~cis
† cjs1H.c.!1U(

i
ni↑ni↓ , ~1!

wherecis
† ,nis are electron creation and number operators

site i on the square lattice. We will occasionally refer to
Gutzwiller projected version, thet-J model

H tJ52tP (
^ i j &,s

~cis
† cjs1H.c.!P1J(̂

i j &
Si•Sj1J8. ~2!

P is the projector of doubly occupied states, andJ→4t2/U
at largeU/t. J8 is the term of orderJ that includes next
nearest neighbor hole hopping.19 For one electron per site
~half filling!, the short range antiferromagnetic correlatio
are apparent when diagonalizing~1! and ~2! on two sites.
The dimer states were used to construct effective models
the ladder20,21 and for spin-Peierls phases on the squ
lattice.22 The projected SO~5! model was defined on a ladde
using empty dimer states as the hole pair bosons.6 However,
there isno hole pair bindingfor the Hubbard model on a
dimer. Naively, this suggests that pairs could readily disin
grate into single holes once interdimer hopping is turned
Moreover, if one wishes to captured-wave symmetry in the
8-2
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PLAQUETTE BOSON-FERMION MODEL OF CUPRATES PHYSICAL REVIEW B65 104508
hole pair wave function, the basic unit block must posses
least fourfold rotational symmetry.

The smallest such block that can cover the square la
is the four site plaquette. It is a trivial task to diagonalize t
Hubbard model on a plaquette and obtain its spectrum
wave functions.

The spectrum is depicted in Fig. 2. Since it is cumb
some to write the full wave functions explicitly, we represe
their dominant correlations as follows~i! Real space~RS!
description using holes, dimer singlets and dimer triplets
depicted in Fig. 3.~ii ! Plaquette momenta~PM! representa-
tions usingQ5(Qx ,Qy), Qa50,p, the four points on the
plaquette Brillouin zone. The electron operator of plaqueti
is given by

cQis
† 5

1

2 (
h50,x̂,ŷ,x̂1 ŷ

eiQ•hci 1hs
† . ~3!

It is instructive to examine the plaquette eigenstates and
ergies in some detail before proceeding to couple them.

A. The vacuum

The ground state of the 4-site Hubbard model at half fi
ing (ne54) is calleduV&. In the PM representation it can b
described by~suppressing the plaquette index!

FIG. 2. Lowest spectrum of the Hubbard model on a plaque
Eigenstates are labeled by total spinS and plaquette momentum
Qx ,Qy50,p. The shaded area is over all high energy trunca
states. The vacuum is defined asuV&, and the second quantize
operators connect the vacuum to the lowest eigenstates as sh

FIG. 3. Real space representation of plaquette bosons. Dom
spin and charge correlations in the plaquette bosons wave funct
Bold lines represent singlet dimers↑ i↓ j2↓ i↑ j , and double lines
represent the triplet↑ i↓ j1↓ i↓ j , ↑ i↑ j6↓ i↓ j , where i and j are on
sublatticesA and B, respectively. Holes are depicted by op
circles.
10450
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uV&5
P

AZV

~c(p,0)↑
† c(p,0)↓

† 2c(0,p)↑
† c(0,p)↓

† !c(0,0)↑
† c(0,0)↓

† u0&.

~4!

Z is the wave function normalization factor.uV& is ad-wave
BCS state, where doubly occupied states are suppressed
partial Gutzwiller projectionP(U/t). ~At large U, P be-
comes a full projection.!

In the RS representation, see Fig. 3,uV& is depicted as the
resonating valence bonds~RVB! ground state of the Heisen
berg model plus small contributions from doubly occupi
sites. In the two dimer basis,uV& contains a large contribu
tion from a triplet pair. The product stateuV&5) i

plaquV& i , is
our vacuum state for the full lattice, upon which Fock sta
can be constructed using second quantized boson and
mion creation operators.

B. Magnon triplet

The magnons are defined by the lowest triplet ofS51
states. In PM representation they are

ta
† uV&5

P
AZt

(
Qs

cQs
† sss8

a cQ1(p,p)s8uV&, a5x,y,z,

~5!

wheresa are Pauli matrices. These~antiferro-!magnons have
plaquette momentumQ5(p,p). Their excitation energy is
close to the superexchange energyJ'4t2/U. An antiferro-
magnetic state can be constructed by a product of plaqu
coherent states

Ca f m 5)
i

plaq

~cosu1sinumat ia
† !uV&, ~6!

whereumu51. This state supports a finite staggered mom

1

N
^S(p,p)

a &u,ma5A3/8macosu sinu<0.306. ~7!

Note that the maximal magnetization per site supported
CAFM is less than the classical value of 0.5, since it does
contain higher spin states up toS52.

C. Single hole fermions

The ground states for a single hole (ne53) are two de-
generate doublets described by plaquette momentaQ
5(0,p),(p,0):

f Qs
† uV&5

P
AZQ

cQs1•••uV&, s5↑,↓, ~8!

where ••• represent higher order electron operators. T
hole fermion Bloch state can be constructed as

f k1Qs
† uV&5(

i

plaq

eik•xi f Qis
† uV&. ~9!

.
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EHUD ALTMAN AND ASSA AUERBACH PHYSICAL REVIEW B 65 104508
For a lattice ofdisconnectedplaquettesf (p,0)
† creates an

eigenstate with a photoemission spectral weight given by

u^Vu f (p,0)sc(p,0)suV&u25Z(p,0) , ~10!

where, e.g., for thet-J model, 1/4,Z(p,0),1/2 is a function
of t/J. This weight is further renormalized by interplaque
couplings in the effective Hamiltonian.

Incidentally, there is another degenerate pair of doub
at higher energy~of orderJ) at momentaQ5(0,0),(p,p). It
turns out that by symmetry, the (p,p) state has vanishing
hole spectral weight, that is to say for all values ofU/t

Z(p,p)5u^Vu f (p,p)sc(p,p)suV&u250. ~11!

Since these states couple by interplaquette hopping to
lower doublet, this produces an asymmetry of the quasi
ticle weight between momenta close to (0,0) and (p,p).
This asymmetry may explain the difficulty in observin
‘‘shadow bands,’’ i.e., quasiparticles on the Fermi pock
surfaces closer to (p,p).23

It is interesting to note that the twofold degeneracy of
fermion doublets is a property of the plaquette. The four s
Hubbard andt-J Hamiltonians happen to commute with th
plaquetted-density wave operator24

D̂5 iP(
s

~c(p,0)s
† c(0,p)s2c(0,p)s

† c(p,0)s!P. ~12!

D̂ connects between the doublet pairs (p,0)↔(0,p) and
(0,0)↔(p,p). Thus a possible ground state of one hole
the current carrying state

Cs5)
i

plaq

~ f (p,0),is
† 1 i f (0,p),is

† uV&, ~13!

which is a staggered flux~or d-density wave! state. For a
single hole in 434 periodic lattices, this state does not see
to be the lowest energy~see Sec. IV D!. However, a large
susceptibility for such currents is expected since the h
dispersion has a valley between the antinodal points (p,0)
and (0,p), which is weakly dispersive and contains a lar
admixture of the two plaquette fermion states. It is thus c
ceivable that the staggered flux combination of the plaqu
fermions would be selected in a vortex core or near
sample edge.

D. Hole pair boson

The ground state of two holes (ne52) is described by

ba
† uV&5

1

AZb

Pc(0,0)↑
† c(0,0)↓

† u0&

5
1

AZb8
S (

i j
di j ci↑cj↓1••• D uV&, ~14!

wheredi j is 11 ~21! on vertical~horizontal! bonds, and̄
are higher orderU/t-dependent operators. Thus,b† creates a
pair with internal d-wave symmetry with respect to th
10450
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vacuum. For the relevant range ofU/t, the state normaliza-
tion is 1/3,Zb8,2/3. The important energy to note is the pa
binding energy defined as

Db[E~0!1E~2!22E~1!, ~15!

whereE(Nh) is the ground state ofNh holes.Db is depicted
in Fig. 4. In the rangeU/tP(0,5), it is bounded by20.04t
,Db,0. It has been well appreciated that the Hubbard,t-J
and even CuO2 models have pair binding in finite cluster
starting with one plaquette.18 In larger clusters, such as th
434 lattice, pair binding is seen for up to 6 holes4 ~three
hole pairs! for U/t<20. This does not yet explain the integ
rity of pair correlations on the infinite lattice since the ele
tron hopping energyt is much larger than the pair bindin
energy. In Sec. IV B and Appendix A, we show numeric
evidence that plaquette pairssurvivedisintegration into fer-
mions.

A d-wave superconducting state can be written as the
herent state

Cd-scF[)
i

plaq

~cosu1sinueiwbi
†!uV&, ~16!

with the superconductor order parameter

^Cudi j ci↑cj↓uC&5AZb8e
iwsinu cosu. ~17!

It is worthwhile to reemphasize the following point whic
has important implications in interpreting both experime
and numerics of Hubbard-like models. The fermions a
hole pairs have charges1e and 12e respectively. Their
number is counted from the correlated half-filled~RVB!
vacuum. The operatorsf andb should not be confused with
the electron and Cooper pair operatorscs

† andc↑
†c↓

† , respec-
tively, whose numbers are counted up from the elect
vacuum. In numerical calculations, it is preferable to use
operatorb†, as defined by the Hubbard plaquette eigensta

FIG. 4. Pair binding energy on a plaquette.Db of Eq. ~15! cal-
culated for the Hubbard model for different interaction strengt
For Db,0 the hole pair is more stable than two single holes o
disconnected plaquette lattice.
8-4
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PLAQUETTE BOSON-FERMION MODEL OF CUPRATES PHYSICAL REVIEW B65 104508
as the superconducting order parameter. It should have la
matrix elements than the customaryd-wave pairing operator
di j ci↑cj↓ .

E. Underdoped to overdoped transition

Throughout this paper we restrict ourselves to low do
ing, i.e., a small number of hole pairs and hole fermions
plaquette. Nevertheless, the plaquette states basis leads
expect an interesting transition at higher hole doping for
following reason.

When the chemical potential is large enough to bring
hole pair~two electron! state to be lower than the four ele
tron vacuum, avacuum crossingtakes place. On a singl
plaquette, the vacuum crossing is when the levels of zero
one boson intersect. Since hole pairs are somewhat larg
size than a single plaquette, the lattice vacuum cross
should take place at somewhat less thanx50.25 holes per
square lattice site.

Once the two hole state turns into the new vacuumuV&8,
all excitations are defined with respect to it using differe
boson and fermion creation operators. For example, the
RVB vacuum becomes a Cooper pair excitation above
new vacuum:

uV&'S P(
i j

di j ci↑
† ci↓

† 1••• D uV&8. ~18!

It is plausible that the vacuum crossing is a true quant
phase transition, and not merely a mathematical artifac
using different plaquette bases to construct the same gro
state. A candidate for such a phase transition is the rest
tion of square lattice symmetry, if this symmetry is tru
broken by plaquettization in the underdoped regime as m
tioned in Sec. III B.

The overdoped side is far from half filling, where effec
of the Gutzwiller projection are small. That is to say, t
eigenstates can be approximated by applying electron op
tors to the electron vacuum. With interplaquette hybridiz
tion of the two electron plaquette vacua, the ground state
be adiabatically connected to the quarter filled elect
Fermi surface. In the absence of superconductivity it w
exhibit a large ~Luttinger-theorem obeying! Fermi surface.

III. CONSTRUCTION OF THE EFFECTIVE
HAMILTONIAN

Having described the low lying plaquette states, we
faced with the challenge of constructing an effective Ham
tonian for the full lattice. Motivated by the pair binding on
plaquette, one might initially wish to compute the effecti
hopping of a hole pair between plaquettes using second o
perturbation theory in the interplaquette hoppingt8.

This naive approach yields pair hopping of orderJc
}t82/Db . The perturbative expansion is controlled byt8/Db .
This suggests failure of perturbation theory fort85t@Db .
Indeed, by looking at the exact spectrum of two connec
plaquettes, we find that second order perturbation fails
sizable domain oft8,t. Does this imply dissociation of the
10450
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local bosonic correlations in the translationally invariant l
tice? We argue no.

There is convincing evidence from various numerical a
proaches, that two holes remain on the same plaquett
A263A26 lattices2 and on 836 t-J ladders.3 However, in
order to understand how many pairs behave on the infi
lattice, we must determine the pair hopping energy, and
rive their effective Hamiltonian.

A suitable approach for this task is provided by the co
tractor renormalization~CORE! method5 described below.
The small parameter of CORE is the ratio of the hole p
separation, i.e., coherence length to the range of the effec
interactions.

A. Contractor renormalization algorithm

Given a microscopic HamiltonianH on the square lattice
we choose a plaquette covering and proceed by the follow
steps:

Step 1: Defining the reduced Hilbert space. We diagon
ize H on a single plaquette and truncate all states abov
chosen cutoff energy. This leaves us with the lowestM states
$ua&%1

M . The reduced lattice Hilbert space is spanned by t
sor products of retained plaquette statesua1 , . . . ,aN&. A
case in point is the Hubbard model spectrum, which for
half filled case has 70 states. We truncate 66 states and
the ground state and lowest triplet, i.e.,M54. Thus, the
Hilbert space is considerably reduced at the first step.

Step 2: The Renormalized Hamiltonian of a cluster. T
reduced Hilbert space on a given connected cluster oN
plaquettes is of dimensionM5MN. See Fig. 5 for an illus-
tration. We diagonalizeH on the cluster and obtain the low
estM eigenstates and energies: (un&,en), n51, . . . ,M. The
wave functionsun& are projected on the reduced Hilbe
space and their components in the plaquette b
ua1 , . . . ,aN& are obtained. The projected statescn are then
Gramm-Schmidt orthonormalized, starting from the grou
state upward:

uc̃n&5
1

Zn
S ucn&2 (

m,n
uc̃m&^c̃mucn& D , ~19!

where Zn is the normalization. The renormalized Ham
tonian is defined as

H ren[(
n

M
enuc̃n&^c̃nu, ~20!

FIG. 5. The reduced Hilbert space of a plaquette cluster use
CORE. The calculation ofH1,2,3

ren requires diagonalization of the
Hubbard model on the cluster highlighted by the shaded reg
H ren reproduces the exact spectrum within the reduced Hilb
space.
8-5
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EHUD ALTMAN AND ASSA AUERBACH PHYSICAL REVIEW B 65 104508
which ensures that it reproduces the lowestM eigenenergies
exactly.

RepresentingH ren in the real space plaquette bas
ua1 , . . . ,aN&, defines the~reducible! interplaquette cou-
plings and interactions.

Step 3: Cluster expansion. We define connectedN point
interactions as

hi 1 , . . . ,i N
5H ^ i 1 , . . . ,i N&

ren 2 (
^ i 1 , . . . ,i N8 &

hi 1 , . . . ,i
N8
, ~21!

where the sum is over connected subclusters of^ i 1 , . . . ,i N&.
The full lattice effective Hamiltonian can be expanded as
sum

Heff5(
i

hi1(̂
i j &

hi j 1 (
^ i jk &

hi jk1••• ~22!

hi is simply a reduced single plaquette Hamiltonian.hi j con-
tains nearest neighbor couplings and corrections to the
site termshi . hi jk contains three site couplings and so o
hi 1 , . . . ,i N

will henceforth be calledrange-N interaction. We
expect on physical grounds that for a proper choice o
truncated basis, range-N interactions will decay rapidly with
N. This expectation needs to be verified on a case by c
basis.

Morningstar and Weinstein, by retaining up to range
interactions,5 demonstrated that the CORE renormalizati
group flow, obtains an excellent value for the ground st
energy of the spin-12 Heisenberg chain. This is encouragin
since the spin half chain has long range, power-law decay
spin correlations. Pieckarewicz and Shepard25 tested CORE
for the 12 site spin-12 Heisenberg ladder. They got better th
1% accuracy for all lowest 64 states using a plaquette b
keeping only up to range two interactions.

In general, there is noa priori quantitative estimation o
the truncation error. Nevertheless, if it decays rapidly w
interaction range, we deduce that there is a shortcoherence
length related to our local degrees of freedom, e.g., in o
case the hole pair bosons and the triplets~bound states of two
spinons!.

CORE of wave function correlations.The CORE process
is designed to reproduce the low lying spectrum, while
wave functions may be significantly distorted during t
truncation of the Hilbert space. Does this hinder calculat
of correlation functions within this scheme? The answ
depends on the operators whose correlations we wish
calculate.

The correlations are calculated by adding external sou
terms to the original Hamiltonian,

H@h#5H@0#1(
i

h i Ôi , ~23!

whereÔi is a microscopic linear perturbation operator who
correlations we wish to determine. We apply the CORE cl
ter expansion of Eq.~22! to the perturbed Hamiltonian an
obtainH eff@h# which is expanded to linear order inh i ,
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Heff@h#5(
j

~hj1h i Ôi j
(1)!1(̂

jk&
~hjk1h i Ôi jk

(2)!

1 (
^ jkl &

~hjkl1h i Ôi jkl
(3) !•••1O~h2!

[Heff
0 1(

i
h i Ôi

eff1O~h2!

Ôi
eff5Ôi

(1)1(
j

Ôi j
(2)1(

jk
Ôi jk

(3)1•••. ~24!

Ôi
eff represents the linear perturbationÔi in the truncated

Hilbert space

Ôi
eff[(

n,m

M
^nuÔi um&uc̃n&^c̃mu. ~25!

The two-point dynamical correlation function at low tem
peratureT!emax is given by the Lehmann representation

Si j ~v![
2p

ZN (
nm

e2en /T^nuÔi um&^muÔj un&d~v1en2em!

.
2p

ZN (
nm

trunc

e2en /T^c̃nuÔi
effuc̃m&^c̃muÔj

effuc̃n&

3d~v1en2em!, ~26!

where Z is the partition function, and the second sum
evaluated in the truncated Hilbert space, using the clu
expansion~24! for the matrix elements.

Thus for the full lattice cluster,Ôi
eff recovers the exac

correlations of thetrue low energy eigenstates. By~24! the
linearized cluster expansion involves multisite operators

Ôi ,i 1 , . . . ,ın
(n) 5]hi 1 , . . . ,ın

/]h i . ~27!

A rapid decay ofhi 1 , . . . ,ın
beyond a short truncation range

essential for the feasibility of the CORE scheme for the sp
trum. Similarly, to calculate the correlations ofÔ, we require
a rapid decay ofÔ(n) with n, which would allow us to cal-
culateÔi

eff by small clusters diagonalizations. We have p
viously argued that a small truncation error results from
short coherence lengthj, for the coarse grained degrees
freedom. For example, the size of the hole pairs in
slightly doped Hubbard model. Thus, the operatorÔ should
be chosen to have large matrix elements within the redu
Hilbert space, and the multisite operatorsÔi 1 , . . . ,ın

(n) should

decay rapidly beyond the range ofj.
In other words, if the truncated wave functions retain t

relevant local operator content, the cluster expansion for
operators converges rapidly, and the effective Hamilton
can reproduce the long wavelength correlations correctly
this paper, the truncated plaquette states, for example,
tain d-wave hole pairs on plaquettes. If these hole pairs t
out to be tightly bound in the exact eigenstates of the
lattice, their creation operator has small multisite correctio
in the renormalized basis, i.e., it has a rapidly decaying c
8-6
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PLAQUETTE BOSON-FERMION MODEL OF CUPRATES PHYSICAL REVIEW B65 104508
ter expansion. In this case, long ranged-wave pair correla-
tions are well represented~up to an onsite renormalizatio
factor!, by the boson-boson correlations of the four boso
model.

B. Lattice translational symmetry

The CORE algorithm formally requires explicit breakin
of lattice translational symmetry at the first step. T
plaquette lattice vacuum breaks lattice translational sym
try as follows: each plaquette vacuum contains a triplet p
contribution, but the product state does not contain in
plaquette triplets, and hence differs from the state transla
by one square lattice spacing. In order to restore the lat
symmetry, interplaquette triplet pair correlations can be re
troduced by triplet pair creation operators in the effect
Hamiltonian.

As an illustration, let us consider the plaquette vacuum
the two leg ladder, in Fig. 6 which can be written in the for

uV&5P expS 1

3 (
i

t2ia
† t2i 11,a

† D)
i

u0& i , ~28!

whereu0& i is a singlet on rungi, andt ia
† u0& i is a rung triplet.

P projects out multiple occupation of triplets.
The translational invariant RVB state in Fig. 6, can

constructed fromuV& by applying the operator

uRVB&5PexpS 1

3(i
t2i 21a
† t2i ,a

† D uV&. ~29!

In the triplet bosons representation of the Heisenberg
change there are anomalous interplaquette termst i

†t i
†1t i t j .

In the mean field theory the Bogoliubov transformation
troduces a partial ‘‘symmetry restoring’’ exponential ope
tor, which resembles Eq.~29!. However symmetry cannot b
fully restored to the wave functions in the reduced Hilb
space because of the elimination of higher spin states. Is
a problem? Well, it depends on what one is interested
CORE is constructed to obtain accurate effective inter
tions. Unphysical symmetry breaking effects can be int
duced by truncating the longer range interactions, as
plained by a toy model in Appendix B. Therefore it is hard
rule outa physical ‘‘plaquettization’’ of the true ground stat
Incidentally, such a fourfold discrete symmetry breaking

FIG. 6. Restoration of translational symmetry on the ladder.uV&
is the plaquette lattice vacuum which breaks twofold lattice tra
lational symmetry.uRVB& is the dimer resonating valence bon
state which has translational symmetry, and is related touV& by an
exponential of triplet pairs, see Eq.~29!.
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consistent with Berry phase arguments26 for the spin liquid
phase of spin half Heisenberg models.

The symmetry breaking, appears as minigaps near
edges of the plaquette lattice Brillouin zone~PLBZ! kx ,ky
P(2p/2,p/2). In Appendix B, we see how the minigaps
the tight binding model, decrease as longer range interact
are included. For the triplet and hole pair bosons, minig
do not matter much since their low energy states are aro
(0,0) and (p,p), respectively; the farthest possible from th
PLBZ edges.

On the other hand, low energy fermions happen to
centered around the PLBZ corner (6p/2,6p/2), where the
effects of plaquette symmetry breaking on the spectrum
large. Although by rotational symmetry, the two bands wh
contain the (p,0) and (0,p) states are degenerate at t
PBLZ corner, the other two bands have minigaps. Th
would distort the elliptical shape of the Fermi pockets,
effect which if it exists, could be detected by angular r
solved photoemission.

IV. THE PLAQUETTE BOSON-FERMION MODEL

We first start with the bosons, and compute their int
plaquette couplings and interactions using CORE. Later
introduce the hole fermions, whose parameters are ta
from published numerical data on large clusters, and estim
their coupling to the bosons using symmetry arguments.
nally we discuss the properties of the combined Hamiltoni

A. Computing boson interactions

For the purpose of this paper, we have limited the CO
calculations to range-2 boson interactions, while project
out the fermion states. This required a modest numerical
agonalization effort of the Hubbard model on up to eight s
clusters. The resulting range-2 four boson model can
separated into bilinear and quartic~interaction! terms

H 4b5H b@b#1H t@ t#1H int@b,t#, ~30!

where the bosons obey local hard core constraints

bi
†bi1(

a
ta i
† ta i<1. ~31!

The bilinear energy terms are

H b5~eb22m!(
i

bi
†bi2Jb(̂

i j &
~bi

†bj1H.c.!,

H t5e t(
ia

ta i
† ta i2

Jt

2 (
a^ i j &

~ ta i
† ta j1H.c.!

2
Jtt

2 (
a^ i j &

~ ta i
† ta j

† 1H.c.!. ~32!

In Fig. 7 we compare the magnitudes of the magnon h
pingsJt ,Jtt and the hole pair hoppingJb for a range ofU/t.
First, we observe thatJt'Jtt'0.6J, i.e., the magnon terms
have similar form as those previously obtained for t
Heisenberg model in the bond operator,20 and plaquette
operator.27 representations. Second, the region of intersec

-

8-7
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EHUD ALTMAN AND ASSA AUERBACH PHYSICAL REVIEW B 65 104508
nearU/t58, is close to the projected SO~5! symmetry point.
We emphasize that although there is no quantum SO~5! sym-
metry inH4b, there is an approximate equality of the boso
hopping energy scales. This equality which was assume
the pSO(5) theory,6 previously appealed to phenomenolog
cal considerations. Here, the equality emerges in a physic
interesting regime of the Hubbard model and has impor
consequences on the phase diagram as shown below.

H int includes nearest neighbor triplet-triplet, pair-pair, a
pair-triplet interactions. In Appendix A,H 4b with all its
terms is displayed in its full glory, and a table of its com
puted coupling constants is provided for the values ofU/t
53,6,8,10. We also compute the truncation error of disca
ing range-3 terms. This is done by comparing the Hubb
model atU/t56, with 0 and 2 holes on 12 sites, to that
corresponding range-2H 4b. Relative shifts of less than 1%
in the ground state and first excitation energies, corresp
to a very small truncation error.

B. Mechanism of superconductivity

There are two important effects which together can lead
superconductivity:~i! pairing and~ii ! Bose condenstion o
the pairs. An important energy scale for both effects is
pair hopping rateJb .

The small range-3 truncation error was found at a la
interactionU/t56, where there is actually no pair bindin
on a single plaquette~see Fig. 4!. The convergence of effec
tive interactions, implies short boson coherence leng
j t ,jb . j t is the distance between spinons~localized spin half
configurations! which comprise a magnon.jb is the hole
pairing distance. Both coherence lengths appear to be o
order of one plaquette size. This conclusion is supported
numerical observation of short distance~lattice constant! cor-
relations between two holes on large lattices.2,3 It is interest-
ing that the short pair coherence length is dynamically g
erated in the Hubbard model, even forU/t.4.5 where the
pair binding energy on an isolated plaquette is positive.

FIG. 7. Boson hopping energies versus HubbardU. Jt and Jtt

are the magnon’s normal and anomalous hopping energies.Jb is the
hole pair hopping energy. The intersection region nearU58 is
close to the projected SO~5! symmetry point. All energies are in
units of t.
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Why is j so short? There are two effects which bind pai
a classical magnetic energy from minimizing the number
broken Heisenberg bonds, and a quantum kinematic pai
for holes moving on two sublattices of a quantum disorde
antiferromagnet. The first effect is supported by finding p
binding on a single plaquette. However, this energy also
vors clumping many holes together. The quantum pair
effect was proposed by Weigmann, Lee, and Wen, who in
grated out spin fluctuations in a quantum disordered ph
to induce a long range electrodynamical attraction betw
holes on opposite sublattices.28,29 The kinematic effect pro-
duces pairing rather than phase separation, and is ro
against additional short range repulsion. It also can exp
pair binding on large clusters in a regime ofU/t.4.5.18

Bose condensation.The relative large hopping in the pa
kinetic energy2Jb(^ i , j &bi

†bj is crucial for understanding the
cuprate phase diagram.

~i! The pair kinetic energy competes effectively with th
antiferromagnetic order. While uncorrelated single fermi
kinetic energy is not inhibited by the presence of long ran
antiferromagnetic order~in fact it strengthens it by a
Nagaoka-like mechanism!, the pair kinetic energy is substan
tially lower in a background of short range singlet corre
tions. This effect was clearly demonstrated in variation
Monte Carlo studies of pair kinetic energy in doped RV
wave functions,30 and is also a property of the variation
treatment of the four boson model. The destruction of a
ferromagnetic order into a quantum spin liquid with mass
triplets, also helps in the kinematical pairing process as
cussed above.

~ii ! Having destroyed antiferromagnetic order, the pair
netic energy competes with charge localization due to dis
der, or solidification~charge density wave!, and with disin-
tegration into unbound hole fermions.

~iii ! A largeJb stabilizes a superconducting phase at fin
temperatures. It determines the superfluid densityrs
52Jcu^b&u2, and the phase ordering transition temperatu9

Tc'rs .

C. Four boson mean field theory

The mean field theory is separated into two parts:~i! Cal-
culation of the order parameters as a function of dopi
using variational coherent states.~ii ! Determination of mag-
non resonance energy from a soft interaction version. T
results are qualitatively similar to the projected SO~5! phase
diagram.6,31

Here, we chooseU58t, and evaluate the energy of th
full boson Hamiltonian~A3!, ~A4! in the variational coheren
statescAFM(u) and cd-sc(u) of Eqs. ~6! and ~16!, respec-
tively. These states represent the antiferromagnetic and
perconducting phase. The critical chemical potentialmc ,
where the ground state energies cross, and quantum fluc
tion angleu(m) are determined by minimizing the energ
The spin stiffness and superfluid density are given, resp
tively, by

rAF52Jt^t&
2,

rSC52Jb^b&2, ~33!
8-8
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PLAQUETTE BOSON-FERMION MODEL OF CUPRATES PHYSICAL REVIEW B65 104508
where we use Eqs.~7!, ~17! for the magnon and hole pa
expectation values. These coefficients, which determine
transition temperatures, as well as the doping concentratix
are plotted as a function of chemical potential in Fig. 8. W
emphasize that the results should not be quantitatively c
pared to experiment, since they are variational approxim
tions to a simple model, and neglect effects of low ene
hole fermions.

The variational theory yields a first order transition b
tween zero doping andxc5x(mc)'0.125, where the stag
gered magnetization abruptly vanishes and the super
density jumps to a finite value. For charged holes, this fi
order transition~phase separation!, is forbidden by long
range Coulomb interactions. Instead one expects high c
pressibility, incommensurate mixed phases and stripes32 in
the intermediate doping regimexP(0,xc).

Even a weak disorder potential is very efficient in brea
ing the intermediate phase into ‘‘quantum melts,’’33,34 i.e.,
puddles of superconductor inside antiferromagnetic doma
Above xc , the superfluid density increases with doping,
agreement with London penetration depth measureme8

The overdoped regime is beyond the expected vacuum cr
ing point ~see Sec. II E!.

The magnon dispersion in the superconducting phas
obtained by decoupling a soft core interaction6,31

H int5W(
i

:S bi
†bi1(

a
ta i
† ta i D :, ~34!

where W is fitted to yield the order parameter magnitud
calculated variationally. In the superconductor, the magn
acquire a gap at the antiferromagnetic resonancev res which
increases with doping as

v res52A~m2mc!~m2mc12Jt!}Ax2xc. ~35!

FIG. 8. Variational solution of the four boson model. Resu
correspond to Hubbard interaction strengthU/t58. v res is the an-
tiferromagnetic resonance energy,rAF is the spin stiffness in the
antiferromagnetic phase, andrSC is the superfluid density in the
superconducting phase.m-mc is the chemical potential differenc
from the first order transition atmc and x is the hole density. The
estimated vacuum crossing point is discussed in Sec. II E.
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This dependence, as plotted in Fig. 8, is qualitatively con
tent with inelastic neutron scattering data.35

D. Fermion Hamiltonian

In the previous section we have computed the boso
interactions of Eq.~30! from the Hubbard model using
CORE. In that computation, we have eliminated the ferm
~single hole! states. We expect, however, that for the tw
dimensional square lattice, low energy fermion excitatio
are important. While the fermion holes short range effects
the boson couplings were included in the range-2 CO
calculations, their long wavelength excitations, require
agonalizing larger clusters which are beyond this pape
computational scope. We therefore resort to including
hole fermions dispersion ‘‘by hand,’’ i.e., use the single ho
band structure computed previously for large clusters.
then estimate their interactions with the bosons.

It is important to emphasize that the definition of the ho
pair bosons and the hole fermions is simply a matter of se
ration: two hole fermions are ondifferent plaquettes. When
they hop into the same plaquette they turn into one boson
the Andreev coupling defined below.

For the relevant range ofU/t the numerically determined
band structures for the single hole can be fit by two hopp
energies

H f5(
ks

~ek
f 2m! f ks

† f ks ,

ek
f 5t8@cos~kxa!1cos~kya!#21t9@cos~kxa!2cos~kya!#2.

~36!

k runs over the square lattice Brillouin zone~see Fig. 9!. The
values t8'J, and t9'0.1J are taken from the numerica

FIG. 9. Hole fermions band structure. Contours of the sin
hole spectrum Eq.~36! modeled by fitting to published numerica
results. For a dilute number of free holes, Fermi pockets will
created around the points (6p/2,6p/2). A flat valley near the
magnetic zone edge dominates the low energy spectrum.
8-9
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EHUD ALTMAN AND ASSA AUERBACH PHYSICAL REVIEW B 65 104508
Quantum Monte Carlo data for thet-J model on a 24324
lattice,36 find that for the physically relevant range ofJ
P@0.4t,0.6t#, the dispersion values aret8.0.7J, t9.0.1t8.

The magnitude oft8'J ~rather than the bare valuet) and
the position of the minima on the magnetic zone ed
(p,0)2(0,p) were explained by theories of holes in th
short range antiferromagnetic environment.37 The semiclas-
sical theory29 finds that holes are highly dressed local sp
polarons, which effectively hop on one sublattice.

From the CORE’s perspective, the flat valley betwe
(p,0) and (0,p) is related to the original degeneracy b
tween the two lowest plaquette fermions. Thus we expect
wave functions of the fermions on the lattice to contain
large component of these two states. Consequences of th
the quasiparticle weight and possible staggered orbital
rents were mentioned in Sec. II C.

The holes have hard core interactions among themse
and with the bosons. At low doping, however, it is still mea
ingful to describe their states by excitations about sm
Fermi pockets around (6p/2,6p/2).

The fermion density of states of Eq.~36! is plotted in Fig.
11. We see a large peak at low energies~of order 4t9
!4t8) from the saddle points near the antinodal poin
These dominate the hole spectral function, and tunne
density of states at the ‘‘pseudogap’’Dpg energy above the
chemical potential. Within this framework,Dpg does not de-
scribe the pairing correlation per se.~It only feels the change
in boson density through changes in the common chem
potential!. Even in the superconducting phase where h
pairs Bose condense, near antinodal points the Bogoliu
particle-hole admixture is small, and quasiparticles hav
character ofholes in the RVB vaccuum. This has importan
experimental implications.

~1! Angular resolved photoemission. The large Fermi s
face of electrons, given by Hartree-Fock approximations,
cludes mostly the first magnetic Brillouin zone~the diamond
connecting antinodal points!. Luttinger’s theorem for a Ferm
liquid of electronsexcludesany hole spectral weight outsid
this area. In contrast, spectral weight of our fermions can
found anywhere outside the small Fermi pockets ne
(6p/2,6p/2). Indeed, broad quasiparticle weight, aboveTc
has been observed in photoemission data at momenta
way on the line (p,0)→(p,p).12

A direct evidence of small Fermi pockets would be sha
gapless quasiparticle modes on both sides of (p/2,p/2). The
‘‘shadow’’ quasiparticles closer to (p,p) are harder to ob-
serve than the ones closer to (0,0), because of vanis
quasiparticle weight as discussed following Eq.~11!.

~2! Tunneling conductance should exhibit an inhere
asymmetry between injecting electrons~positive bias! and
injecting holes~negative bias!. The negative bias peak at th
pseudogap voltage is larger than the positive peak, since
jecting electrons is suppressed by Hubbard interactions
other words, electrons can only be injected into exist
holes, whose density is of orderx, at low doping the ratio of
weights should scale withx. A review of ~unsymmetrized!
tunneling data published by several groups13,38 reveals such
an asymmetry, although we have not seen yet a system
study of its doping dependence in the literature.
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E. Boson-fermion couplings

Couplings between bosons and fermions can be der
by microscopic considerations and symmetry. Taking into
count thed-wave symmetry of the hole pair state yields
Andreev coupling~see Fig. 10!.

H b f5gb(
k,q

~dk1q/2bq
†f k↑ f 2k1q↓1H.c.!, ~37!

wheredk5cos(kx)2cos(ky), andbq
†5( i

plaqeiq•xibi
† is a Fou-

rier component on the plaquette lattice.
In the superconducting phasêb&Þ0. This implies a

proximity induced pairing of fermions in the small pocket
and an opening of a superconducting gap with the Bogo
bov dispersion

Ek56A~ek2m!21Dk
2,

Dk
sc5gbdk^b&. ~38!

To be consistent with the range-2 CORE method, we m
not include close-by holes on nearest neighbor plaque
These excitations were already taken into account in the
fective hole pairs hopping energy. The remainder Andre
coupling is therefore between second nearest neighbor
fermions, with a coupling constantgb<0.1Jb , estimated
from the magnitude of the range-3 terms~see Appendix A!.

We emphasize thatDsc is not the‘‘usual’’ BCS gap, since
it couples to hole fermions, not electrons. Through its dep
dence on the Bose condensate order parameter^b&Tx , we
can deduce the transverse quasiparticle velocity at the n
v'5]Dk /]k' . v'→0 atTc , and it should vary with doping
as

v'}ATc}Ax. ~39!

At higher temperatures thanTc , Dk vanishes and a broad
ened signature of the small Fermi surface emerges in
spectral function. In contrast, near antinodal points, Bogo
bov particle-hole mixing is negligible and spectral weight
due to hole fermions. This is consistent with photoemiss
data which finds that aboveTc the gap closes only in a sma
region around the nodal direction.23

The Andreev coupling~37! couples the superconductin
phase fluctuations to nodal quasiparticles. Similar inter
tions were used to calculate the temperature dependent
don penetration length.39 That calculation found the fermion

FIG. 10. Andreev coupling between hole pairs and fermio
The microscopic origin of the hole pair-hole fermion coupling is
simple unbinding process. Because of the hole paird-wave symme-
try, the coupling matrix elementdi j is odd underp/2 rotations on
the lattice.
8-10
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PLAQUETTE BOSON-FERMION MODEL OF CUPRATES PHYSICAL REVIEW B65 104508
to be more dominant at low temperatures than thermal ph
fluctuations in destroying the superfluid density. The effe
of this term on the fermions aboveTc , were recently argued
to give rise to marginal Fermi liquid spectral peaks.40

Lastly, the fermion-magnon coupling is given by

H t f5gt (
msk•q

~~ tmq
† 1t2m2q! f ks

† f k1q1pW s1m1H.c.!.

~40!

This singlet interaction term, flips fermion spins and scatt
them with momentum (p,p) while emitting or absorbing
magnons. It produces signatures of the antiferromagn
resonance in the fermions self-energy.41,12 Equation~40! is
similar to fermion-magnon terms which were considered
predicting antiferromagnetic resonance signatures in tun
ing and photoemission.42

F. Boson-fermion thermodynamics

The end result of the previous sections is a system of f
bosons and a gas of hole fermions in thermochemical e
librium, i.e., the charged bosons and fermions share a c
mon chemical potentialm. Combining Eqs.~30!, ~36!, ~37!,
~40! yields the complete plaquette boson-fermion Ham
tonian

H PBFM5H 4b@2m#1H f@m#1H b f1H t f . ~41!

In a uniform phase, the fermions and and hole pair bos
obey a global charge density constraint

2nb~2m,T!1nf~m,T!5x. ~42!

An important missing parameter, in the absence of a con
tent calculation of the fermions bands, is the relative posit
of the lowest fermion and hole pair energies.

Numerical evidence for 434 Hubbard clusters4 show that
for up to three hole pairs, there is a negative pair bind
energy, i.e., the lowest fermion state at (p/2,p/2) is still
above the boson condensate. However, at finite doping w
superconductivity wins over antiferromagnetism, the rep
sively interacting bosons may have higher energy than
bottom of the fermion bands. This will produce gapless no
fermions in the superconductor. Here we shall assume
already at very low doping these energies match, and bo
and fermions coexist.

The boson and fermion compressibilities are

kb5]nb /]~2m!,

k f5]nf /]m, ~43!

wherenb ,nf are boson and fermion densities per square
tice site. The zero temperature fermion compressibility, up
a Landau parameter correction, is approximately equal to
Fermi pockets density of states, by Eq.~36!:

k f;
1

pAt8t9
. ~44!
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The boson compressibility~using thexy model representa
tion of hard core bosons! is approximately

kb;
1

32Jb
. ~45!

At zero temperature, ignoring boson-fermion interactio
we use Eqs.~43! and ~42! to obtain the change in chemica
potential to linear order in dopingx

m~x!2m~0!5
x

~2kb1k f !
. ~46!

In the underdoped regime, wherex!1, the energy distance
betweenm and the fermion saddle pointskSP'(p,0) defines
thepseudogapDpg as measured in tunneling and photoem
sion~see Fig. 11!. Its doping dependence is simply connect
to the chemical potential shift

Dpg~x!5EkSP2m~x,T!, ~47!

which yields a steady reduction of the pseudogap as a fu
tion of doping as plotted in Fig. 12. In the normal state abo
Tc , we have a theory of two decoupled, noninteracti
gases. For the bosons, we use a constant density of s
rb(v), and for the fermions we chooser f(e) from the dis-
persion~36! ~see Fig. 11!. In this simplified theory,m(T,x)
can be found using Eq.~42! and solving

2E dv
rb~v!

e(v22m)/T21
1E de

r f~e!

e(e2m)/T11
5x. ~48!

The grand potential and entropy are given by

FIG. 11. Hole fermions and hole pair bosons density of sta
The fermion density of states is calculated for dispersions Eq.~36!
for the normal state~dashed line!, and superconducting state E
~38! ~solid line!. The low energy scalet9 creates a large peak in th
hole density of states. Hole pair bosons single particle density
states is approximated as a constant corresponding to the non
acting bilinear terms ofHb in Eq. ~32!. Dsc and Dpg refer to the
superconducting gap of Eq.~38! and pseudogap of Eq.~47!, respec-
tively.
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V~T!52TE dvrb~v!ln~12e2[v22m(T)]/T!

1TE der f~e!ln~e2(e2m)/T11!,

S~T!52]V/]T. ~49!

In Fig. 12 the excess hole entropyS(T,x) in the nonsuper-
conducting state is shown for the density of states given
Fig. 11. The picture which emerges is that above the su
conducting transition temperature, bosonsevaporateinto the
fermions gas. The evaporation is driven by the larger den
of states of hole fermions than the bosons. This evapora
also implies a rapid increase in magnetic susceptibility.
effects on transport have not yet been calculated.

V. SUMMARY AND DISCUSSION

This paper is primarily aimed at demonstrating the ap
cation of CORE to the Hubbard model, which allows us
extract its low energy degrees of freedom and derive
plaquette boson-Fermion model. The CORE calculat
could be improved by diagonalizing larger clusters with
contemporary computational capabilities. A consistent co
putation of both the boson and fermion parameters would
useful. It would permit systematic studies of extended H
bard models and the effects of additional interactions.

Thed-wave hole pairs are already present in the Hubb
model on a single plaquette. Fortunately, due to the s
coherence length and large hopping rate, the pairs main
their integrity in the square lattice.

The PBFM, at the simplest level of approximation, pr
vides a phase diagram which shares the basic feature
underdoped cuprates: the antiferromagnetic Mott insula
and ad-wave superconductor with nodal hole fermions.
the superconducting phase, the local spin one magnons

FIG. 12. Thermodynamics of the PBFM. Excess normal st
hole entropy as a function of temperature for different doping l
els, calculated using Eq.~49!. Inset: The pseudogap energy as
function of doping. Energies and temperatures are in units of
holes hopping parametert8 of Eq. ~36!.
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gapped at the antiferromagnetic resonance energy, and
remaining gapless excitations consist of a small density
hole pair bosons and spin half hole fermions. The PBF
brings us closer to understanding low temperature corr
tions of cuprates. It is amenable to mean field, low dens
and variational approximations which do not lend themsel
directly to the higher energy Hubbard model and its vario
extensions.

Here, the PBFM was only preliminarily explored.
would be interesting to study its thermodynamics and tra
port properties in more detail.
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APPENDIX A: THE COMPLETE FOUR BOSON MODEL

Here we present the complete four boson model includ
all interactions generated by CORE up to two plaque
terms. Coupling parameters are listed for square lattice
ladder geometries. We then estimate the magnitude of
truncated three plaquette terms.

The four boson model can be separated into a bilinear
and a quartic part in the bosonic operators

H 4b5H b@b#1H t@ t#1H int@b,t#, ~A1!

where the bosons obey local hard core constraints

bi
†bi1(

a
ta i
† ta i<1. ~A2!

The kinetic~bilinear! terms as written in Sec. IV A are

H b5~eb22m!(
i

bi
†bi2Jb(̂

i j &
~bi

†bj1H.c.!,

H t5e t(
ia

ta i
† ta i2

Jt

2 (
a^ i j &

~ ta i
† ta j1H.c.!

2
Jtt

2 (
a^ i j &

~ ta i
† ta j

† 1H.c.!. ~A3!

The higher order interaction terms are

H int5Vb(̂
i j &

nbinb j1(̂
i j &

@V0~ t i t j !0
†~ t i t j !01V1~ t i t j !1

†~ t i t j !1

1V2~ t i t j !2
†~ t i t j !2#2Jbt (

^ i j &a
~bi

†bj ta j
† ta i1H.c.!

1Vbt (
^ i j &a

~bi
†bi ta j

† ta j1bj
†bj ta i

† ta i !, ~A4!

e
-

e
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where (t i t j )S
† creates two triplets on plaquettesi andj, which

are coupled into total spinS. When V052V1522V2 the
triplet interactions may be written using spin-1 operators
V2Si•Sj . Similarly, for Jt5Jtt , which is close to the value
given by CORE~see Table I!, the bilinear two site triplet
terms may be simplified toJtni•nj , with na51/A2(ta

†1ta).
The full Hamiltonian~A1! may serve as a starting poin

for various approximations or numerical studies. Its para
eters were computed using CORE from the Hubbard mo
with U/t53,6,8,10. The parameters are listed in Table I.

Note that the on-site terms for the ladder geometry~given
in parentheses in Table I! differ from the square lattice cas
due to contributions of two plaquette termshi j . For example
let e t

0 be the bare on site triplet energy from the sing
plaquette spectrum andde t the correction due to the inter
plaquette interaction as described in Sec. III A. The ren
malized on-site energy at sitei is e t

01zide t wherezi is the
coordination number of sitei. The values ofe t

0 andde t may
be extracted from the table. For example,

de t5~e t
square2e t

ladder!/2,

e t
05e t

square24de t . ~A5!

TABLE I. Parameters for the four Boson model, in units oft on
the square lattice and ladder. The parameters were computed
the Hubbard model using range-2 CORE. Values for the ladder
given in parenthesis where they differ from the square lattice.

U53t U56t U58t U510t

e0 26.613 28.332 29.865 211.549
(26.019) (27.983) (29.593) (211.324)

e t 0.152 0.183 0.174 0.162
~0.192! ~0.263! ~0.253! ~0.233!

eb 1.178 2.081 3.557 5.183
~0.440! ~3.212! ~4.835! ~6.567!

Jt 0.615 0.397 0.309 0.249
Jtt 0.590 0.379 0.297 0.242
V0 20.361 20.152 20.114 20.099
V1 20.203 20.117 20.095 20.082
V2 0.214 0.099 0.071 0.055
Jb 0.413 0.340 0.311 0.289
Jbt 20.383 20.233 20.173 20.134
Vbt 20.133 20.286 20.143 20.191
Vbb 0.884 1.061 1.145 1.213

TABLE II. Convergence of the cluster expansion. The ra
^hi j &/^hi jk& given for different sectors in the Hamiltonian withU
56t indicates excellent convergence of CORE on a ladder.

S50 S51

0 holes 330 7.7
2 holes 27 19.5
10450
s

-
el

r-

Estimation of the truncation error. In Fig. 13 we compare
between the low energy spectrum of the exact and the t
cated effective Hamiltonian for three collinear plaquett
This comparison may be used to estimate the magnitud
the higher order three plaquette termshi jk defined by Eq.
~21!

hi jk[Hi jk
ren2~hi j 1hjk1hi1hj1hk!5Hi jk

ren2Hi jk
eff .

~A6!

Recall thatHi jk
ren has the exact low lying spectrum of th

original Hamiltonian on the three plaquettes. Thus expec
tion values ofhi jk in the ground state and first excited stat
are calculated by subtracting energies ofHi jk

eff from corre-
sponding exact energies of the three plaquette problem.
estimatê hi j & in a similar way, by comparing energies of tw
disjoint plaquettes to the exact energies of two coup

om
re

FIG. 13. Low energy spectrum of exact compared to effect
Hamiltonian on three plaquettes. The comparison is presented
the Hubbard model withU56t in the 0-hole and 2-hole sectors. A
arbitrary chemical potential was used to set the 2-hole ener
slightly above the plotted 0-hole energies.

FIG. 14. Tight binding dispersion from a CORE calculation. T
model is coarse grained into dimers, and the cluster expansio
truncated at increasing hopping ranges. Away from the dimer B
louin zone edge, the approximate dispersion~solid lines! converges
rapidly to the exact solution~dashed line!. Its convergence is much
slower at the dimer zone edge.
8-13
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plaquettes. Small expectation values^hi jk& relative to ^hi j &
suggest rapid convergence of the cluster expansion.

Table II gives a summary of the ratios^hi j &/^hi jk& in the
lowest states of the different sectors of the Hamiltonian. T
satisfactory convergence of the cluster expansion, implies
integrity of bosonic states on the lattice, at least for lad
geometry. Interestingly, it is still very good for the Hubba
model withU56t where pair binding energy is positive on
plaquette. This strengthens the argument that binding is g
erated dynamically on the lattice. The holes remain tigh
bound because correlated motion reduces their kinetic
ergy.

APPENDIX B: CORE CALCULATION FOR THE TIGHT
BINDING MODEL

In Sec. III B we discussed the effects of breaking latt
translational symmetry within the reduced Hilbert space.
argued that interactions of increasing range gradually red
the effects of symmetry breaking on the spectrum. It is
structive to study this process in a simple model wher
CORE calculation can be carried easily to long ranges. S
an opportunity is provided by the tight binding model on
chain

H52(
i

~ci
†ci 111ci 11

† ci !. ~B1!
ra

ch

g,

ro
R.
.
ht
Y.
ys

n-
T
G
tt.
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We apply CORE to the single electron sector of this mod
coarse graining it to blocks of two sites. In each block w
retain only the empty stateu0& i and the single electron sym
metric state of energy2t:

f i
†u0&[

1

A2
~c2i

† 1c2i 11
† !. ~B2!

Hence we can only hope to reconstruct the lowest of th
bands in the folded Brillouin zonek5@2p/2,p/2#.

The effective Hamiltonian generated by CORE at a
range of the cluster expansion is of the general form

H eff5(
i j

t i j ~ f i
†f j1 f j

†f i !. ~B3!

Such a Hamiltonian cannot reproduce the sharp band edg
k56p/2 at any finite range of hopping. However, as de
onstrated in Fig. 14, CORE calculations of increasing ran
introduce higher harmonics that successively approxim
the sharp edge. If one is interested in the properties of
model far from the dimerized zone edge then by Fig. 14
effective Hamiltonian generated by range-3 CORE sho
suffice.
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