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Magnetotransport of hard-core bosons is studied using an XXZ quantum spin model representation, appro-
priately gauged on the torus to allow for an external magnetic field. We find strong lattice effects near half
filling. An effective quantum mechanical description of the vortex degrees of freedom is derived. Using
semiclassical and numerical analysis we compute the vortex-hopping energy tV, which at half filling is close to
magnitude of the boson hopping energy. The critical quantum melting density of the vortex lattice is estimated
at 6.5�10−3 vortices per unit cell. The Hall conductance is computed from the Chern numbers of the low-
energy eigenstates. At zero temperature, it reverses sign abruptly at half filling. At precisely half filling, all
eigenstates are doubly degenerate for any odd number of flux quanta. We prove the exact degeneracies on the
torus by constructing an SU�2� algebra of point-group symmetries, associated with the center of vorticity. This
result is interpreted as if each vortex carries an internal spin-half degree of freedom, which can manifest itself
as a charge density modulation in its core. Our findings suggest interesting experimental implications for
vortex motion of cold atoms in optical lattices and magnet transport of short coherence length superconductors.
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I. INTRODUCTION

Hard-core bosons �HCB� are often used to describe super-
fluids and superconductors which are characterized by low
superfluid stiffness and short coherence lengths. As such,
HCB are relevant to cold atomic gases in optical lattices,1,2

low capacitance Josephson junction arrays,3–5 disordered su-
perconducting films,6 and cuprate superconductors.7–13

At low densities, HCB can be treated by weak-coupling
�Bogoliubov� perturbation theory.14 Closer to half filling, lat-
tice umklapp scattering and the hard-core constraints become
important. Recent calculations of the dynamical conductivity
of HCB near half filling15 demonstrate the breakdown of
weak-scattering Drude-Boltzmann transport theory in this re-
gime. HCB exhibit so-called “bad metal” phenomenology,
�i.e., large resistivity, linearly increasing in temperature�.
Such behavior has been often observed in unconventional
�short coherence length� superconductors.16

This paper concerns dynamical correlations of HCB and
their vortices near half filling. These will be exposed by in-
cluding a weak orbital magnetic field in the Hamiltonian and
studying the Hall effect.

Our primary results are as follows. First, we apply a com-
bination of semiclassical analysis and exact diagonalization
to the gauged XXZ Hamiltonian on a finite lattice on the
torus. We highlight the �sometimes overlooked� fact that a
uniform magnetic field of one flux quantum penetrating the
surface of the torus beaks translational symmetry. As a con-
sequence, the semiclassical vortex center is subjected to a
confining potential minimized at a well-defined position. Fit-
ting the low many-body spectrum to an effective single-
vortex Hamiltonian, we determine the vortex hopping rate
�effective mass�.

Near half filling, the vortex mass is found to be similar in
magnitude to the HCB mass. This allows us to estimate the
critical field for quantum melting of the vortex solid �super-

fluid� phase at 6.5�10−4 flux quanta per unit cell.
Second, at half filling we find doublet degeneracies asso-

ciated with an odd number of magnetic flux quanta penetrat-
ing the torus. We associate them with symmetries about the
vortex position and label the emergent degrees of freedom as
“vortex spin” �v-spin�. Physically, these degrees of freedom
correspond to the orientation of the charge density wave in
the vortex cores.

Finally, we compute the Hall conductivity using thermally
averaged Chern numbers. In stark contrast to continuum
bosons, and to electrons in metallic bands, we find that the
Hall conductivity of HCB reverses sign abruptly at half fill-
ing. The associated Hall temperature scale vanishes at half
filling, signaling a possible quantum phase transition for the
thermodynamic system in a magnetic field. Some of these
results were briefly reported in a recent letter.17

This paper is organized as follows. In Sec. II the HCB
Hamiltonian is introduced, with a discussion of its charge
conjugation symmetry about half filling. Semiclassical ap-
proximations are derived in Sec. III, for the various regimes
of filling. At low density, we recover the Gross-Pitaevskii
�GP� theory with its Galilean invariant vortex dynamics and
classical Hall effect. At half filling, the continuum limit cor-
responds to the anisotropic gauged nonlinear sigma model.
Its vortices possess localized charge density waves in their
cores. Section IV describes the mathematical peculiarities of
the gauged torus, including translational symmetry breaking
�TSB� �elaborated in Appendix�. Definitions of null lines,
null points, and vorticity centers are provided. The point
group symmetry generators �V

x and �V
y are constructed and

their commutator is calculated. The proof of v-spin degen-
eracies at half filling is provided. Section V computes the
vortex effective hamiltonian by combining semiclassical and
exact diagonalization calculations. The critical field for quan-
tum melting of the vortex lattice is deduced from our value
of vortex hopping rate. Section VII computes the Hall con-
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ductance on the torus as a function of density and tempera-
ture. We conclude in Sec. VIII and discuss experimental im-
plications of our results in cold atoms and cuprate
superconductors.

II. HARD-CORE BOSONS

The conventional Bose Hubbard model for interacting lat-
tice bosons is

HU = − 2J�
�ij�

�eiqAijai
†aj + a−iqAijaj

†ai�

+ 4V�
�ij�

�ni −
1

2
��nj −

1

2
� − ��

i

ni +
1

2
U�

i

ni�ni − 1� .

�1�

In the hard-core limit U→�, Eq. �1� reduces to the HCB
Hamiltonian as H=PHU=0P, where P is the projector onto
the subspace where ni=0 or 1 for each site.

We use units where �=c=1. �ij� denotes a nearest neigh-
bor link on the square lattice; the lattice constant is a=1. J is
the Josephson coupling, q is the boson charge and Aij the
electromagnetic gauge field on a bond. V is a nearest neigh-
bor repulsive interaction. In the HCB limit, The chemical
potential �=0 corresponds to a density of half filling �n�
= 1

2 operators, with half a boson per site on average.
As is well known, HCB operators obey an algebra corre-

sponding to spin 1
2 operators

ãi
† = Pai

†P = Si
+,

ãi = PaiP = Si
−,

ni = ãi
†ãi = Si

z +
1

2
. �2�

By �Si
+ ,Sj

−	=2Si
z�ij, HCB operators obey constrained com-

mutation relations,

�ãi, ãj
†	 = �1 − 2ni��ij . �3�

The constraint corrections −2ni�ij become important near
half filling. limU→�HU is thus represented by the gauged
spin-half quantum XXZ model,

H = − 2J�
�ij�

�eiqAijSi
+Sj

− + e−iqAijSi
−Sj

+� + 4V�
�i,j�

Si
zSj

z

− ��
i
�Si

z +
1

2
� . �4�

It is widely believed that the two-dimensional ground state of
Eq. �4�, in the thermodynamic limit, exhibits magnetic order.
In the regime of V�J, which is relevant to this paper, the
ordered moment lies in the XY plane, �Si

+��0. That is to say,
except for the limits n=0,1, the ground state of HCB is
expected to exhibit long-range superfluid order.

HCB charge conjugation symmetry

An important distinction between the HCB Hamiltonian
�4� and the finite U Bose-Hubbard model of Eq. �1�, is the

emergence of charge conjugation symmetry in the infinite U
limit. One defines the unitary charge conjugation operator,

C 
 exp�i	�
i

Si
x� . �5�

C transforms “particles” into “holes,” i.e., C†ñiC=1− ñi, and

C†H�qA,��C = H�− qA,− �� . �6�

At half filling ��=0�, and A=0, the Hamiltonian is invariant
under charge conjugation on any lattice structure.18

A consequence of Eq. �6� is that the Hall conductivity
�which is linear in q� is antisymmetric in the deviation from
half filling, i.e.,


xy�n,T� = − 
xy�1 − n,T� . �7�

In contrast, the superfluid stiffness �s�n� and longitudinal
conductivity 
xx�n� are symmetric under n→ �1−n�.

In terms of vortex motion, Eq. �7� implies that below and
above half-filling vortices drift in opposite directions relative
to the particle current.

III. SEMICLASSICAL THEORY

The partition function of HCB can be represented by the
spin half coherent state path integral,19,20

Z =� D�̂���exp��
0



d��iK − Hcl� , �8�

where

K��̂,�̇̂	 

1

2�
i

�1 − cos �i��̇i �9�

Hcl��̂,A	 = − J�
�i,j�

sin �i sin � j cos��i − � j + qAij�

+ V�
�i,j�

cos �i cos � j −
�

2 �
i

cos �i. �10�

�̂i= ��i ,�i� are the polar angles on a sphere. The spin size
S= 1

2 plays the role of the large parameter which controls the
semiclassical expansion.

In the classical �saddle point� approximation, for A=0,
the ground state superfluid stiffness is

�s
cl = q−2� �2Hcl

�Ar,r+x̂
2 �

A=0

=J�sin2�r� = 4Jn�1 − n� �11�

which �in contrast to continuum bosons� exhibits a non-
monotonic dependence on n. At half filling �optimal density�,
�s is maximized. Quantum corrections enhance �s

cl�n= 1
2 � fur-

ther by about 7%.21,22 The superfluid stiffness vanishes at the
Berezinskii-Kosterlitz-Thouless �BKT� �Ref. 23� transition
temperature, computed to be TBKT�1.41J.

The kinetic term K of Eq. �8�, determines the quantum
dynamics. The harmonic spin-wave expansion of Eq. �10�
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yields a linearly dispersing phase fluctuations mode. The or-
der parameter is suppressed to zero at all finite temperatures,
in accordance with the Mermin-Wagner theorem.

A. Low-density, Gross-Pitaevskii limit

For large negative values of the chemical potential �, the
action in Eq. �10� can be expanded around the ferromagnetic
�low-density� state of �i�	,

cos �i → 2ni − 1, sin �i � 2�ni�1 − ni� . �12�

We define the continuous field

��xi� = �nie
i�i, �13�

and replace the measure by

�
i

D cos �iD�i → D��D��
i,t
��1 − �

Vi

d2x���� ,

�14�

up to an unnecessary normalization constant. The Heaviside
functions enforce the hard-core constraint ni�1 in the ith
unit cell at each time slice. In the low-density limit, these
constraints are ignored, and the action Eq. �10� is expanded
to leading order in ni�

1
2 , and gradients ��. This yields an

effective GP theory,1

ZGP =� D��D� exp�− SGP���,�,A	 + ¯�

SGP =� d2x� dt�����t − ��� +
1

2m�
��− i � − qA���2

+
1

2
g���4 , �15�

where the effective mass and interaction parameters are
given by

m� =
1

2J

g = 16�J + V� . �16�

In the presence of a magnetic field Bẑ, a density of nv
=B /�0 vortices is produced, where �0=2	 /q is the flux
quantum. The core profile function ���r��= f�r−R j� near vor-
tex j is well approximated by minimizing the GP energy,
which yields1

fGP�r� �
�nr

��2 + r2
, �17�

where �=1 /�gm�n is the coherence length. For n� 1
2 , one

has ��a. The core density depletion is proportional to n
− �fGP�2. Hence it decays as 1 /r2 away from the vortex center.

In the high-density limit, n→1, the partition function can
also be approximated by the same GP action �Eq. �15�	 fol-
lowing a particle hole transformation �Eq. �6�	. In this case,
���2 represents the density of holes.

By neglecting the higher order gradients and the hard-core
constraints, the GP theory does not include lattice scattering
effects as it is completely Galilean invariant. Consider an
externally induced uniform current density

j = qnvs. �18�

In the moving frame of velocity vs the vortices are stationary.
Therefore, back in the laboratory frame, a purely transverse
electromotive field is produced by the moving vortices,

E =
h

q
ẑ� jv

=
h

q
nvẑ� Vv

=
h

q2

nv

n
ẑ� j. �19�

That is to say, in the pure GP theory, the longitudinal �dissi-
pative� conductivity vanishes and the Hall conductivity
equals to the classical value,


xx = 0,


xy = �q2

h
�� n

nv
� =

nq

B
. �20�

Spoiling Galilean invariance by the presence of nonuniform
potentials, boundary conditions, or by an underlying lattice
can allow vortices to tunnel between different real space po-
sitions, resulting in a longitudinal conductivity.24,25

B. Half-filling, anisotropic � model

Toward half filling, lattice scattering modifies the vortex
structure and dynamics. At half filling �=0, the semiclassi-
cal theory of Eq. �10� is described by the anisotropic nonlin-

ear 
 model �NLSM�.26 After a sublattice rotation �i�Bei	Si
z

all the pseudospin interactions are antiferromagnetic. The

spins �̂i are represented by

�̂i = �in̂�xi��1 − �L�xi�/S̄	2 + L�xi�/S̄ , �21�

where �i=�1 on the A�+� and B�−� sublattices, respectively.
The Néel vector n̂ satisfies n̂2=1 and is orthogonal to the
local magnetization L, i.e., n̂ ·L=0.

The complex combination

n� = nx + iny = �n��ei�, �22�

defines the local superfluid order parameter, and nz corre-
sponds to a bipartite charge density wave �CDW� with two
possible signs. Following Refs. 19, 20, and 26, we substitute
Eq. �21� in the measure and action of Eq. �10�, and expand
them to quadratic order in L and �n̂. Integrating out L ar-
rives at the anisotropic NLSM path integral,

ZNLSM =� Dn̂ei��n̂	e−SE�n̂,A	, �23�

where SE=�0
d��d2xLE is the Euclidean action, with
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LE =
1

2
���ṅ��2 +

1

2
�zṅz

2 +
1

2
�s���− iqA�n��2 +

1

2
�s

z��nz�2

+ mz
2nz

2 �24�

and

� = S�
i

�i�
0



d��1 − nz��̇i, �25�

is the geometric Berry phase for spin S. The bare coupling
constants are obtained directly from Hcl:

�� =
S2

8J
, �z =

S2

4�J + V�
, �26�

and

�s = J, �s
z = V, mz

2 = 2�J − V� . �27�

For A=0, the isotropic �Heisenberg� limit is at J=V , mz
=0. The Néel ground state implies degeneracy between su-
perfluid and CDW order, and the existence of two massless
Goldstone modes. At finite XY anisotropy, mz�0, and there
is one massless �phase� mode, and a gapped CDW �roton�
mode at the CDW ordering wavevector �	 ,	�.

Vortex configurations at half filling can be viewed as a
localized meron �half skyrmion� of the Néel field. Since
�ñxy�=0 at the vortex center, and nz

2=1− �ñxy�2, the semiclas-
sical vortex has a CDW in its core, as illustrated in Fig. 1.

Due to the finite anisotropy “mass” mz�0, nz�r� decays
exponentially away from the center

n��r� = �1 − nz
2�r�ei��r�,

nz�r� � e−r/�z,

�z = ��s
z/mz. �28�

Indeed variational calculations have previously shown that at
half filling CDW ordering is found in the localized vortex
core.27 In Sec. IV we shall show that the “orientation” of the
charge density wave is actually a continuous SU�2� symme-
try of the quantum Hamiltonian at half filling, which we
name v-spin.

Since the system is charge conjugation symmetric at half-
filling, there is no net charge depletion associated with the
vortex core, and thus the statistical Berry phase for exchang-

ing two vortices is zero. In other words, the vortices exhibit
mutual Bose statistics. This is to be contrasted with GP vor-
tices at low filling. As shown in Eq. �17�, GP vortices involve
a large density depletion �or accumulation, above half fill-
ing�, which decays slowly away from their core.28

C. Vortex hopping Hamiltonian

In the limit where the number of lattice sites N tends to
infinity, the confining potential on the vortex �to be discussed
shortly� vanishes, and the vortex energy is periodic on the
lattice. Its minima lie in plaquette centers �i.e., at dual lattice
sites�. While the effects of the Berry phase ei� in Eq. �27� are
negligible for the static correlations in the superfluid phase,
it is important for the dynamics of HCB and their vortices.
The Berry phase determines the effective quantum Hamil-
tonian of vortices as follows.

When a vortex moves between dual lattice sites, the path-
dependent geometric phase � yields 2	 times the number of
bosons enclosed by the path. At half filling, this amounts to
an effective 	 flux per dual plaquette. These phases can be
incorporated in an effective hopping model by the dual lat-
tice gauge field AR,R+� along the link from site R to R+�.
Thus for a single vortex on the infinite lattice, one can write
an effective Harper Hamiltonian,

HV
� = −

1

2
tV�

R,�
�eiAR,R+�bR

† bR+� + H.c.�

��

C
AR,R+� = 2	 �

i�int�C�
ni, �29�

where the sum on the second line is a over a set of links
comprising a closed path C on the dual lattice, and int�C� is
the interior of this path, which consists of a set of sites on the
original lattice bounded by C.

IV. GAUGED TORUS

We now return to the original HCB Hamiltonian, Eq. �4�.
We consider a finite square lattice, of dimensions Lx�Ly,
with N=LxLy sites and periodic boundary conditions in both
the x and y directions. This toroidal geometry is convenient
for the study of finite lattices as it minimizes the effects of
boundaries. It also provides external control over the posi-
tions of vortices via the two Aharonov-Bohm �AB� fluxes
which run along the two cycles of the torus. The lattice site
positions are labeled as

xi = 0,1,2, . . . ,Lx − 1

yi = 0,1,2, . . . ,Ly − 1. �30�

A uniform magnetic field B is everywhere perpendicular to
the surface, such that the total number of flux quanta pen-
etrating the surface is N�=NB /�0, where �0=2	 /q is the
flux quantum.

We construct a �piecewise differentiable� gauge field A�x�
which interpolates the lattice gauge field on the surface of
the torus, and obeys

FIG. 1. �Color online� Illustration of three static vortices with
their v-spins. Arrows describe the v-spin directions, their z compo-
nent is the local charge density wave near the vortex core, illus-
trated as ripples in the surface. Current density is depicted by black
field lines.
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ẑ · �� A = B

� · A�r +
1

2
�� = Ar,r+�, �31�

where �=� x̂, �ŷ. A determines the magnetic fluxes which
flow through vertical and horizontal circumferences of the
torus. These are given by the gauge invariant Wilson loop
functions,

Wy�x� = q� dyAy�x,y� mod 2	 ,

Wx�y� = q� dxAx�x,y� mod 2	 . �32�

The dimensionless AB parameters �= ��x ,�y� are defined
by the Wilson loops at x=0 and y=0,

�y = Wy�x = 0� ,

�x = Wx�y = 0� . �33�

� lives on the reciprocal torus �0,2	�� �0,2	�.
W�=0, �=x ,y define the null lines on the torus. For

N�=1, there is one null line in each direction x=X0, and y
=Y0, as depicted in Fig. 2. Their intersection is the null point
R0= �X0 ,Y0�, which constitutes a gauge invariant symmetry
point on the torus.

X0��� = −
Lx�y

2	
,

Y0��� = +
Ly�x

2	
. �34�

The existence of a special point R0 on the torus, demon-
strates the unintuitive fact that a uniform magnetic field nec-
essarily destroys lattice translational symmetry. This fact is
closely related to the quantization of Dirac monopoles in
three dimensions. We elaborate further on this fact in Appen-
dix. Equation �34� shows that R0��� can be moved continu-
ously on the torus by changing the AB parameters �.29,30

As we shall see in Sec. V, semiclassical analysis and exact
diagonalizations find that the center of vorticity RV is located
at the antipodal position of the null point on the torus,

RV��� = �1

2
Lx + X0���,

1

2
Ly + Y0��� . �35�

For larger magnetic fields, N��1, there are N� null lines in
each of the x and y directions. This introduces a set of N�

2

null points which form an evenly spaced square lattice
�which may or may not coincide with the original lattice
sites�. These are indexed by m ,n=0, . . . ,N�−1

R0
mn��� = R0��� +

1

N�
�mLx,nLy� , �36�

Correspondingly there are N�
2 vorticity centers,

RV
mn��� = R0

mn��� +
1

2
�Lx,Ly� . �37�

A. Choosing a gauge

The uniform magnetic field must integrate to an integer
number of flux quanta N�,

B =
2	N�
qLxLy

�38�

The gauge field is given by

Ar,r+x̂
x = − mod�y − Y0,Ly�BLxH�X0,x�

Ar,r+ŷ
y = mod�x − X0,Lx�B . �39�

Note that for 0�m�n, mod�−m ,n�=n−m. The function
H�X0 ,x� ensures that Ar,r+x̂

x vanishes unless r is immediately
to the left �−x̂� of the null line x=X0. It is defined by

H�X0,x� = �1 0�mod�X0 − x,Lx�� 1

0 otherwise.
� �40�

For a continuous position r we define A��r� to be the linearly
interpolated gauge field between the two enclosing links in
the � direction.

For �= �0,0� the null point R0 is at R0= �0,0� and the
vorticity center is therefore at RV= � 1

2Lx , 1
2Ly�. Our gauge

choice is shown in Fig. 3. The gauge invariant content of A
consists of the uniform magnetic field with flux B
=N��0 /LxLy in each plaquette, and the two Wilson loop
functions

FIG. 2. �Color online� The gauged torus, which defines the finite
size geometry of the HCB model. The torus surface is penetrated by
a uniform magnetic field of one total flux quantum, and threaded by
two Aharonov Bohm fluxes �= ��x ,�y�. Thick �red online� circles
denote the null lines which enclose zero flux, and intersect at the
null point R0���. The vorticity center RV is located on the antipodal
point to R0. The circulating currents of the ground state are illus-
trated by thick green arrows. This geometry is used to compute the
vortex mass and Hall conductivity of HCB, and to prove the v-spin
degeneracies at half filling.
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Wy�x� = xqBLy +�y ,

Wx�y� = − yqBLx +�x. �41�

B. V-spin degeneracies

In the process of calculating the Hall conductance �see
Sec. VII�, we computed the spectrum at half filling, for an
even number of sites, with one total flux quantum of mag-
netic field. We encountered a sequence of AB fluxes �i,
where the whole spectrum becomes twofold degenerate.
These degeneracy points are demonstrated in Fig. 4 for N�
=1, for the lowest two multiplets. The level crossings indi-
cate the existence of a noncommuting symmetry
generators,31 which act on the wave functions of vortices
introduced by the external magnetic field. We now construct
these symmetry operators and compute their commutation
relations.

As discussed earlier, for a finite magnetic field �N��0�,
H does not possess the lattice translational symmetry. Nev-
ertheless, with respect to the vorticity center RV��� we can
define two reflection operators

PV
x �x,y� = �mod�2XV − x,Lx�,y	 ,

PV
y �x,y� = �x,mod�2YV − y,Ly�	 , �42�

which by Eq. �35� are equivalent to reflections about R0.
Now, by appropriately tuning � using Eq. �34�, the vor-

ticity center RV can be chosen to coincide with a symmetry
point of the square lattice, such as any lattice site, bond cen-
ter or plaquette center. Reflecting the Hamiltonian about that
symmetry point, leads to

PV
�H�A	PV

� = H�Ã	 ,

Ãr,r+�
� = APV

�r,PV
��r+��. �43�

The gauge invariant content of Ã� describes an inverted uni-

form magnetic field B̃=−B, and a reversed sign of the Wilson
loop functions �Eq. �32�	.

The reversal of the fields in Ã can be undone, at half
filling, by applying the charge conjugation transformation C
�Eq. �5�	, and a pure gauge transformation U�. Thus, we
construct two operators,

�V
x = UxCPV

x ,

�V
y = UyCPV

y , �44�

where,

U� = exp�i�
r
���r�SR

z  �45�

and

���r� = �
R0

r

dr� · �A�r�� + Ã��r��	 . �46�

In the line integral we use the interpolated gauge field de-

fined after Eq. �39�. Since A and −Ã� describe the same
magnetic fields, they obey,

�� �A + Ã�� = 0. �47�

This implies that �� is independent of which continuous path
�of zero winding number� is chosen between R0 and r.

It is easy to verify by this construction that for all �i such
that RV��i� is a symmetry point the �V

� operators become
symmetries of the Hamiltonian:

�H�A�,�V
�	 = 0, � = x,y . �48�

Now we calculate the commutation relation between �V
x and

�V
y . This is a straightforward but slightly tedious procedure.

Using the gauge choice �Eqs. �39� and �46�	,

�x�r� =
2	N�

Ly
mod�y − Y0,Ly��1 − �x,X0

� ,

FIG. 3. �Color online� The lattice gauge field on links, Ar,r+�,
according to Eq. �39�, for two choices of AB parameters ��x ,�y�.
The length and thickness of the arrows are proportional to the mag-
nitude of A. For a single flux quantum, N�=1, the two null lines are
marked by red lines. The null points R0��� and vorticity centers
RV��� are depicted. Note that in the right figure, both points are
located at plaquette centers.

FIG. 4. �Color online� Emergence of “v-spin” degeneracies.
Four lowest eigenenergies of HCB on the torus, with N�=1, as a
function of the AB parameter �y, with �x=0. The spectrum sepa-
rates into doublets. Notice the exact degeneracies which occur when
the vorticity center coincides with a lattice position.
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�y�r� = 0. �49�

Note that �V
x vanishes on the null lines. Multiplying the two

�V
� operators yields

�V
y�V

x = exp�i�
r

��y − �x�PV
y �r�	�Sr

z�PV
y PV

x ,

�V
x�V

y = exp�i�
r

��x − �y�PV
x �r�	�Sr

z�PV
y PV

x = e−i��V
y�V

x ,

�50�

where we have used �PV
x , PV

y 	=0. The overall phase is given
by the operator

� = �
r
�rSr

z,

�r = �x + �x�PV
y �r	� − �y − �y�PV

x �r	� . �51�

It can be directly verified from Eq. �49� that

�r = �0 r � null lines

2	N� otherwise.
� �52�

Since exp�i2	mSr
z�= �−1�m,

e−i� = �− 1�N��N−Nnull� = �− 1�N�Nnull, �53�

where Nnull is the number of sites which sit precisely on the
two null lines. For even N�, ei�=1 and ��V

x ,�V
y 	=0.

For odd N�, and odd Nnull, one obtains e−i�=−1. Let us
prove a simple lemma concerning the parity of Nnull.

Lemma. For even size lattices, if RV is tuned to be pre-
cisely on a lattice site, then Nnull is odd. The proof is illus-
trated in Fig. 5.

Proof. Since we assume that N is even �to describe precise
half filling�, there are two cases to consider: �i� for an even
by even lattice, L= �2m ,2n�, if we choose R0 on a lattice site,
it is easy to see that RV must also sit on a lattice site. The
number of sites which contribute to Nnull are the sum of
lattice sites in the x and y directions minus the null point
itself which is counted twice

Nnull
ee = 2m + 2n − 1. �54�

Hence ei�=−1. �ii� For the odd by even lattice, e.g., L
= �2m+1,2n�, we choose R0, to be in the middle of a bond in
the x direction. The null line includes only the sites on the
x-null line which is odd

Nnull
eo = 2m + 1 �55�

Thus, here too e−i�=−1. Note that in both Eqs. �54� and �55�,
the vorticity center is situated on lattice sites RV= �m ,n�.
QED.

Thus we conclude that for an odd number of fluxes N�
=2n+1, if RV��i� is located precisely on any lattice site,
then �V

x and �V
y anticommute.

Under these conditions, all states of H��i	 must be at
least twofold degenerate. This follows the standard proof:
Since

�H,�V
x 	 = 0, �56�

and �V
x has eigenvalues �1, then each common eigenstate of

H and �V
x , can be labeled by �En ,	x=�1�. Now,

�V
x�V

y �En,1� = −�V
y�V

x �En,1� � �En,− 1� , �57�

that is to say each eigenenergy En is associated with a de-
generate pair of eigenstates with opposite quantum numbers
of �V

x .
�V

x and �V
y are point group symmetries about the vorticity

center. We can also construct a third symmetry operator �z

as

�V
z = − i�V

x�V
y . �58�

The three operators �V
�= ��V

x ,�V
y ,�V

z � are unitary and Her-
mitian,

�V
� = ��V

��† = ��V
��−1 ⇒ ��V

��2 = 1. �59�

Therefore their eigenvalues are �1. The � operators behave
as Pauli matrices and can be used to construct an SU�2�
algebra of spin half,

�� =
1

2
�V
�, � = x,y,z . �60�

We note that for multiple number of magnetic fluxes N�
�1, degeneracies appear for any odd number of vortices.
This is consistent with the Kramers doublets associated with
an odd number of interacting spin half particles.

C. v-spin and meron density

The semiclassical analysis of HCB vortices at half filling,
shown in Eq. �28� finds that the vortex has a CDW in its
core. This is signaled by the local order parameter �nz�r��
�0, as illustrated in Fig. 1.

We define the modified “meron density” operator as

�z�r� � n̂ · Dxn̂� Dyn̂ ,

D� 
 �� − iqA�, �61�

where n̂ were defined in Eq. �21� and D� are gauge invariant
derivatives in the xy plane. In the absence of a gauge field

FIG. 5. �Color online� Figuring out Nnull for two cases of even
size latices. The parity of the number of lattice sites �black dots�
which lie precisely on the null lines �red color online�, determines
the commutation rule of �V

x and �V
y , according to Eq. �53�. The two

examples explain why Nnull is odd whenever the vorticity center RV
is positioned precisely on a lattice site.
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A=0, a single meron �half a skyrmion� of a continuos clas-
sical field has topological charge

Q =
1

4	
� d2r�z�r,A = 0� = �

1

2
. �62�

An HCB representation of �r
z is constructed using spin-half

operators. In the presence of one flux quantum, we define the
modified topological charge operator as

Q̃ =
1

4	�
r
�r

z�A� . �63�

Q̃ is not expected to be quantized at � 1
2 . However, we have

found that in the low-lying eigenstates of Eq. �4�, its sign
correlates with the eigenvalues of �z:

sign��En,	z�Q�En,	z�� = 	z. �64�

We conclude that 	z of a single vortex measures the sign of
the CDW in its core, with respect to sublattice A.

CDW near vortex cores. Density modulations have been
observed near vortex cores of high-Tc cuprate
superconductors32 and analyzed within bosonic models. Pre-
vious theoretical work explained the CDW correlations
variationally,27 or as a result of Berry phases33 which appear
in the effective hamiltonian Eq. �29�. The Berry phases can
be used as part of a semiclassical argument to show that the
effective single vortex wave functions are twofold degener-
ate, in the infinite lattice limit. The operator construction of
v-spins, however, allows us to identify the mathematical rea-
son for the exact doublet degeneracies in the many body
spectrum on any finite torus, with any odd number of vorti-
ces. The v-spins can thus be used to describe also the exci-
tations and dynamical correlations for the multiple vortex
system, both in the vortex solid and the vortex liquid phase.

V. HAMILTONIAN OF QUANTUM VORTICES

A. Vortex confining potential

The current density operator is given in the pseudospin
representation by

j��r� = − 2iJq�eiqAr,r+�Sr
+Sr+�

− − H.c.� . �65�

By choosing A to describe one flux quantum of uniform
magnetic field through the whole lattice one vortex is intro-
duced into the low-energy eigenstates. Indeed, we verified
that the exact ground state exhibits a vortex pattern of the
current density �j��, defined in Eq. �65�. Also, the center of
vorticity is agrees with the value of RV��� as defined in Eqs.
�34� and �35�.

We determine the effective confining potential on the vor-
tex variationally. We choose the square geometry L2=N, and
define a vortex coherent state centered at R by a spin coher-

ent state ��̂V�R	�. All the unit vectors �̂V lie in the xy plane
with the azimuthal angles �r given by a Jacobi theta
function34

�r�R� = − Im log ��i�z − Z� −
1

2
−

i

2
 + 	�y − �1

2
− Y�x ,

�66�

��z� = �
n=−�

�

e−	n2
e2i	nz. �67�

Here we use scaled complex coordinates z= �x+ iy� /L and
Z= �X+ iY� /L for the position and vortex center r and R,
respectively.

While �r is discontinuous on the torus at x ,y=L, the
gauge invariant current density

��̂V�j���̂V� = qJ sin��r − �r+� − Ar,r+�� , �68�

is continuous. An example for the phase and current distri-
butions is given in Fig. 6.

The effective confining potential on the vortex is given by
the classical energy defined in Eq. �10�. By semiclassical
estimates,35 its curvature at RV scales as 1 /N. For lattices of
size L�4 we fit the variational potential by a two-
dimensional �2D� quadratic function, which scales as 1 /N as,

UN =
1

2
K�R − RV�2/N, K = 39.2J . �69�

U is minimized at the vorticity center RV, which was defined
in Eq. �35�. Figure 7 depicts the confining potential as a
function of vortex center for the choice of �= �0,0�.

We can now combine the single vortex hopping terms of
Eq. �29� with the confining potential to obtain the Harper
hamiltonian on the finite torus

HV
N = −

1

2
tV�

R,�
�eiAR,R+�bR

† bR+� + H.c.� + UN�R�bR
† bR.

�70�

B. Vortex-hopping amplitude

For a quantitative quantum theory of vortices we need to
evaluate the effective hopping tV. Since vortex tunneling be-
tween lattice sites depends on short range many-body corre-
lations, we extract tV from exact numerical diagonalizations
of H on 16–20 sites clusters, in the presence of a single flux
quantum.

FIG. 6. �Color online� A variational vortex configuration with its
center located at R= �0.5,0.6�L. The black dots mark the center of
vorticity RV, where the variational energy is minimized. �a� Phase
field marked by directions of the arrows. �b� Current density distri-
bution where the colors correspond to the local current magnitude.
Note the excess currents flowing around the torus in the negative x
direction: a consequence of the vortex being displaced from varia-
tional minimum.

LINDNER, AUERBACH, AND AROVAS PHYSICAL REVIEW B 82, 134510 �2010�

134510-8



By tuning tV, we fit the lowest three eigenenergies En of
H to those of the effective Harper Hamiltonian �70�. The fit
is shown in Fig. 8.

Our primary concern is that the low eigenstates will not
be exclusively described by HV

N since there are also low-
energy superfluid phonons �phase fluctuations�.36–38 How-
ever, we can estimate the phonons lowest excitation to be
gapped by the finite lattice with the energy scale 2	J /L,
which is larger than the energies we have fitted to Eq. �70�.

Our results for tV�nb ,V /J�, for N=20 can be described by
the fitting formulas,

tV�n,0� = 4J − 50.4J�n −
1

2
�2

+ 5056J�n −
1

2
�4

,

tV�1

2
,V� = 4J + 6V + 10.8

V2

J
. �71�

The system parameters were varied throughout the range �n
− 1

2 ��0.2, and V /J�0.5. We find that at half filling, the vor-
tex hopping rate tV varies very little between the N=16 and
N=20 lattices. This indicates that the bare vortex kinetic en-
ergy is determined by short range correlations, and thus does
not require a large lattice to be computed with acceptable
accuracy.

To further test the association of the many-body lowest
eigenstates with vortex center fluctuations, we measure the
vorticity density defined on the dual lattice,

�v
�n��R� 
 �

r,�

plaq,R

� n�jr,�� n� · � , �72�

for each of the low-lying states � n�. We compare �V to the
single particle probability density of the corresponding wave
functions of HV

N. As shown in Fig. 9, for the fitted value of tV,
the corresponding distributions increase in width in a quali-
tatively similar fashion. This demonstrates that the low-lying
eigenstates of H correspond to quantum fluctuations of the
vortex position.

VI. QUANTUM MELTING OF THE VORTEX LATTICE

At half filling, for N��1 semiclassical evaluation of vor-
tex interactions at distances larger than the core radius is

Uij
int = − 	J log��Ri − R j�� . �73�

Integrating out the phonon fluctuations, produces an instan-
taneous logarithmic �2D Coulomb� interaction between vor-
tices, plus retarded �frequency-dependent� interactions.25,37

Since we are interested in the short wavelength fluctuations
which are responsible for quantum melting of the vortex lat-
tice, we ignore these retardation effects.

FIG. 7. �Color online� The energy as a function of vortex posi-
tion, for a single vortex on the torus of dimensions L�L. The
vorticity center is located at RV= 1

2L.

FIG. 8. Fitting the single vortex energies of the effective Harper
Hamiltonian �70�, to the many-body spectrum of HCB �Eq. �4�	.
The HCB Hamiltonian is defined on a 4�4 lattice at half filling,
which is embedded on a torus which is penetrated by one flux
quantum. The parameters J=1, and V=0 are chosen for this figure.
Up and down arrows denote the v-spin magnetic quantum number
�z. The confining potential of the vortex in the Harper Hamiltonian
is calculated by a variational calculation, Eq. �69�. The effective
vortex hopping rate is fit to be tV=4J. The lowest three doublets of
the two models agree within 2% of the first energy gap.

FIG. 9. �Color online� �a� The HCB vortices density �v
�n��R� as

defined in Eq. �72��, for the states �n ,↑� whose spectrum is depicted
in Fig. 8. A uniform background vorticity has been subtracted. �b�
Probability density of the lowest single particle states of the Harper
model given by Eq. �70�. The qualitative similarity between �a� and
�b� supports the fit of the vortex hopping rate, and the validity of the
Harper Hamiltonian for single vortex dynamics.
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Thus in the large lattice limit, at a finite magnetic field B,
the multivortex quantum hamiltonian is given by the Harper
boson plasma

HHBP = −
1

2
tV�

�ij�
�eiAijbi

†bj + H.c.� − 	J�
i,j

ninj log��Ri − R j��

+ 	2J
B

!0
�

i

ni�Ri�2. �74�

At half filling the continuum limit of Eq. �75� can be taken as
follows. The single vortex dispersion exhibits a twofold de-
generacy of the ground states of the Harper Hamiltonian at 	
flux per plaquette. This implies the degeneracy Ek=Ek+�0,	�,
at low �k��	. Since we wish to expand the hamiltonian at
long wavelength, we retain the degeneracy by the v-spin la-
bel s= ↑ ,↓. The vortex effective mass is defined as

MV = � �2Ek

�k2 �−1

= 1/tV. �75�

This leads to the continuum spin-half Coulomb Bosons �CB�
Hamiltonian for the vortices at half filling:

HCB = �
i,s=↑↓

Pi
2

2MV
+ 	J�

i�j

log��Ri − R j�� −
B

!0
	2J�

i

�Ri�2.

�76�

At low-vortex densities, interactions clearly must dominate
over the kinetic energy, and vortices form a vortex lattice.
This a superfluid phase with v-spin correlations.

At a finite temperature Tm, if we ignore the quantum ef-
fects of the kinetic term, the classical melting temperature Tm
is independent of vortex density �magnetic field�.39,40 �Any
change in B can be absorbed by scaling Ri appropriately,
leaving the classical energy invariant�.

However, quantum fluctuations of the Coulomb plasma
Eq. �76�, increase with the vortex density B /!0, until quan-
tum melting is reached at a critical vortex density Bcr. This
melting is analogous to that of spinless CB, studied by Ma-
gro and Ceperley �MC� �Ref. 41� by diffusion Monte Carlo.

MC used the dimensionless parameter to describe the CB
density nv,

rs
−2 = 	nva0

2, �77�

where a0 is the Bohr radius. We set the Bohr radius to be

a0 = � �2

	JMV
�1/2

�78�

to match between the model of MC and our HCB of Eq. �76�.
MC found that below rs�12 the boson lattice undergoes

quantum melting, i.e., they found a critical quantum melting
density of

nv
cr =

1

144	a0
2 . �79�

Above this density, the CB looses translational symmetry
breaking and becomes a quantum liquid, which will be dis-
cussed in Sec. VIII. Using our values of Mv from Eqs. �71�

and �75�, this translates into a critical vortex number per
lattice site of

nv
cr� �6.5 − 7.9

V

J
�10−3vortices per site. �80�

This is a surprisingly low-vortex density, above which a vor-
tex quantum liquid �QVL� is created. We shall briefly return
to discuss the QVL in Sec. VIII

VII. HALL CONDUCTIVITY

We have shown earlier by Eqs. �7� and �20� that the Hall
conductivity in the low and high density obey the effective
Galilean invariant limits,


xy = �
nq

B
n�

1

2

−
�1 − n�q

B
1 − n�

1

2
.� �81�

In terms of vortex motion, this relation implies that below
and above half-filling vortices drift in opposite directions
relative to the particle current. In the following we shall
study the transition between these two regimes. Since the
continuum approximation is expected to fail near half filling,
we resort to a numerical computation of 
xy.

The zero-temperature Hall conductance of a finite lattice
embedded on a torus is defined by the Chern number42


xy =
q2

h	
�

0

2	

d�x�
0

2	

d�y� � 0

��x
�� � 0

��y
� , �82�

where � 0���� is the exact ground state of Eq. �4�, in the
presence of AB fluxes �. q2 /h is the quantum of conduc-
tance. In the absence of degeneracies and level crossings, the
Chern number 
xyh /q2 is an integer. We compute Eq. �82�
for a sequence of finite lattices. In Fig. 10 we plot 
xy for a
square lattice of size 4�4 with a single flux quantum N�
=1, as function of boson numbers Nb= �0,1 , . . . ,16	. We find
that the Hall conductance follows two straight lines as given
by Eq. �81�, with an abrupt jump to zero at half filling. The
same behavior was found for all smaller lattices, and reflects
a sharp change in vortex dynamics around half filling. By
Eq. �7�, the Hall conductivity �and therefore the vortex Mag-
nus action� much vanish at half filling by charge conjugation
symmetry.

We extend Eq. �82� to finite temperatures by thermally
averaging over all eigenstates � n�,


xy�T� =
q2

h	
�
n=0

� �
0

2	

d�x�
0

2	

d�y
e−En/T

Z
Im� � n

��x
�� � n

��y
� .

�83�

En��� and � n���� are the exact spectrum and eigenstates of
Eq. �4�. The results obtained with Eq. �83� are matched at
high temperatures with the conductivity calculated using the
Lehmann representation of the Kubo formula,43
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xy�T� = lim
�→i0+

i

NZ�
�
m,n

e−Em − e−En

En − Em + �
� n��

r
jx�r�� m�

�� m��
r�

jy�r��� n� , �84�

where the current operator j� is defined by Eq. �65�.
The Kubo expression for 
xy is evaluated at high enough

temperatures where the �→0 limit is well behaved. In Fig.
11 we plot 
xy as a function of temperature at different HCB
densities, by interpolating between Eq. �83� at low tempera-
tures and Eq. �84� at high temperatures.

We see that in general, the magnitude of 
xy�T ,nb� de-
creases with temperature, and the discontinuity as a function
of filling at zero temperature smoothens at finite tempera-
tures. As the temperature is lowered, the reversal of the Hall
conductance takes place in a narrower region around half
filling. A characteristic Hall temperature TH�nb� can be de-
fined by,


xy�TH� =
1

2

xy�0� . �85�

In the inset of Fig. 10, we show that TH increases with �nb

− 1
2 �, although we cannot estimate the critical exponent from

the small cluster calculation.

VIII. DISCUSSION AND EXPERIMENTS

In this paper, we have determined the vortex effective
hopping rate tV, in Eq. �71�, and the Hall conductivity 
xy, in
Fig. 10, from the eigenstates of 16 site clusters on the torus.
We emphasize that these quantities serve only as short wave-
length “bare parameters,” to be used to in the single vortex
Harper Hamiltonian Eq. �75� and the multivortex Bose Cou-

lomb liquid model Eq. �75�. The charge transport coefficients
depend on the thermodynamic phases of the latter model.

Vortex Solid. The vortex solid phase, expected for vortex
densities lower than nv

cr of Eq. �80�, has superfluid �i.e., su-
perconducting� order. Vortices are pinned to their lattice po-
sitions and therefore 
xx=� and 
xy =0. The role of tV is to
produce quantum zero point motion and effective v-spin
super-exchange interactions, which are ferromagnetic �since
vortices have Bose statistics�. Below the v-spin ordering
temperature Tvspin, charge density waves might be expected
with significant magnitude in the vortex cores. This phase is
a weak supersolid. As mentioned earlier, density modulations
have been observed near vortex cores of high-Tc cuprate
superconductors.32 We note that within the HCB model, the
interactions between v-spins are expected to decay rapidly at
low-vortex densities since vortex cores are well localized.
This implies low values of Tvspin. At T�Tvspin the v-spins
disorder, and will contribute to the entropy density a term
linear in magnetic field,

svspin =
B

!0
log 2. �86�

Quantum vortex liquid. At vortex densities which exceed
6.5�10−3 vortices per lattice site, we expect the vortex lat-
tice to melt and give way to the Boson Coulomb liquid stud-
ied by MC.41 Superfluidity of the CB translates into a Mott
insulating behavior of the original bosons.36 However, MC
have found that the liquid phase Eq. �76� is incompressible
and hence exhibits vanishing condensate fraction.44 Further-
more, retardation effects act to suppress dual superfluidity.45

The value of the transport coefficients of the QVL phase is
therefore left as an important open question. Away from half
filling, our results for 
xy show that the vortices are subject

FIG. 10. �Color online� Hall conductance as a function of boson
number Nb for hard-core bosons on a 4�4 lattice on the torus with
one penetrating flux quantum. Temperatures vary in intervals of
"T=0.05J. The jump of the zero temperature conductance at half
filling, is smoothened at finite temperatures.

FIG. 11. �Color online� 
xy of hard-core bosons, as a function of
temperature �in units of tV�, for 4–7 bosons on a 4�4 lattice. For
low temperatures, we calculate 
xy using Eq. �83� while for T�1
we use Eq. �84�. The dashed line is an interpolation between the
two calculations. The points where 
xy drops to half its value at T
=0 are indicated. The inset shows the temperature scale TH as a
function of density difference from half filling.
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to a strong magnetic field, which further suppresses their
condensation. At low boson fillings and large vortex density,
nb /n��1, there is evidence for fractional quantum hall
phases.46,47

The QVL phase discussed above is distinct from the
vortex-antivortex condensate phases which were predicted at
rational boson filling fractions, nb= p /q, in the absence of a
magnetic field.33,48–50 These are expected at strong longer
range interactions V�J, and corresponds to Mott-insulating
commensurate CDW phases.

Hall coefficient. The abrupt reversal of Hall coefficient
was found for 16 and 20 site lattices. This effect correlates
with the rapid change in the semiclassical vortex core profile
at half filling since we know by the GP Eq. �17� that vortices
have a diverging density depletion �accumulation� in the
low- and �high-� filling regime while they have a localized
charge density wave in their small core at half filling. The
sign of 
xy determines the drift direction of a vortex with
respect to a bias current. This rapid reversal of 
xy may be
relevant to the rapid change in Hall resistivity as a function
of doping, which was observed in �La1−xSrx�2CuO4.51,52

In Fig. 12 we propose a setup to observe the Magnus
action reversal for cold bosonic atoms on a rotating optical
trap.53 If the density of bosons is allowed to vary slowly in
space across half filling, we expect a rapid change in the
vortex drift directions at the half-filling line. The vortices
would drift downstream with the boson current for n� 1

2 and
upstream for n� 1

2 .
Soft core interactions. We have not considered relaxing

the hard-core constraints of the bosons, which would be de-
scribed by the Bose Hubbard model �Eq. �1�	. For U /J��,
the charge conjugation operator ceases to be an exact sym-
metry at half filling, and Eq. �6� is not valid. Therefore the
Hall coefficient will not be precisely zero at half filling, and
the v-spin degeneracies will be lifted by the finite U /J cor-
rections. A full determination of the Hall conductivity in the
U /J versus n phase diagram, is an interesting open question.
In particular, one would like to find out how the zeros of the
Hall conductivity connect between the HCB limit and the
free bosons limit.
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APPENDIX: TRANSLATIONAL SYMMETRY BREAKING
ON THE CONTINUOUS TORUS

In Sec. IV we have shown that the ground state of the
HCB Hamiltonian Eq. �4� with 0�N��N exhibits TSB
relative to the lattice periodicity, in both x and y directions.
At first thought this is very surprising: the flux per plaquette
is uniform, so one might expect that physical observables in
any nondegenerate state would not distinguish one lattice
point over another. However, one empirically finds, for ex-
ample for N�=1, that the ground state current circulates
around a preferred position, RV.

FIG. 12. �Color online� Different vortex drift directions �online
purple arrows� in the presence of a bias current �online red arrows�,
for regions of boson density n which is lower �blue online� and
higher �green online� than half filling.

FIG. 13. �Color online� Stern’s construction. A large number, N,
of positive magnetic monopoles �red circles� and N−1 negative
monopoles �blue squares� uniformizes the radial magnetic field, as
shown in Fig. 14. However, the internal flux which is measured
through the disks which cut through the torus, oscillates wildly as a
function of azimuthal direction x, as shown in Fig. 15.

FIG. 14. �Color online� The radial component of the magnetic
field penetrating the surface of the torus on the circle y=0, as a
function of the azimuthal coordinate x. The torus contains a ring of
N=20 monopoles and N=19 anti-monopoles, as shown in Fig. 13.
The magnitude of the oscillations decay with increasing N, leading
to a uniform radial field.
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In this appendix we first explain the reason for the TSB.
By working out a specific proposal for trying to construct a
purely radial magnetic field, we learn why TSB is in fact
unavoidable on the torus.

In the particular choice of gauge field in Sec. IV, the
gauge invariant Wilson loop functions Wx ,Wy defined in Eq.
�41� are linear functions of x and y modulo 2	. Therefore, by
construction they break translational symmetry in both direc-
tions, and we use them to define the special null point on the
torus, R0.

Now we show that by Stoke’s theorem, if A is continuous
on any interval �x1 ,x2	, then Wy�x� must be piecewise linear,

Wy�x2� − Wy�x1� = qBLy�x2 − x1� , �A1�

where Ly is the circumference of the torus in the y direction.
A�r� and Wy�x�, however, cannot be continuous everywhere
on the torus since Wy�x2� must be periodic for x2→x2+Lx
which is inconsistent with a continuous linear behavior given
by �A1�.

The magnetic field of N�=1 enters the torus and must end
in a magnetic charge. By Dirac quantization,54 “magnetic
charge” density must be quantized as �m=gm��r−rm� where,

gmon = 1/�2q� . �A2�

Therefore the physical reason for the TSB is the pointlike
discreteness of the magnetic charge. Consider an embedding
of the torus in three dimensions. Dirac quantization forces
one to choose a special location rm inside the torus which
breaks the translational symmetries.

A possible counter argument is raised: could TSB be
avoided by somehow smearing the monopole charge inside
the torus? This would presumably restore translational sym-
metry, at least for the direction in which the embedding has
axial symmetry. It is somewhat surprising that the answer is
negative, as the particular construction below demonstrates.

Ady Stern55 has suggested the following construction.
Consider a large number N of positive Dirac monopoles and
N−1 negative monopoles placed on the middle circle inside
the torus, as shown in Fig. 13. One arranges both positive

and negative monopoles to be at equal distances between
them such that their mean density is uniform. Let us calcu-
late the magnetic fields and their effects on bosons on the
torus surface, and then take N to infinity.

For large N, the distribution of monopoles approaches a
uniform density with total monopole charge of gm. We com-
pute numerically the magnetic field created by N=20 mono-
poles situated on rings of radius R, as given by Coloumb’s
law

B =
r

2qr3 . �A3�

The radial magnetic field penetrating the surface of the torus
on the circle y=0 �in the plane of the monopole ring�, be-
comes increasingly closer to a constant, with decreasing os-
cillatory component as shown in Fig. 14. This behavior is
precisely analogous to the electric field from a ring with
uniform charge density.

Now let us examine the function Wy�x�, evaluated for the
same monopole configuration as Fig. 15. By Gauss’s law, it
exhibits discontinuous jumps of size 2	 �−2	� at each posi-
tion where the cross section of the torus at x cross through a
monopole �antimonopole�. Note that Wy�x� exhibits N posi-
tive jumps and N−1 negative jumps, corresponding to the
number of positive and negative monopoles. Therefore, in
order for Wy�x� to be periodic in x→x+Lx, the continuous
part of Wy�x� needs to compensate for the extra positive
jump. Indeed, as can be seen by Fig. 15, between the 2N
−1 jumps W�x� decreases linearly, as demanded by Eq. �A1�.

This increasingly discontinuous function does not con-
verge to a well-defined limit function in the large N limit.
However, the physically relevant function which effects the
dynamics of our bosons of charge q on the surface is the
unimodular phase function

#�x� = eiWy�x� = #0eiqBLyx, x � �0,Lx	 , �A4�

which is perfectly continuous and periodic on the circle.
Here we see that #�x0�=1 uniquely defines a special position
x0 which breaks lattice translational symmetry.

We note that the values of #�x� have physical conse-
quences on the current distribution. In the ground state, the
loops in the region of #�1 feel a weak AB flux, and thus a
relatively weak persistent current is induced in these regions.
Similarly, the persistent currents are expected to be maxi-
mized around loops with #�−1.

Thus we learn that a static configuration of monopoles
leads translational symmetry breaking. However, if one con-
siders the possibility of an extended quantum wave function
of a monopole, the magnetic field will be in a quantum su-
perposition. In this case, translational symmetry can be re-
stored in the entangled state of the matter field with the elec-
tromagnetic field.

FIG. 15. �Color online� Wilson loop function Wy�x�, and the
phase function #�x�, for the monopole configuration of Fig. 13 for
N=20. While Wy oscillates wildly at large N and does not converge
to a limit, the physically relevant function # is continuous for all N
and breaks translational symmetry.
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