
Quantum tunneling of vortices in two-dimensional superfluids

Daniel P. Arovas1 and Assa Auerbach2

1Department of Physics, University of California at San Diego, La Jolla, California 92093, USA
2Physics Department, Technion, Haifa 32000, Israel

�Received 2 July 2008; published 12 September 2008�

We examine the problem of quantum vortex tunneling in the Gross-Pitaevskii model. The effect of gapless
phonons is to produce a super-Ohmic quantum dissipation that renormalizes the effective tunneling parameters
but does not destroy quantum coherence. The renormalization of the instanton frequency is computed within a
specific model tunneling potential.
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I. INTRODUCTION

A quantum dissipative system typically consists of a
quantum particle in an external potential, coupled to a bath
of gapless excitations. In the path-integral treatment, pio-
neered by Feynman and Vernon, and by Caldeira and
Leggett,1–4 the bath is integrated out, resulting in a retarded
self-interaction term for the particle, which, in turn, affects
the instanton for the quantum tunneling process. This self-
interaction term depends on �i� the form of the coupling be-
tween the particle and bath, and �ii� the spectral properties of
the bath itself.

In this paper we will consider the quantum tunneling of a
vortex in a two-dimensional superfluid described by the
Gross-Pitaevskii model.5 The vortex is a collective excitation
described by a collective coordinate labeling its positional
center. The bath consists of the phonons of the superfluid.
The Caldeira-Leggett scheme is implemented most naturally
within the well-known dual theory, which at a linearized
level is �2+1�-dimensional electrodynamics, with vortices
playing the role of charges, minimally coupled to a Maxwell
theory whose “photon” is the phonon of the superfluid.6–10

The correct coupling of the vortex and bosonic degrees of
freedom is then a gauge coupling of the form J�A�—a point
which is often missed in extant treatments of quantum dissi-
pation of vortex dynamics in the literature. The vortex tun-
neling problem then maps onto a one-dimensional ferromag-
netic Ising model with long-ranged 1 /r3 interactions, which,
from the work of Dyson,11 is known to have no ordered
phase. The absence of a phase transition in the associated
Ising model means that the vortex tunneling remains coher-
ent in the presence of phonon dissipation. This conclusion is
consistent with the finite vortex tunneling amplitude that has
been computed using Bogoliubov theory in Ref. 12.

Electrodynamics of vortices and phonons

There exists a formal equivalence between the two-
dimensional Bose superfluid and a nonlinear version of two-
dimensional electrodynamics where superfluid vortices play
the role of charges, the boson particle current plays the role
of the electric field, and the boson density plays the role of a
�scalar� magnetic field. This equivalence has long been
known, and originally was utilized in establishing the duality
between the XY and Coulomb gas models of classical statis-

tical mechanics.6–10 Starting with a Hamiltonian density for a
one-component Bose system,

H =
�2

2m
� �† · �� + v��†�� − ��†� , �1�

one arrives at the �Euclidean� Lagrangian density for
�2+1�-dimensional electrodynamics,

LE =
1

2
mc2n0�E2 + �B − 1�2 +

1

4
�� � B�2� + 2�i�n0J�A�,

�2�

where E= ẑ� j /n0c=−�A0−c−1�t A and B=n /n0= ẑ ·�
�A are dimensionless “electric” and “magnetic” fields, re-
spectively, proportional to the boson current and particle
densities, j and n.13 The sound velocity is c=�n0v��n0� /m,

where v�n�−�n has a stable minimum at n=n0, and the co-
herence length is �=� /mc. The position 3 vector is x�

= �ct ,x ,y�, and the metric used to raise and lower indices is
g��=diag
�+−−�. The vortex 3 current is given by

J��x,t� = �
i

qi� c

Ẋi
�	�x − Xi�t�� , �3�

where qi is the integer vorticity of the ith vortex.
Integrating out the gauge field A�, one obtains the effec-

tive action for the vortices, which consists of three parts:
SE,eff=SE,eff

I +SE,eff
II +SE,eff

III . The first term corresponds to an
instantaneous Coulomb interaction between vortices:

SE,eff
I = −

2��2n0

m
�
i
j

qiqj	
0

��

d� ln
Xi��� − X j���
 . �4�

The second term represents the geometric phase accrued by
the vortices moving through the superfluid:

SE,eff
II = 2�in0��

i

qi	
0

��

d�Xi���Ẏi��� . �5�

The third term reflects a retarded interaction between vorti-
ces, as well as self-interaction �“radiation reaction”� due to
the phonons:
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SE,eff
III =

2�2�2n0

m
�
i,j

qiqj	
0

��

d�	
0

��

d��
1

��

��
�m

	 d2k

�2��2eik·�Xi���−Xj�����e−i�m��−���

�
k̂ � Xi

˙ ��� · k̂ � X j
˙ ����

�m
2 + 
k

2 , �6�

where �m=2�m /�� is a Matsubara frequency, and where

k=ck�1+ 1

4k2�2�1/2 is the phonon dispersion. Finally, we
model a vortex pinning potential by adding a fourth term to
the effective action:

SE,eff
IV = �

i
	

0

��

d� Vi�Xi,Yi� . �7�

Such a potential should describe, phenomenologically, the
attraction of vortices to a region of potential that is repulsive
for bosons. This physics lies beyond the linearized electro-
dynamic theory, in which vortices are point particle phase
defects with no associated density variation. The density
depletion due to a vortex may be computed as a nonlinear
response of the Bose superfluid, as in Ref. 14.

II. VORTEX TUNNELING

We now consider the problem of quantum tunneling of a
single vortex at T=0. The scenario is generic but one appli-
cation might be the motion of a vacancy or interstitial in a
vortex lattice. Due to the density depletion in the vortex core,
an external potential that is repulsive to the bosons will be
attractive to the vortices. For concreteness, consider a single
q= +1 vortex, tunneling in the potential

V�X,Y� = V̄�U�X� +
Y2

2a2� , �8�

where U�X /a� is a dimensionless double-well potential with
minima at X= �a, such as that in Fig. 1,

U�X� =
1

8
C�X2

a2 − 1�2

, �9�

where C is a constant. V̄ sets the overall scale of the poten-
tial.

Ignoring for the moment the self-interaction term, the ef-
fective Lagrangian is then

LE,eff
0 = 2�i�n0XẎ + V�X,Y� , �10�

which corresponds to the motion of a charged particle in a
magnetic field, confined to the lowest Landau level, moving
in the presence of V. Quantum tunneling under such condi-
tions was studied by Jain and Kivelson,15 who calculated the
tunneling amplitude by analytic continuation to imaginary
space. The correctness of this approach was subsequently
confirmed in detailed calculations by Fertig and Halperin,16

who studied the problem including Landau-level mixing.
Specific applications to vortex quantum tunneling have been
considered by Fischer.17

The Landau-level structure for electrons is of course due
to the finite electron mass �or effective mass�, which results
in a finite cyclotron energy �eB /mc. Vortices have no intrin-
sic mass; however, they may inherit a polaronic mass once
the phonons have been integrated out. Clearly the rest mass
of the vortex is logarithmically divergent with m0

���2n0�m ln�R /��, where R is the radial size of the system
and � is an ultraviolet cutoff �since there is no divergent
energy density in the vortex core in the full nonlinear
theory�. But as discussed by Arovas and Freire,14 Lorentz
invariance of the effective action �minus the background
field contribution� requires that the dynamical mass mdyn
must be identical to the rest mass m0. In a superconductor,
the two terms in the dynamical momentum p+ e

cA cancel at
long distances from the vortex core and there is no infrared
divergence; what remains is then due to the “core mass”
mcore=��2n0m of expelled bosons18 as well as fermionic
states in the core.19

Expanding the radiation reaction term SE,eff
III in powers of

Ẋ��� yields a retarded interaction that can be expressed as a
frequency-dependent mass M�
�, which for low frequencies
takes the form14

M�
� 
 mcore�ln� 2c


�
� +

1

2
i�sgn�
�� . �11�

The logarithmic divergence of the real part of M�
� is
known from related work on vortex dynamics in Josephson-
junction arrays.20–22 The dissipation is the super-Ohmic. Sev-
eral works have treated dissipative vortex dynamics in a
Langevin-type approach, assuming Ohmic dissipation.23–25

This naturally arises if the position of the vortex is coupled
to an Ohmic oscillator bath, as in the standard Caldeira-
Leggett approach to quantum dissipation.3,4 In a supercon-
ductor at temperatures kBT��2 /EF, this is appropriate as the
fermionic core states lead to Ohmic behavior. However, in
our opinion, this is quite wrong for neutral superfluids since
the dissipation is in fact non-Ohmic. The essential difference
is that the coupling of the vortex motion to the phonon field
is a gauge coupling not of the usual Caldeira-Leggett variety.

FIG. 1. �Color online� Contour plot of vortex potential V�X ,Y�
in Eq. �8�. The red curve marks the separatrix.

DANIEL P. AROVAS AND ASSA AUERBACH PHYSICAL REVIEW B 78, 094508 �2008�

094508-2



As shown in Ref. 14, the motion of a vortex in an oscillating
superflow vs�t� is described by

V�
� =
vs�
� + ir�
�vs�
�ẑ

1 − r2�
�
, �12�

and

r�
� = 
M�
�/2��n0. �13�

The vortex motion is therefore elliptically polarized, and at
low frequencies, where 
r�
�
�1, the major axis is inclined
at an angle �H�
�=Im r�
�=�


� /4c with respect to ẑ
�vs. For the Ohmic case, �H�
� tends to a constant in the dc
limit.

Returning to the tunneling problem, the self-interaction
term may be written as

SE
self =

��2n0

4mc2 	
−�

�

d�	
−�

�

d��g�� − ���Ẋ��� · Ẋ���� . �14�

Here we have set eik·�X���−X������1 in the exponent in Eq. �6�
to capture the leading effects of the dissipative term. The
Fourier transform ĝ�
� of the kernel g��−��� is given by

ĝ�
� = 	
0

� ds

D�s,��
=

1
�1 − �2

ln�1 + �1 − �2

1 − �1 − �2� , �15�

where D�s ,��= 1
4s2+s+�2, with �=
 /
�, and 
�=c /�

serves as an ultraviolet cutoff. We now write g=g
+g�,
where g
 �g�� results from integrating out phonons with
frequencies less �greater� than the as yet undetermined in-
stanton frequency scale, 
0. This leads to a cutoff s0
=
0

2 /
�
2 ��0

2 on the above integral, hence

ĝ��
� =
1

�1 − �2
ln� 1 +

1

2
�0

2 + �1 − �2

1 +
1

2
�0

2 − �1 − �2� . �16�

The fast phonon degrees of freedom adjust quickly to the
vortex position. We can accordingly approximate g����
�g0	��� with

g0 = ĝ��0� = ln�1 +
4

�0
2� . �17�

This produces the following action:

S = 	
−�

�

d��1

2
MdẊ2 +

1

2
MdẎ2 + iMd
cXẎ + V�X,Y��

+
��2n0

4mc2 	
−�

�

d�	
−�

�

d��g
�� − ���Ẋ��� · Ẋ���� , �18�

where Md= 1
2��2n0g0m is the induced vortex mass, and 
c

=4
� /g0 is the vortex cyclotron frequency. Note that
Md
c=2��n0.

Since the last term in Eq. �18� arises from the slow
phonons, we may treat it within the “fast flip
approximation,”26 which is to say we neglect it in computing
the instanton profile. Further analytic progress can be made

for the potential of Eq. �8�. We first integrate out Y���, which
results in

Ŷ�
� = −

c
X̂�
�
�2 + 
2 , �19�

where �2= V̄ /Mda2. Note that Y��� is purely imaginary, as it
is in the Jain-Kivelson approach as well. Equation �18� may
now be recast as S=S0+Sdiss with

S0 = 	
−�

� d


4�
Md
2�1 +


c
2

�2 + 
2�
X̂�
�
2 + V̄	
−�

�

d� U�X���� .

�20�

Solving for the instanton of S0 yields the frequency scale 
0,
which is the inverse of the instanton time. This must be
determined self-consistently since the parameters Md and 
c
already depend upon 
0.

Suppose that we have solved for the instanton X���.
Within the fast flip approximation, we can evaluate the last
term in Eq. �18� by taking

Ẋ��� � 2a�
i

�i	�� − �i� , �21�

which entails

Y��� = − ia

c

�
�

i

�ie
−�
�−�i
, �22�

and substituting it into the integral. Here, �i is the time at the
center of the ith instanton and �i alternates sign, taking the
value +1 when the instanton interpolates between X=−a and
X= +a, and −1 when the direction of tunneling is reversed.
The dissipative term Sdiss contains contributions from both
the X and Y components of the motion. The dominant con-
tribution comes from the X motion with

1

�
Sdiss

�X� =
��n0a2

mc2 �
i,j

�i� jg
��i − � j�

� −
�n0a2

4
0
2
�

�
n,n�

g
� ��n − n��
0
−1��n�n�, �23�

where each �n= �1 is an Ising spin variable. Here, we have
divided the imaginary time line into intervals of width 
0

−1,
the characteristic instanton time scale. The nearest-neighbor
interaction, which adds to the bare instanton action computed
from S0, is finite with g
�0�=2
� sinh−1�
0 /2
��. At long-
time separations, we obtain a long-ranged ferromagnetic
Ising model with dimensionless interaction,

Jnn� =
J0


n − n�
3
, �24�

with J0= 1
4�n0a2
0 /
�. As shown by Dyson,11 there is no

finite temperature phase transition for this model, which
means that the vortex does not get trapped in either well, and
the tunneling remains coherent. We find that the contribution
Sdiss

�Y� is weaker still with its long-ranged interaction decaying
as 
n−n�
−5.
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Returning now to the Gaussian action S0, we see it is
described by a frequency-dependent vortex mass, which may
be expressed as

M�
� = Md�1 +

c

2

�2 + 
2� . �25�

In the limit g0=0, where dissipation is turned off, one has

M�
�→M0= �2��n0a�2 / V̄. The mass M0 is what one ob-
tains for the effective one-dimensional tunneling problem in
Eq. �10� after integrating out Y���:

S0�X���� =	 d��1

2
M0Ẋ2 + V̄U�X�� . �26�

For this one-dimensional problem, the dimensionless instan-
ton action is

K = �−1�2M0V̄a2	
−1

1

dz�U�az� − U�a� , �27�

and the inverse instanton time is 
0��−V̄U��0� /M0.
With dissipation present, we identify the instanton fre-

quency via the equation


0
2 = −

V̄U��0�
M�
0�

=
CV̄

2a2M�
0�
. �28�

It is now helpful to define the dimensionless parameter,

� =
V̄

mc2 �
1

�a2n0
. �29�

Expressing Eq. �28� in terms of g0, we obtain the equation

4g0

eg0 − 1
= C�� �g0

−1 +
2

eg0 − 1

�g0
−1 +

2

eg0 − 1
+ 8g0

−2� . �30�

The numerical solution to Eq. �17� is shown in Fig. 2. In the
limit �→�, we obtain g0����32 /C�2, hence �0=�C

8 �. In

this limit, the instanton frequency 
0 is much larger than the
cutoff 
�, which is the effective phonon bandwidth. Accord-
ingly, there are no fast phonon modes available to renormal-
ize the tunneling potential, and the fast flip approximation is
valid.

In the limit �→0, we have g0=ln�4 /C��+O�ln ln �−1�.
The dimensionless instanton frequency �0 then vanishes as
�0��� / ln��−1�. In this limit, dissipative effects drive the
instanton frequency to zero.

Throughout our derivation we have assumed that the di-
mensionless parameter ����2n0 satisfies ��1. Otherwise,
virtual vortex-antivortex excitations can proliferate out of the
vacuum.

III. CALDEIRA-LEGGETT MODEL

It is instructive to contrast our results with those of a more
familiar model of quantum dissipation applied to vortex dy-
namics. Rather than the gauge coupling in Eq. �2�, consider
instead the dissipative coupling3,4

LE
diss =

1

2�
�
�m�ẋ�

2 + m�
�
2�x� −

C�

m�
�
2 X�2� .

Integrating out the bath degrees of freedom �x��, we arrive at
the dissipative contribution to the Euclidean action,

SE
diss = 	

−�

� d


2�

2
X̂�
�
2	

0

�

du
2Ĵ�u�

u�u2 + 
2�
, �31�

where Ĵ�
� is the spectral density,

Ĵ�
� = �
�

C�
2

4m�
�

	�
 − 
�� . �32�

For our vortex problem, the dissipative action is given by Eq.
�14�, i.e.,

SE
diss =

��2n0

4mc2 	
−�

� d


2�

2ĝ�
�
X̂�
�
2. �33�

Thus, the phonon dissipation of a single vortex may be mod-
eled by an oscillator bath coupled to a collective coordinate,
as in Eq. �31�, with the spectral density

Ĵ�
� �
��2n0

4mc2 
2. �34�

Again, this is a super-Ohmic dissipation.

IV. CONCLUSIONS

We have examined the quantum tunneling of a vortex in
the Gross-Pitaevskii model, including dissipative effects due
to phonon radiation in the far field of the vortex. In the
absence of coupling to the dissipative phonon environment,

FIG. 2. �Color online� Numerical solution to Eq. �17�, with an-
isotropy parameters C=0.1 �dashed red curve�, C=1.0 �solid blue
curve�, and C=10 �dotted-dashed green curve�.
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the problem is equivalent to that of a massless charged par-
ticle in a uniform magnetic field and an external potential,
i.e., the well-studied case of an electron in the lowest Landau
level. Dissipative effects renormalize the instanton fre-
quency, as computed here, but the tunneling process remains
coherent.
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