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Dynamics and conductivity near quantum criticality
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Relativistic O(N ) field theories are studied near the quantum-critical point in two space dimensions. We
compute dynamical correlations by large-scale Monte Carlo simulations and numerical analytic continuation.
In the ordered side, the scalar spectral function exhibits a universal peak at the Higgs mass. For N = 3 and 4,
we confirm its ω3 rise at low frequency. On the disordered side, the spectral function exhibits a sharp gap. For
N = 2, the dynamical conductivity rises above a threshold at the Higgs mass (density gap), in the superfluid
(Mott insulator) phase. For charged bosons (Josephson arrays), the power-law rise above the Higgs mass increases
from two to four. Approximate charge-vortex duality is reflected in the ratio of imaginary conductivities on either
side of the transition. We determine the critical conductivity to be σ ∗

c = 0.3(±0.1) × 4e2/h and describe a
generalization of the worm algorithm to N > 2. We use a singular value decomposition error analysis for the
numerical analytic continuation.
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I. INTRODUCTION

Relativistic O(N ) models describe the low-temperature
properties of diverse condensed matter systems, e.g., quantum
antiferromagnets, charge density waves, Josephson junction
arrays, granular superconductors, and Bose condensates in
optical lattices.1–3 Many of these systems exhibit a quantum
phase transition, as a function of a tuning parameter, between
phases where the O(N ) symmetry is present and where it is
spontaneously broken.

Far from criticality, the collective excitations in these
systems are well understood. In the symmetric phase, there are
N massive modes. In the broken symmetry phase, there are
N − 1 massless Goldstone modes and one massive amplitude
(Higgs) mode.4 The Higgs is actually a resonance since it
can decay into pairs of Goldstone modes. The shape of the
resonance in two spatial dimensions has recently attracted sig-
nificant theoretical and experimental interest. Weak coupling
and N = ∞ diagrammatic expansions5,6 have shown that a
careful choice of the correlation function ensures that the
Higgs mode can be detected, without spurious contamination
from massless Goldstone modes. Indeed, the Higgs resonance
has been directly observed in recent experiments of the Mott
insulator to superfluid transition in optical lattices.7

Near the quantum-critical point (QCP), the dynamics in
two spatial dimensions is determined by a strongly coupled
fixed point, thus precluding a simple description in terms
of weakly interacting quasiparticles. In the ordered phase,
Goldstone’s theorem still ensures the existence of Goldstone
modes, which are long lived at low energy. By contrast, there
is no corresponding protection for the Higgs mode. A 1/N

expansion of the scalar susceptibility8 and numerical quantum
Monte Carlo (QMC) simulations9 provided the first evidence
for the survival of the Higgs near criticality. Although the low-
frequency spectral function near criticality is predicted to be
universal,4,8 its determination requires numerical computation.
Recently, this was undertaken by large-scale QMC simulations
of the scalar susceptibility for the O(2) and O(3) models10 and
for the Bose-Hubbard model.11 The Higgs peak in the ordered
phase was clearly identified.

In this paper, we further study the dynamical properties of
relativistic O(N ) models close to the quantum-critical point
at low temperature, frequency, and zero wave vector. We
review in detail our previous work in which we computed
the universal line shape of the scalar susceptibility10 and
present new numerical results for O(N ) models with N = 2,
3, and 4. In particular, we perform a careful analysis of the
low-frequency behavior of the line shape in the ordered phase,
where we confirm the ω3 rise for N = 3 and 4 predicted in
Ref. 5. For N = 2, we can not resolve the low-frequency power
law. The scalar response in the disordered phase exhibits a
sharp threshold above a gap.

We present new results for the dynamical conductivity of the
O(2) model on both sides of the transition. In the superfluid
phase, we find a thresholdlike behavior in the conductivity,
which rises quadratically with frequency above the Higgs mass
mH . In the insulator, there is a low-frequency threshold in the
conductivity appearing at twice the single-particle gap �, and
a negative (capacitive) linear dependence of the imaginary
conductivity.

Throughout the analysis we identify a number of universal
constants that characterize the critical point. These include
ratios of quantities measured on mirror points on the or-
dered/disordered sides of the transition, such as mH/� and
ϒ/�, where ϒ is the helicity modulus in the ordered phase
(superfluid stiffness in the superfluid phase). For N = 2, we
compute the high-frequency universal conductivity σ ∗

c (ω �
T ) in the quantum-critical regime. In addition, we compute the
universal ratio C/L between the low-frequency capacitance in
the insulator and the inductance in the superfluid to one-loop
order. These results are consistent with vortex-charge duality12

relations between the two sides of the QCP.
Our results are relevant to recent experiments which probe

critical dynamics. In cold-atomic gases, the Higgs mode has
been excited by modulating the lattice potential near the
superfluid to Mott transition.7 Fast real-time pump-probe re-
sponse was used to see amplitude oscillations in charge density
wave (CDW) systems.13,14 Raman and neutron scattering have
long identified a “two-magnon peak” in antiferromagnets.15–19
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Within our theory, this peak is a Higgs mode which
would soften at criticality. The conductivity in cold-atom
systems may be measured by lattice phase modulations.20

For Josephson junction arrays and granular superconducting
films, Coulomb interactions must be considered, as they give
rise to massless two-dimensional plasmons. We show that
this increases the power-law rise of the conductivity above
the Higgs threshold. While our theory is for translationally
invariant systems, some of the finite-frequency zero-wave-
vector results may be a good starting point for understanding
very recent results on disordered granular superconducting
films.21

This paper is organized as follows. Section II presents the
O(N ) field theory and the observables we study, together
with their expected scaling near the quantum-critical point.
Section III introduces the discretized lattice model. In Sec. IV,
we locate the critical point as a function of cutoff parameters
and compute the relevant energy scales near the critical point.
In Sec. V, we present the universal scaling functions of the
scalar susceptibility. In Sec. VI, we compute the dynamical
conductivity on both sides of the superfluid Mott transition
and present an approximate duality for the optical conduc-
tivity. Appendix A describes the QMC algorithm in detail.
Appendix B discusses the numerical analytical continuation
procedure and provides an error analysis of the kernel pseu-
doinversion. Finally, Appendix C describes a weak coupling
analytic calculation of the conductivity.

II. FIELD THEORY AND SCALING

We will study microscopic systems with O(N ) symmetry
whose long-wavelength and low-energy universal properties
near the QCP are captured by a quartic field theory with
relativistic dynamics.4 The field theory in (2 + 1)-dimensional
Euclidean space-time is given by

Z =
∫
D �φ e−S[ �φ],

S[ �φ ] =
∫

�

d2x dτ

[
1

2
(∂μ

�φ)2 + 1

2
μ �φ 2 + g( �φ 2)2

]
. (1)

The fields �φ are N -component real fields, ∂μ = {∂τ ,∂x,∂y}, and
� is an ultraviolet cutoff. Examples of physical realizations
include the superfluid to Mott insulator transition of lattice
bosons at commensurate fillings1 for N = 2 and the Néel to
singlet transition of dimerized Heisenberg antiferromagnets2

for N = 3.
The system undergoes a quantum phase transition as the

quantum tuning parameter g is varied. For g < gc, the O(N )
symmetry is spontaneously broken as the field obtains a
nonzero expectation value 〈 �φ 〉 �= 0. The ordered phase is
then characterized by N − 1 massless Goldstone modes and
a single gapped Higgs mode. For g > gc, the system is
disordered and contains N massive modes with excitation gap
�(g). A dimensionless QCP tuning parameter is defined by
δg = (g − gc)/gc.

We study two dynamical observables: the scalar suscepti-
bility and the dynamical conductivity. For completeness, we
define these observables and discuss their expected scaling
behavior and experimental realizations.

A. Scalar susceptibility

The scalar susceptibility describes the response function of
experimental probes that are sensitive to the amplitude of the
order parameter, but not to its direction,5 as discussed in the
following. As an example, the scalar susceptibility has been
recently measured in experiments on cold atoms on optical
lattices near the Mott insulator superfluid transition.7 The
experimental protocol consists of modulating the optical lattice
depth at a fixed frequency and measuring the energy absorbed
using an in situ imaging technique.

The scalar susceptibility is defined as the correlation
function of the order-parameter amplitude squared:

χs(τ ) =
∫

d2x
(〈 �φ 2

x,y,τ
�φ 2

0

〉 − 〈 �φ 2
0

〉2)
,

χs(iωm) =
∫ β

0
dτ eiωmτχs(τ ). (2)

The real frequency spectral function is obtained by analytic
continuation of Eq. (2):

χ ′′
s (ω) = −Imχs(iωm → ω + i0+). (3)

Scaling arguments indicate that the expected low-energy form
of Eq. (2) near the QCP is8

χs(ω/�) ∼ C + A±�3−2/ν�±(ω/�), (4)

where � ∼ |δg|ν is the gap in the disordered phase, ν is
the correlation-length critical exponent, and �− (�+) is a
universal function of ω/� on the ordered (disordered) side
of the transition. The nonuniversal constant C is real and
is a regular function of g across the transition. The ordered
phase is gapless due to the presence of Goldstone modes. In
order to provide a well-defined energy scale that characterizes
fluctuations on the ordered phase (δg < 0), we use the gap at
the mirror point −δg across the transition.

The scalar susceptibility captures the low-energy, universal
response function of all experimental probes that couple to
the order-parameter amplitude. To illustrate this point we
consider, for example, experiments involving lattice amplitude
modulations in the Bose-Hubbard model.7 The response
function in this case is given by the dynamical kinetic energy
correlation function.9 In order to relate this response function
to the scalar susceptibility, we investigate the effective action
near the quantum-critical point, written in terms of the order-
parameter field �B(x,τ ) (Ref. 4):

SB =
∫

dτ d2x

[
K1

∣∣∣∣∂�B

∂τ

∣∣∣∣
2

+ K2|∇�B |2

+ r|�B |2 + u|�B |4
]
. (5)

The parameters K1,K2,r,u are all functions of the hopping
amplitude t and the onsite interaction U . For instance, if the
transition is tuned by varying the hopping amplitude t , then
r can be linearized about the critical point as r = r0(t − tc).
Thus, the energy absorbed due to modulations of the hopping
amplitude t can be described by the dynamical response of an
operator of the form

�(x,τ ) = α|�B |2 + β|∂t�B |2 + γ |∇�B |2 + δ|�B |4. (6)
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Close to the QCP, the term proportional to |�B |2 will dominate
the low-energy spectral weight since it is the most relevant
operator in the long-wavelength limit. As a consequence, the
universal part of the response function coincides with the scalar
susceptibility.

B. Conductivity

The dynamical conductivity measures the response to an ex-
ternal gauge field. Our analysis will be restricted to the N = 2
case, as is relevant to dynamical conductivity measurements
in superconductors and also to neutral cold atoms probed by
optical lattice phase modulations.20 To simplify the analysis,
we write the two scalar fields in Eq. (1) as a single complex
field (φ1,φ2) = √

2 (Re�,Im�). We introduce the gauge field
Aμ through minimal coupling ∂μ� → (∂μ + ie∗Aμ)� for a
field � carrying charge e∗.

The current is obtained by differentiating the action with
respect to Aμ, viz.,

〈Jμ〉 = δS(A)

δAμ

= ie∗〈�∗∂μ� − �∂μ�∗〉 + 2e∗2Aμ〈|�|2〉, (7)

from which we derive the response function

�μν(x,x ′) = δ

δAν(x ′)
〈Jμ(x)〉

∣∣∣∣
A=0

= 〈Jμ(x) Jν(x ′)〉 + 2e∗2〈|�|2〉 δμν δ(x − x ′).
(8)

The first term is the paramagnetic response kernel �P
μν(x,x ′) =

〈Jμ(x) Jν(x ′)〉, and the second term is the diamagnetic re-
sponse. The conductivity is then given by

σ (iωm) = − 1

ωm

�xx(iωm,q = 0). (9)

As in Eq. (3), the real frequency dynamics is obtained by
analytic continuation

σ (ω) = σ (iωm → ω + iε). (10)

Remarkably, in 2 + 1 dimensions the scaling dimension of
the conductivity is zero.22 As a result, near the critical point
the conductivity has the scaling form22,23

σ (ω) = σQ �±(ω/�). (11)

Here, σQ = e∗2/h is the quantum of conductance and �± are
dimensionless universal functions of ω/� for the disordered
(+) and ordered (−) phases.

III. MODEL AND METHODS

In order to simulate the continuum field theory (1), we
consider the following discrete lattice model:

Z =
∫
D �φ e−S[ �φ ],

S =
∑
〈ij〉

�φi · �φj + μ
∑

i

| �φi |2 + g
∑

i

| �φi |4. (12)

Here, �φ is an N -component scalar field, residing on the sites of
cubic lattice of linear size L with periodic boundary conditions.

The model is the same as that considered in Ref. 10, as seen
by rescaling �φi → g−1/2 �φi . The long-wavelength properties of
Eq. (12) are captured by the field theory (1). This model can be
interpreted either as a quantum mechanical partition function
in discrete 2 + 1 Euclidean space-time dimensions or as a
classical statistical mechanics model in three dimensions. Near
the phase transition between ordered and disordered phases,
this minimal model captures the critical properties of Eq. (1)
while explicitly treating space and time on an equal footing
and preserving exact particle-hole symmetry (� → �∗) for
the N = 2 case.

Next, we define the discrete lattice version of the continuum
observables. The scalar susceptibility is given by

χs(τ ) =
∑
x,y

〈 �φ 2
x,y,τ

�φ 2
0

〉 − 〈 �φ 2
0

〉2
. (13)

To define the conductivity, it is easier to consider the U (1)-
symmetric complex field analog model of the N = 2 scalar
field

Z =
∫
D� D�∗ e−S[�,�∗],

(14)
S =

∑
〈ij〉

(
�∗

i �j + �i�
∗
j

) + 2μ
∑

i

|�i |2 + 4g
∑

i

|�i |4.

We introduce the gauge field Aμ(i) through Peierls substitution
�∗

i �i+μ → �∗
i �i+μ eie∗Aμ(i). The current is then

Jμ(i) = δS

δAμ(i)
= ie∗〈�∗

i �i+μ̂ eie∗Aμ(i) − c.c.
〉

(15)

and the response function

�μν(i,j ) = δ

δAν(j )
〈Jμ(i)〉

∣∣∣∣
A=0

= �P
μν(i,j ) + Kδμν δi,j . (16)

�P
μν(i,j ) = 〈Jμ(i) Jν(j )〉 and K = −e∗2〈�∗

i �i+μ̂ + c.c.〉 are
the lattice versions of, respectively, the paramagnetic and the
diamagnetic responses.

The simplicity of our model allowed us to simulate large
system sizes, up to L = 200. Considering such large systems
enabled us to accurately track the critical properties near
the QCP. This is especially important in the ordered phase
where the system is gapless and the dynamical response
functions have power-law behavior. We implemented the
highly efficient “worm algorithm”24 sampling from a dual
closed-loop representation. The correlation time of the worm
algorithm scales well with system size, suppressing the critical
slowing down near the transition. We also extend the work of
Ref. 24 to treat general O(N ) models with N > 2. Details of
the QMC algorithm can be found in Appendix A. We compared
our numerical results against previous QMC studies of O(N )
models25,26 and with analytically solved limits and found good
agreement within error bars.

A key ingredient of our analysis is the numerical analytic
continuation of imaginary-time QMC data to real frequency
spectral functions. To do so, we have to invert the relation

G(iωm) =
∫ ∞

0

dν

π

2ν

ω2
m + ν2

A(ν). (17)
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FIG. 1. (Color online) Curves of Lϒ for a sequence of increasing
system size L for O(N = 2,3) models. The curves cross at a single
point, from which we determine the value of gc. Here, we take μ =
−0.5 and gc = 2.568(2) for the N = 2 case and gc = 1.912(2) for
N = 3.

Here, G(iωm) is a correlation function in Matsubara frequency
space, evaluated by the QMC simulation, and A(ν) is the
spectral function. However, the kernel has very small singular
value eigenvalues, and the inversion can unwittingly amplify
the statistical QMC noise in G(iωm). A detailed discussion of
methods which can circumvent these artifacts is presented in
Appendix B.

IV. CRITICAL ENERGY SCALES

A. Determination of the critical coupling

In order to study critical properties, it is necessary to
locate the QCP with high accuracy. We determine the critical
coupling by finite-size scaling analysis of the helicity modulus
of the (2 + 1)-dimensional quantum model. The helicity
modulus ϒ is defined by ϒ ≡ 1

L

∂2 lnZ(ϕ)
∂ϕ2 |ϕ=0 where Z(ϕ) is

the partition function in the presence of a uniform phase twist
ϕ. Near the critical point, ϒL is a universal constant, with only
next-to-leading-order corrections in the system size L.22,27 The
critical coupling is then determined from the crossing point of
Lϒ for a sequence of increasing system sizes L. Illustrative
examples for N = 2 and 3 are shown in Fig. 1. Curves for
different system sizes cross at a single point with little variation
with system size, allowing us to determine the critical coupling
accurately.

We studied a few different parameter sets (gc,μc) which are
shown in Table I. The use of multiple sets of model parameters
for N = 2 allowed us to test the universality of our results. In

TABLE I. List of model parameters studied, along with their
critical couplings.

Model N Model parameters Critical coupling

A 2 μ = −0.5 gc = 2.568(2)
B 2 μ = −2 gc = 3.908(2)
C 2 g = 7.6923 μc = −5.883(2)
D 3 μ = −0.5 gc = 1.912(2)
E 4 μ = −0.5 gc = 1.516(2)

FIG. 2. (Color online) Scaling of the gap �(δg) in the disordered
phase for N = 2,3 and μ = −0.5. Fitting to the scaling form � =
�0(δg)ν gives �0=1.86(1) for N = 2, μ = −0.5, and �0 = 1.96(1)
for N = 3, μ = −0.5. Error bars are smaller than the symbols.

most cases, we tuned the transition by varying g, except in the
case of dynamical conductivity, where we varied μ.

B. Excitation gap in the disordered phase

The gap in the disordered phase provides a reference energy
scale for all dynamical properties. It can be extracted with
high precision from the zero-momentum two-point Green’s
function28

G(τ ) =
∑
x,y

〈 �φx,y,τ · �φ0〉, (18)

without recourse to analytic continuation. At large imaginary
times, G(τ ) is expected to behave as

G(τ ) ∼ e−�τ + e−�(β−τ ). (19)

The gap � is evaluated by a fit to the above functional form.
The evolution of the gap near the QCP is depicted in Fig. 2
for N = 2,3. The gap softens as δg → 0 according to the
scaling form �(g) ∼ �0 (δg)ν , from which we extract �0. For
the correlation-length exponent ν, we use values determined in
previous high-accuracy simulations25,26: ν2 = 0.6723(3), ν3 =
0.710(2), and ν4 = 0.749(2) for N = 2, 3, and 4, respectively.

We validated our results by performing a similar analysis
of the long imaginary-time form of the scalar susceptibility10

χs(τ ) ∼ τ−1 e−2τ�. We found good agreement between the
two approaches.

C. Helicity modulus in the ordered phase

In two spatial dimensions, the helicity modulus is an energy
scale that can be used to characterize the ordered phase. For
N = 2 (N = 3) it plays the role of the superfluid stiffness
(spin stiffness). Similarly to the gap in the disordered phase,
the helicity modulus near the QCP vanishes according to the
scaling behavior ϒ = ϒ0(δg)ν (see Fig. 3). The ratio ϒ0/�0 is
universal. We find ϒ0/�0 = 0.44(1) for N = 2 and ϒ0/�0 =
0.34(1) for N = 3. This universal ratio was also calculated by
means of nonperturbative renormalization group methods in
Ref. 29.
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FIG. 3. (Color online) Scaling of the helicity modulus ϒ(δg) in
the ordered phase for N = 2,3 and μ = −0.5. Fitting to the scaling
form ϒ = ϒ0(δg)ν gives ϒ0 = 0.83(1) for N = 2, μ = −0.5 and
ϒ0 = 0.67(1) for N = 3, μ = −0.5. Error bars are smaller than the
symbols.

V. SCALAR SUSCEPTIBILITY

In the following, the universal scaling functions of the scalar
susceptibility are computed for both phases.

A. Matsubara frequency universal scaling function

In Fig. 4(a), numerical results for the N = 2 scalar
susceptibility χs(iωm) as a function of Matsubara frequency
are presented for both phases. The scaling form (4) applies also
to the correlation function in Matsubara space. The universal
scaling function �(iωm) is then computed by rescaling the
χs(iωm) curves according to Eq. (4). The collapse requires
the extraction of the nonuniversal real constant C, which is
expected to be a smooth function of δg. We find C by fitting
χs(iωm) at small ωm to a polynomial in δg, and then subtracting

FIG. 4. (Color online) (a) The scalar susceptibility χs(iωm) for
N = 2. The curves correspond to different values of δg below and
above the phase transition. (b), (c) Universal scaling function after
rescaling for N = 2,3. In (b) we show the scaling function for two
crossing points of the phase transition. The two rescaled curves agree
very well, especially at low frequencies. Simulations were performed
with μ = 0.5 and 2 for N = 2 and μ = 0.5 for N = 3.

FIG. 5. (Color online) χ ′′
s (ω) in the ordered phase for N = 2 and

3. We scale the curves according to Eq. (4) for a range of tuning
parameters δg near the critical point.

it from χs(iωm). The ω axis is then rescaled by � and the
vertical axis is rescaled by �3−2/ν .

Figures 4(b) and 4(c) show the scaling procedure for N =
2,3. The curves collapse into two universal functions �±(iωm).
To test the universality of our results, we repeated the scaling
analysis at a different crossing point of the phase transition
for the N = 2 case. The results are presented in Fig. 4(b). The
scaled curves for both sets of critical couplings agree very
well, especially for low frequencies. This provides a stringent
test for the consistency of our analysis.

B. Real frequency universal scaling function

Next, we examine the imaginary part of the retarded
response function χ ′′

s (ω) obtained from analytic continuation
of χs(iωm). To extract the universal part of the line shape we
rescale the ω axis by � and the vertical axis by �3−2/ν . Note
that this rescaling is done without any free-fitting parameters
since the real constant C in Eq. (4) drops out from the spectral
function.

The rescaled line shape in the ordered phase is shown in
Fig. 5 for N = 2 and 3. Curves for different values of δg

collapse into a single universal line shape especially at low
frequencies. The line shape contains a clear peak that can be
associated with the Higgs mode. Our analysis demonstrates
that the Higgs peak is a universal feature in the spectral
function that survives as a resonance arbitrarily close to the
critical point.

Some universal values can be obtained by this analysis. For
example, we consider the ratio between the Higgs mass in the
ordered phase, defined by the maximum in χ ′′

s (ω), and the gap
in the disordered phase at mirror points across the transition.
This ratio is found to be mH/� = 2.1(3) and mH/� = 2.2(3)
for N = 2 and 3, respectively. We also obtain the fidelity
F = mH/�, where � is the full width at half-maximum. We
measure � with respect to the leading edge at low frequency
since at low frequencies there is less contamination from the
high-frequency nonuniversal spectral weight. Since the entire
functional form of the line shape is universal, F is a universal
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FIG. 6. (Color online) χ ′′
s (ω) in the disordered phase for N =

2. We scale the curves according to Eq. (4) for a range of tuning
parameters δg near the critical point.

constant that characterizes the shape of the peak. We find
F = 2.4(10) for N = 2 and F = 2.2(10) for N = 3.

The rescaled spectral function in Fig. 5 shows higher
variability at high frequencies than at low frequencies. We
attribute this to contamination from the nonuniversal part
of the spectrum and to systematic errors introduced by the
maximum entropy (“MaxEnt”) regularization of the analytic
continuation, which is noisy in this regime.

In Fig. 6, we plot the rescaled line shape in the disordered
phase for N = 2. The universal spectral function is gapped
for ω < 2� and rises sharply above the threshold. This
behavior is in accordance with analytic predictions8 and with
previous QMC numerical simulation.11 Previous studies found
a Higgs-type resonance in the disordered phase above the
threshold.9,11 However, we find that the peak seen in Fig. 6 at
ω/� ≈ 3 is very shallow relative to the background spectral
weight. Thus, we do not consider this to be conclusive evidence
of a resonance. We note that numerical analytic continuation
tends to produce oscillatory behavior near sharp features of
the spectral function30 and hence it is possible that the shallow
peak might be an artifact of such an effect. For comparison,
in Fig. 7 we show representative curves for the line shape on
mirror points of the transition. If a resonance is at all present
in the disordered phase, it is much less pronounced than in the
ordered phase.

1. Asymptotic power-law decay of the scalar susceptibility

In the ordered phase, the low-frequency rise of the scalar
susceptibility was predicted5,8,31 to be

�′′
−(ω) ∼ (ω/�)3, ω � � � 1. (20)

The ω3 rise is due to the decay of a Higgs mode into a pair
of Goldstone modes. Equation (20) transforms into the large
imaginary-time asymptotic form χs(τ ) ∼ 1/τ 4. Hence, to test
Eq. (20) we examine the large-τ behavior of χs(τ ). We note that
this approach does not rely on analytic continuation, enabling
us to study the low-frequency dynamics in a numerically stable
and well-controlled manner.

In Fig. 8, we present χs(τ ) on a log-log plot for N = 3,4
in the disordered phase with the detuning parameter δg =
0.1 × 10−2. For N = 3,4 we indeed find agreement with the

FIG. 7. (Color online) Comparison of the scalar susceptibility line
shape χ ′′

s (ω) on mirror points across the phase transition for N = 2.
The blue green curve corresponds to disordered phase and the green
curve to the ordered phase.

asymptotic behavior χs(τ ) ∼ 1/τ 4 within the error bars. In
Fig. 9, we present χs(τ ) for N = 2 on a log-log plot and
on a semilog plot. Interestingly, for N = 2 we do not find
a conclusive asymptotic falloff as 1/τ 4. Instead, the data fit
better to an exponential decay, as in the disordered phase. This
indicates that the ω3 subgap spectral weight, if at all present, is
small compared to the spectral weight contained in the Higgs
peak. Indeed, we find excellent agreement between the large-τ
exponential decay rate and the value of mH obtained from
the MaxEnt analysis, further supporting our results for the
Higgs mass. We note that a 1/τ 4 power-law behavior might be
regained at larger values of τ , but this lies below the statistical
inference of our data.

Accurate determination of the scalar susceptibility at zero
Matsubara frequency χs(iω = 0) is crucial for this analysis.
Errors in χs(iω = 0) translate into an overall vertical shift of
χs(τ ). This error can dominate the value of χs(τ ), especially at
large τ where χs(τ ) is numerically small, and can lead to a bias
in the power-law analysis. Typically, χs(iω = 0) is measured
from a fluctuation relation χs(iω = 0) = ∑

x,y,τ 〈 �φ 2
x,y,τ

�φ 2
0 〉 −

〈 �φ 2
0 〉2 and hence does not self-average32 upon increasing

FIG. 8. (Color online) Log-log scale plot for χs(τ ) in the ordered
phase. For N = 3,4, we indeed find the asymptotic behavior χs(τ ) ∼
1/τ 4 to agree within the error bars.
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FIG. 9. (Color online) χs(τ ) in the ordered phase for N = 2,
plotted on a log-log scale in panel (a) and a semilog scale in panel (b).
The curve deviates significantly from the expected 1/τ 4 power-law
form. Instead, the curve fits better to an exponential decay as in the
disordered phase.

the system size. To overcome this difficulty, we computed
χs(iω = 0) using a direct numerical derivative χs(iω = 0) =
−d〈 �φ 2 〉/dμ. To do so, we evaluated 〈φ2〉 for a set of values of
μ within a narrow range [μ − �μ,μ + �μ] and extracted the
derivative by a polynomial fit in μ. We found that this method
reduced the error in χs(iω = 0) by an order of magnitude and
significantly improved the power-law decay analysis.

VI. DYNAMICAL CONDUCTIVITY

In Fig. 10, we present the dynamical conductivity in the
disordered and ordered phases. In both cases, the frequency
axis ω is rescaled by �, noting that there is no need for a vertical
rescaling since the conductivity is a universal amplitude. In
both phases, the curves collapse into a single universal shape,
especially at low frequencies. The spectrum on the disordered
side has a clear gaplike behavior up to a threshold frequency
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FIG. 10. (Color online) The optical conductivity Reσ (ω) in the
ordered and disordered phases for N = 2. Curves are scaled according
to Eq. (11) for several values of the quantum tuning parameter δg near
the critical point. The solid black curves show the analytic results from
Refs. 5 and 23.

2�. Beyond this threshold, the spectrum rises sharply and
saturates at a universal value of σdis(ω � �) ≈ 0.35(5) σQ,
where σQ = e∗2/h is the quantum of conductance. These
results should be compared with the line shape calculated
diagrammatically in Ref. 23:

σ+(ω) = 2πσQ

(
ω2 − 4�2

16ω2

)
�(ω − 2�). (21)

Similarly, in the ordered phase, the dynamical conductivity
grows rapidly starting at a threshold frequency ≈ 2�, and sat-
urates at high frequency at a value σord(ω � �) ≈ 0.25(5) σQ.
A calculation to leading order in weak coupling predicts5,6

(see also Appendix C)

σ−(ω) = 2πσQ

(
ω2 − m2

H

4ω2

)2

�(ω − mH ). (22)

In contrast to the disordered phase, there is a subgap com-
ponent to the conductivity, owing to the gaplessness of the
Goldstone mode(s). This feature is first evident at two-loop
order in a perturbative calculation of the conductivity. This was
computed in Ref. 5, where it was found that the corresponding
subthreshold (ω < mH ) contribution to σ (ω) is

σ−(ω)|ω<mH
= σQ

gmH

28π

{
N − 2

N

(
16ω

15mH

+ 32ω3

105m3
H

)

+ 3N − 5

N

16ω5

315m5
H

+ · · ·
}

+ O(g2). (23)

Remarkably, for N = 2, the two leading-order frequency
terms in the subthreshold conductivity vanish, resulting in a
pronounced pseudogap behavior. Our numerical results appear
to be qualitatively consistent with this analytic prediction.
However, the coefficient of the leading ω5 term is small, given
by 3.2 × 10−5 g/m4

H , and is not resolved within our numerical
accuracy.

For comparison, the analytic curves corresponding to
Eqs. (21) and (22) are plotted in Fig. 10. The value of mH

was taken from the scalar susceptibility analysis10 and � from
the gap analysis. There is a remarkable agreement between
analytic and numerical curves especially at low frequencies. It
is important to notice that analytic curves are presented without
any fitting parameters (after setting mH and �).

On general grounds, one expects the high-frequency
(ω � �) limit of the universal conductivity functions to
be equal on both ordered and disordered phases. Here, we
find slightly different values σdis(ω � �) ≈ 0.35(5) σQ and
σord(ω � �) ≈ 0.25(5) σQ, although there is significant spread
which we attribute to limitations of the analytic continuation.
This high-frequency value should also match the universal
conductivity in the quantum-critical regime at high frequencies
(� = 0 and ω � T ). Taking an average over both results,
we estimate σ ∗

c (ω � T ) ≈ 0.3(1) σQ. This value should be
compared with the value σ ∗

c = 0.39 σQ obtained in the large-N
limit in Ref. 23, and with σ ∗

c = 0.251 (Ref. 33) obtained from
the leading correction in 1/N . In addition, previous QMC
simulations found σ ∗

c = 0.33 σQ (Ref. 27) and σ ∗
c = 0.285σQ

(Ref. 33).
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A. Charge-vortex duality of the dynamical conductivity

The model in Eq. (1) with N = 2 describes relativistic
bosons in 2 + 1 dimensions. This system has a dual repre-
sentation in terms of vortices.12 Interestingly, the conductivity
of the bosons is inversely proportional to the conductivity of
the vortices,33 such that

σB(ω) = σ 2
Q

σV(ω)
. (24)

Here, σB = σ is the physical conductivity of the bosons, and
σV is the vortex conductivity in response to a dual electric field,
that is, a current of bosons. This relation is a direct consequence
of the duality transformation and is therefore exact.

In the dual picture, the vortices interact with an inverse
coupling constant. This fact can be used to relate physical
properties on opposite sides of the transition. This mapping
is not exact due to the different interaction laws of bosons
and vortices: the bosons have contact interactions whereas
the vortices have long-ranged interactions. This discrepancy
prevents us from deriving exact results from the duality
relation, yet it can be used to construct approximate or
qualitative results. This relation was used in previous studies
to estimate the dc conductivity at the critical point where the
vortices and bosons are self-dual, hence, σB = σV = σQ. This
simple argument, although not exact, gives the correct order
of magnitude for the dc conductivity at the QCP.

Here, we ask whether this approach can be extended to
the dynamical conductivity. Duality maps the conductance of
symmetric points on both sides of the transition:

σB(ω,−δg) = σV(ω,δg). (25)

This relation, combined with Eq. (24), yields a relation
between the optical conductivities on both sides of the
transition:

σB(ω,−δg) = σ 2
Q

σB(ω,δg)
. (26)

Here, σB(ω,δg) is complex, containing both dissipative and
reactive parts σB = σ ′

B + iσ ′′
B , such that

σ ′
B(ω,−δg) = σ 2

Q σ ′
B(ω,δg)

σ ′
B
2(ω,δg) + σ ′′

B
2(ω,δg)

, (27)

σ ′′
B (ω,−δg) = − σ 2

Q σ ′′
B (ω,δg)

σ ′
B
2(ω,δg) + σ ′′

B
2(ω,δg)

. (28)

Note that duality flips the sign of the reactive component.
Numerically we found it difficult to extract the reactive part

of the conductivity. The results for the analytic continuation
were much less numerically stable than for the dissipative
component. Yet, the numerics do provide some evidence for the
duality. According to Eq. (27), one prediction of duality is that
whenever the dissipative part vanishes for some frequency ω in
one of the phases, it must also vanish at the mirror point in the
other phase. This is indeed seen to be the case in Fig. 10, where
the threshold frequency of the dissipative part of the optical
conductivity equals ωT ∼ 2� on both sides of the transition.
The presence of small subgap conductivity in the superfluid is
a consequence of the inexactness of the duality.

As an additional test of the duality, in Appendix C we
present analytic calculations of the optical conductivity on both
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FIG. 11. (Color online) The real and imaginary parts of the optical
conductivity in the disordered phase. Results are shown from a one-
loop calculation in Appendix C.

sides of the transition, to one-loop order. In Figs. 11 and 12, we
show the dynamical conductivity on the ordered and disordered
phases, respectively. In order to use the same reference energy
scale in both figures, we used the universal values mH/� =
2.1 and ρs/� = 0.44 obtained numerically in earlier parts
of the analysis. In Fig. 12, we also depict the conductivity
in the ordered phase, as obtained by applying the duality
[Eq. (26)] to the conductivity in the disordered phase. As in
the dc case, the overall scale of the conductivity has the right
order of magnitude, set by σQ, but is not quantitative. However,
the functional form of the conductivity is well captured by the
duality.

Interestingly, duality makes a strong prediction on the
reactive component of the conductivity at low frequencies.
A superfluid acts as a perfect inductor at low frequencies,
with admittance σ ′′

B (ω) = 1/ωLord, where the inductance is
Lord = h̄/(2πσQρs).34 According to Eq. (28), using the fact that
the dissipative part is negligible for ω � �, this implies that at
low frequencies the disordered phase behaves as a capacitor,
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FIG. 12. (Color online) The real and imaginary parts of the optical
conductivity in the ordered phase. The green curve displays the results
of a one-loop calculation carried in Appendix C. The values of mH /�

and ρs/� were taken from the QMC simulation. The blue curve
depicts the optical conductivity obtained from the duality relation in
Eq. (26). This curve is multiplied by 0.15 for comparison reasons.
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with admittance is σ ′′
B (ω) = −ωCdis, where the capacitance

is Cdis = σQh̄/(2πρs). Physically, this capacitance measures
the polarizability of the bosons in the presence of an external
electric field. Furthermore, if the duality were exact, the univer-
sal ratio between the capacitance in the disordered phase and
the inductance in the ordered phase would be Cdis/Lord = σ 2

Q .
Indeed, we find that at low frequencies the optical conductivity
in the disordered phase, computed in Appendix C, rises
linearly as σ ′′

dis(ω) = −2πσQ × h̄ω/(24π�) + O(ω2), that is,
as a capacitor with capacitance Cdis = 2πσQ × h̄/(24π�).
This yields the ratio

Cdis

Lord
= 2πρs

12�
σ 2

Q ≈ 0.23 σ 2
Q , (29)

where in the last equality we used ρs/� = 0.44 as obtained in
Sec. IV C.

An illuminating way to understand the low-frequency
conductivity is through the dual-vortex representation. In this
representation, the effective field theory is given by a complex
ψ4 theory coupled to an electromagnetic gauge field:35,36

S =
∫

d3x

{
|(∂μ + iaμ)ψ |2 + m2|ψ |2 + λ|ψ |4

+ 1

16π2K
fμνfμν

}
. (30)

Here, the complex field ψ is the vortex condensate order-
parameter field, fμν = ∂μaν − ∂νaμ, and K is the coupling
constant of the bosons. The gauge field aμ is related to the
original boson 3-current by

Jμ = 1

2π
εμνλ∂νaλ. (31)

Since the current is equal to the dual electric field Jx(iωm) =
−ωmay/2π , the conductivity is

σ (iωm) = − 1

ωm

〈Jx(iωm) Jx(−iωm)〉

= ωm

(2π )2
〈ay(iωm) ay(−iωm)〉. (32)

In the disordered vortex phase, corresponding to the superfluid
phase of the original bosons, the gauge field remains gapless
with the propagator in the Feynman gauge:

〈aμ aν〉 = 4π2K

k2
δμν, (33)

hence, the conductivity is σord(iωm) = K/ωm. After analytic
continuation and introducing physical units e∗2/h̄ = 2πσQ,
this becomes

σord(ω) = 2πσQ

ρs

h̄

[
i

ω
+ πδ(ω)

]
, (34)

where we have set K = ρs , its value in the superfluid phase.
In the condensed vortex state, corresponding to the disordered
phase of the original bosons, the field ψ gets an expectation
value leading to a mass term for the gauge field through the
Anderson-Higgs mechanism. The effective action of the gauge
field is then given by a Proca action:

S =
∫

d3x

{
1

16π2K
fμνfμν + 1

2
ρva

2
μ

}
, (35)

where we now take the vortex condensation density ρv =
2|〈ψ〉|2. The gauge field propagator is

〈aμ aν〉 = 4π2K

k2 + M2

(
δμν − kμkν

M2

)
, (36)

where the gauge field mass M is given by M2 = 4π2Kρv .
Note that since the current is quadratic in boson operators, this
mass is related to the single-boson gap � by M = 2�. Now, the
conductivity is given by σdis(iωm) = ωmK/(ω2

m + M2), which
yields after analytic continuation σdis(ω) = iωK/(ω2 − M2).
At low frequencies ω � M this becomes, in physical units,

σdis(ω) ≈ −2πiσQ

K

M2
h̄ω = −iσQ

h̄ω

2πρv

. (37)

Combining the results from Eqs. (34) and (37), we obtain

Cdis

Lord
= ρs

ρv

σ 2
Q . (38)

This gives a physical interpretation for the universal ratio C/L

as the ratio between the superfluid stiffness and the vortex
condensation density on opposite sides of the transition.

B. Effect of Coulomb interactions

Josephson junction arrays and granular superconducting
films can often be described by charged lattice bosons,37 which
interact at long range via e2/r Coulomb interactions. When
Coulomb interactions are present, the O(N ) model Lagrangian
should be augmented by a contribution

�L =
∫

d2x in
∂ϕ

∂τ
+ 1

2

∫
d2x

∫
d2x ′ n(x)

e∗2

|x − x′| n(x′), (39)

where ϕ is the phase of the order parameter. We parametrize
the �φ field in terms of longitudinal (σ ) and transverse (π )
fluctuations:

�φ = (φ0 + σ , π ), (40)

where φ0 ≡ |〈 �φ 〉|. To lowest order, we have ϕ = π/η
√

N ,
where η ≡ φ0/

√
N is proportional to the magnitude of the

order parameter. Integrating out the density field n(x,τ ), we
find that the π propagator becomes

Gππ (q) = 1

q2
0 + q2 + α |q| q2

0

, (41)

where α = ηgh̄v/πe∗2 and v is the velocity (“speed of light”)
in the original O(N ) model. This new π -field propagator
has a two-dimensional (2D) plasmon pole located at q0 =√−|q|/α for small q. Plugging this into the expression for the
electromagnetic kernel, in Eq. (E1) of Ref. 5, we find, to order
g0,

σ (ω) = 2σQ

(
α

mH

)2

(ω − mH )4 �(ω − mH ). (42)

Thus, the dynamical conductivity of two-dimensional super-
conductors rises above the Higgs threshold with a modified
power law σ (ω) ∝ (ω − mH )4.
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VII. DISCUSSION AND SUMMARY

In this work, we studied the critical dynamical properties
of O(N )-symmetric models with relativistic dynamics in two
space dimensions. In particular, we computed the line shape
of the scalar susceptibility and the optical conductivity on
either side of the quantum phase transition. Our results focus
on properties that are universal in nature and are therefore
relevant for many experimental realizations of quantum phase
transitions.

We showed that the scalar susceptibility, in the ordered
phase, contains a clear resonance at the Higgs mass mH .
By contrast, in the disordered phase the scalar susceptibility
has a threshold at ω = 2� with no conclusive evidence for
a resonance above the threshold. In addition, we provide
two universal dimensionless constants that characterize the
dynamics: the ratio between the Higgs mass and the single-
particle gap on mirror points across the transition, and the
fidelity of the Higgs resonance. These predictions could be
tested by future, high-resolution, experiments of the superfluid
to Mott insulator transition in cold-atomic lattices.7

It is important to note that, close to the critical point, the
scalar susceptibility captures the low-frequency behavior of a
generic experimental probe that couples to the order-parameter
amplitude and not to its direction.10 We have also presented
results for the optical conductivity on both sides of the phase
transition. In both cases, we find a sharp rise of the spectral
function at ω ≈ 2�. The threshold frequency in the ordered
phase can be associated with the Higgs mass mH . This provides
an independent estimate of the Higgs mass, one which agrees
very well with the value obtained from the scalar susceptibility
analysis. In addition, we have computed the high-frequency
(ω � T ) universal conductance σ ∗

c = 0.3(±0.1) × σQ. This
value is in agreement with previous analytic calculations.23

Unfortunately, the low-frequency (“hydrodynamic”) limit
ω � T is not accessible in the QMC simulation, as was
discussed in Ref. 23.

We observe an approximate duality relation between the
reactive components of the conductivity in both phases. The
ordered (disordered) phase displays an inductive (capacitive)
behavior, where the ratio C/L between the capacitance C

and inductance L is found to be universal. To one-loop order,
C/L = 0.23 σ 2

Q . Furthermore, we show that the dual-vortex
representation predicts an interesting physical interpretation
to the admittance ratio C/L = ρsσ

2
Q /ρv , where ρs is the

superfluid stiffness and ρv is the vortex condensation density
in the two phases. Both impedances can be computed directly
from a Monte Carlo simulation without analytic continuation.
We intend to do this in a future study. Finally, we have shown
that for a charged system with Coulomb interaction, the power
law of the spectral rise above the threshold changes from
2 to 4.

We hope that our results will motivate measurements of
the optical conductivity in cold atoms by optical lattice phase
modulation, as was suggested in Ref. 20. Such experiments
could accurately measure the universal optical conductivity
near the QCP and even the universal resistivity right at the
critical point. Our analysis may also shed light on recent
experiments on the superconductor to insulator transition
in granular superconductors.21 In this context, it will be

interesting to extend these calculations to systems with varying
degrees of disorder.

Note added. Recently, we learned of a few similar quantum
Monte Carlo results,38–40 all of which agree, within the error
bars, with our estimate of the high-frequency conductivity at
the critical point. We thank W. Witczak-Krempa for informing
us of their work, and for some additional relevant references.
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APEENDIX A: WORM ALGORITHM FOR O(N) MODELS

We present a QMC algorithm for O(N ) lattice models
[Eq. (12)]. The algorithm is based on the worm algorithm24

extending it for general O(N > 2) models. The first step is to
expand Eq. (12) in strong coupling:

Z =
∫
D �φ

∏
b

∏
α

∑
nα

b

1

nα
b !

(
φα

ib
φα

i ′b

)nα
b

∏
j

e−V (| �φj |2) (A1)

with D �φ ≡ ∏
i d

Nφi . Here, {b} represent the set of all lattice
bonds, the site ib is linked to the site i ′b through the bond b,
the index α ∈ {1, . . . ,N} labels the N components of each
�φi , and V (s) = μs + gs2 is the local onsite interaction. Next,
we integrate out the fields �φi . This can be achieved by noting
that now the functional integral factorizes into a product of
single-site integrals, such that

Z =
∑
{nα

b }

∏
b,α

1

nα
b !

∏
i

W
({

kα
i

})
, (A2)

where we define kα
i = ∑′

b(i) n
α
b as the sum over all bonds b

emanating from site i. The single-site weight is then

W
({

kα
i

}) =
∫

dNφi

∏
α

(
φα

i

)kα
i e−V (| �φ|2). (A3)

We may write

W
({

kα
i

}) =
∫

dNφi

∫ ∞

0
ds e−V (s) δ(s − | �φi |2)

∏
α

(
φα

i

)kα
i

= 1

2π

∫ ∞

0
ds e−V (s)

∫ ∞

−∞
dλ eiλs

∏
α

I
(
kα
i

)
, (A4)

where

I
(
kα
i

) =
∫ ∞

−∞
dφα

i e−iλ(φα
i )2 (

φα
i

)kα
i

= (iλ)−(kα
i +1)/2 �

(
1

2
+ 1

2
kα
i

)
δkα

i ,even. (A5)
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We now encounter the integral∫ ∞

−∞
dλ eiλs (iλ)−J = 2 sJ−1 �(1 − J ) sin(πJ ), (A6)

where J = 1
2 (N + Ki) and Ki = ∑

α kα
i . The above integral

converges only if 0 < ReJ < 1, however, our initial expres-
sion in Eq. (A3) is clearly convergent for all possible values
of J , which licenses us to analytically continue the above
expression, using the identity �(J ) �(1 − J ) = π/ sin(πJ ).
We then obtain

W
({

kα
i

}) = Q

(
1

2
N + 1

2
Ki

) ∏
α

�

(
1

2
+ 1

2
kα
i

)
δkα

i ,even

(A7)

with

Q(J ) = 1

�(J )

∫ ∞

0
ds e−V (s) sJ−1. (A8)

The one-dimensional integrals Q(J ) can be evaluated nu-
merically to high precision and tabulated prior to the QMC
simulation. In this representation, the partition function sum
runs over all integer values of the bond’s strength nα

b , replacing
the �φi field integrations. The sum is restricted only to closed-
path loops due to constraint δkα

i ,even.
The updating procedure closely follows the worm algo-

rithm, considering an extended partition function

ZG =
∑
i,j

〈
φα

i φα
j

〉
. (A9)

The field’s insertion φα
i φα

j breaks the closed-path condition by
adding a single open loop. The open loop’s head is located at
i and its tail at j .

For simplicity, we choose the open loop to be one of the
flavors α. The updating procedure consists of two elementary
steps. The first move is a shift move in which we move the
worm’s head to one of the neighboring sites connected with the
bond b. During the move, we either increase or decrease the
bond’s strength nα

b . The second move is a jump move, which is
relevant only for closed loops where the head and the tail are
located in the same site. We choose one of the lattice sites and
jump with the head tail pair to that site. The QMC acceptance
ratios can be easily derived from Eqs. (A7) and (A2) similarly
to the argument in Ref. 24. We tested the correctness of our
numerical implementation by comparing with previous QMC
simulation and to analytic results of the Gaussian model limit
of Eq. (12) (g = 0). The results agree within the statistical
errors.

We also provide an explicit expression for the sampling
of the scalar susceptibility in the closed-path representation.
The operator insertion �φ 2

i effectively introduces a factor of
s to the integrand in Eq. (A4), in which case Eq. (A8) is
replaced by Ji Q(Ji + 1). Inserting ( �φ 2

i )2 introduces a factor
of s2 and results in Ji(Ji + 1) Q(Ji + 2). Thus, the insertion
�φ 2
i

�φ 2
j yields

〈 �φ 2
i

�φ 2
j

〉 =
〈
JiJj Q(Ji + 1) Q(Jj + 1)

Q(Ji) Q(Jj )

〉
(i �= j )

=
〈
Ji(Ji + 1) Q(Ji + 2)

Q(Ji)

〉
(i = j ). (A10)

FIG. 13. (Color online) The first five vectors vn(ν) corresponding
to the largest singular values in W .

APPENDIX B: ANALYTIC CONTINUATION
OF IMAGINARY-TIME QMC DATA

1. General formulation

We use imaginary-time action (12) in the QMC simulations
in order for the QMC weights to be real and positive,
avoiding the dynamical sign problem. The real frequency,
dissipative response function A(ν) can be obtained by numer-
ical analytic continuation,41 which amounts to inverting the
equation

G(iωm) =
∫ ∞

0

dν

π

2ν

ω2
m + ν2

A(ν). (B1)

The kernel

K(m,ν) = 1

π

2ν

ω2
m + ν2

(B2)

needs to be inverted in order to formally obtain

A(ν) = K−1G(iωm). (B3)

Unfortunately, K is an ill-conditioned operator. The inversion
is extremely sensitive to inevitable statistical noise in G.

The stability of the inversion problem can be analyzed by
the singular value decomposition (SVD)

K = UWV T , (B4)

where U and V are unitary matrices whose rows are the
eigenvectors 〈un| and 〈vn|. The first five eigenvectors vn(ν)
are plotted in Fig. 13.W is diagonal with real, non-negative
SVD eigenvalues wn. These are plotted on a logarithmic scale
as a function of n in Fig. 14. W has up to N nonzero
singular values, where N is the number of QMC data
points.

From Eq. (B4), the pseudoinversion of K is given by

K̄−1 = V W̄−1UT . (B5)

Here, W̄ is a square diagonal matrix which contains only the
nonzero eigenvalues wn �= 0.
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FIG. 14. (Color online) SVD analysis of the numerical analytical
continuation. n labels the SVD eigenmodes. The filled circles are the
rapidly decreasing SVD eigenvalues of K , denoted wn. Magnitudes
of projections of noisy data, for the test model [Eq. (B13)], are
denoted by |p̃n|. σ is the variance of the artificial noise added to
the Matsubara data. The breakpoints n∗ denote the mode index where
noise dominates the signal, and the projections start to flatten. The
values of n∗ increase when the noise level decreases.

The SVD eigenvalues wn can be calculated by diagonaliz-
ing the Hermitian matrix (KK†)ij :

(KK†)ij =
∫ ∞

−∞

dω

2π

ω2(
ω2

i + ω2
)(

ω2
j + ω2

)

= 1

2(|ωi | + |ωj |) = β

4π

1

|i| + |j | . (B6)

Since G(τ ) is real, Gn = G−n, and by projecting out the zero
mode, we may restrict both i and j to be positive integers in
Eq. (B6).

Matrices of the form

Hij (τ,θ ) = τ i+j

i + j + θ
, (i,j ) ∈ {0, . . . ,N} (B7)

are known as Hilbert matrices. We are interested in the case
of τ = 1 and θ = 2. An exact bound on the dependence of
the smallest eigenvalue on the matrix size was obtained by
Ref. 42:

w(N)
min ∼ κ

√
N (1 +

√
2)−4N [1 + o(1)],

ln
(
w(N)

min

) ∼ −3.525 49 N + 0.5 ln N + 0.7909, (B8)

with

κ = 215/4 π3/2

(1 + √
2)4

= 2.205 385 · · · . (B9)

As we see, the minimal eigenvalue decreases faster than
exponentially with N , which is consistent with the behavior
found numerically in Fig. 14.

2. Pseudoinversion by truncated SVD

In practice, the noisy QMC data, called G̃, can be decom-
posed as

G̃ = Gsig + ξ, (B10)

where Gsig is the true signal, and ξ is a random noise. The
noise interferes with the numerical inversion of Gsig. To see

this, the data G̃ are projected onto the eigenvectors un, which
yields the real numbers

p̃n = 〈un|G̃〉 = 〈un|Gsig〉 + 〈un|ξ 〉
≡ psig

n + ξn. (B11)

The pseudoinversion (B5) yields

A(ν) =
∑

n

p̃n

wn

vn(ν) =
∑

n

(
p

sig
n

wn

vn(ν) + ξn

wn

vn(ν)

)
.

(B12)

Since Gsig is the analytic continuation of a normalizable
function,

∑
n |psig

n /wn|2 must converge. This implies that
|psig

n | < wn at large n. On the other hand, ξn is not the analytic
continuation of a normalizable function, and therefore is not
necessarily bounded by wn. For white noise, ξn are random
numbers whose variance is independent on n.

Therefore, one can readily identify a breakpoint n∗,
which for n < n∗, p̃n ≈ p

sig
n , and for n > n∗, p̃n ≈ ξn. The

breakpoint serves to truncate the inversion and eliminate the
dominance of noise terms. It can also allow an estimate of the
truncation error.

Let us illustrate this procedure by a test model

Amodel(ν) = ν3(e−(ν−�)2 + e−(ν+�)2
). (B13)

In Fig. 14 we present the projections to the un basis of the test
model in Eq. (B13). wn and |psig

n | rapidly decay, as expected
from the Riemann-Lebesgue lemma for a smooth spectral
function. We add an artificial white noise with increasing
variance σ . As expected, the (approximately) exponential
decay of p̃n stops abruptly at n∗, where |p̃n∗ | ≈ |ξn∗ |.

As seen in Fig. 14, the breakpoints n∗ are chosen where the
curves average slope flattens abruptly. n∗ increase as the noise
is reduced.

A truncated SVD inversion provides a controlled approxi-
mation for the spectral function:

ÃSVD(ν) �
nSVD∑
n=1

p̃n

wn

vn(ν). (B14)

The modes higher than nSVD are discarded because their
coefficients (which only contribute random noise to the
spectral function) blow up exponentially with n. If we know
the bound on the signal’s convergence rate |psig/wn|2 < ce−αn,
we can estimate the error in the norm as

||δÃ||2 =
N∑

n=nSVD+1

∣∣∣∣p
sig
n

wn

∣∣∣∣
2

<
p̃2

nSVD

αw2
nSVD

. (B15)

Thus, the smaller the noise level, the larger nSVD and therefore
the smaller the error in the spectral function [Eq. (B15)].

In Fig. 15, we show the SVD analysis of the QMC data
for the real O(2) model. The projections p̃n flatten roughly at
n∗ ≈ 11, as they behave in the test model in Fig. 14.

ÃSVD can exhibit spurious oscillations due to the missing
modes {vn(ν),n > nSVD}. This effect, which is part of the
error ||δÃ||2, is similar to spurious oscillations obtained by
a truncated inverse Fourier transform. In cases where it is
known that A(ν) > 0 (as for the scalar susceptibility and
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FIG. 15. (Color online) Comparison between the projections pn

(solid lines) and the singular values of the kernel wn (circles) for the
high-quality QMC data for the O(2) model. The linear system size is
L = 120, and coupling constant is δg = 1.17%. We see that due to
the effect of the noise, p̃n flattens at the breakpoint at n∗ ≈ 11.

real conductivity), the SVD truncation can produce unsightly
negative regions.

In Fig. 16, we plot the ÃSVD(ν) for increasing values of
nSVD. We see that indeed the reconstructed solution converges
as we increase n and remains stable up to n ≈ 11, which
is where we locate the breakpoint in the SVD analysis. For
n = 12, the inverted errors dominate the spectral function,
which yields a wildly erroneous result.

3. Maximum entropy and other regularizations

The QMC simulation produces noisy variables G(iωm),
whose covariance matrix is defined as

�−1 = 〈G(iωm)G(iωn)〉. (B16)

A condition for the inverted spectral function is that

χ2 = (G − KA)T � (G − KA) ≈ N , (B17)

where N is the number of data points.

FIG. 16. (Color online) Analytic continuation obtained from the
first n singular values, for the QMC data of Fig. 15. We see that
spectral functions converge to until n � 11, in agreement with
assigning n∗ = 11 where p̃n starts to flatten in Fig. 15. For nSVD = 12
(dashed line), the condition p̃n < wn is violated, and the resulting
spectral function wildly differs from the converged function since it
is dominated by random amplified errors.

As we have seen before, since K has very small SVD
eigenvalues, there is a large family of functions A(ν) which
have the same χ2/N ≈ 1. The SVD truncation is one way to
choose among these functions, but the result may have spurious
oscillations, and turn negative in some regions. To improve
on this approximation, one needs to impose extra conditions
on A(ν), which amounts to extrapolation of Eq. (B14)
to include higher SVD modes. A common approach, which
ensures positivity, is to introduce a cost functional f (A), and
to variationally minimize

Q = 1
2χ2 + λf (A) (B18)

with respect to A. This minimization lifts the degeneracy in χ2,
and depends critically on the choice of λ. λ can be chosen by
the L-curve method,43 which is analogous to the determination
of the breakpoint n∗ described above.

Two cost functions are commonly used: (1) the “maximum
entropy” (MaxEnt),41

f MaxEnt(A) = −
∑

i

A(νi) ln A(νi), (B19)

which is based on a Bayesian statistics, and (2) the “Laplacian”

f Lap(A) =
∑

i

d2A(ν)

dν2

∣∣∣∣
ν=νi

, (B20)

which penalizes unsmooth spectral functions (or long real-time
decay). In these functionals, the real frequency ν is discretized
as a finite sequence νi .

A different strategy is the stochastic regularization.44,45 In
this method, the spectral function is obtained by averaging
over a large sample of randomly chosen solutions consistent
with χ2/N ≈ 1. First, a random positive spectral function
is generated. Then, the goodness of fit is minimized using
the steepest-descent method while imposing positivity at each
step. This procedure is repeated until χ2/N ≈ 1. Averaging
over the random initial conditions leads to the final spectral
function.

A complementary approach is to estimate the pole structure
of A(ν), using a Padé approximation. G̃ is fitted to a rational
function

G̃(iωm) = Pnp
(iωm)/Qnp

(iωm), (B21)

where Pnp
and Qnp

are polynomials of order np. Since G̃
is an analytic function of iωm, we can perform the analytic
continuation explicitly by taking Ã(ω) = ImG̃(iωm → ω +
i0+). For the best inversion, one can increase the value of np

until χ2/N ≈ 1. Further increase of np leads to overfitting and
the appearance of spurious poles. np needs to be determined,
with similar considerations to those determining nSVD.

In Fig. 17, we show a comparison of the different regular-
ization approaches for the same QMC data as used in Fig. 16.
We note that the position of the Higgs peak varies only slightly
between different analytic continuation methods, but functions
differ somewhat in the higher-frequency structure.

As a final note, we comment on the form for the kernel
K(iω,ν) for QMC simulation with discretized imaginary-time
axis. In this case, the imaginary-time axis gets a discrete set of
values τi = �τ × i with i ∈ {0, . . . ,M − 1} with �τ = β/M .
The corresponding Matsubara frequencies are ωm = 2πn/β
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FIG. 17. (Color online) Comparison of different regularization
methods. Note that the Higgs peak position varies only slightly
between the different methods, described in Sec. B 3.

with m ∈ {0, . . . ,M − 1}. The kernel is given by a sum over
all aliases of the original kernel:

K̃(iωm,ν) = 1

π

∞∑
k=−∞

2ν

[2π (n + Mk)/β]2 + ν2

= β

Mπ

sinh(βν/M)

cosh(βν/M) − cos(2πm/M)
. (B22)

4. Spherical averaging

A desirable feature of Eq. (1) and its discretized approx-
imation (12) is the Euclidean space-time symmetry. As a
consequence, it is not necessary to single out any one specific
direction as the “time” direction. In particular, ignoring
weak anisotropies arising from the underlying cubic lattice,
correlation functions such as those in Eq. (13) are spherically
symmetric and only depend on the Euclidean distance from
the point r = (τ,x,y) to the origin. This is especially correct
near the QCP, where the large correlation length ensures that
the correlation function at long distances is insensitive to the
discrete nature of the lattice.

This observation suggests that one may reduce the statistical
noise by performing a spherical average over all possible time
directions. In this method, the correlation function at time
τ is obtained by averaging over all the points within a thin
spherical shell between radius r = τ and r = τ + δτ . This
leads to a large enhancement in statistics: for a L × L × L

system, O(L3) data points are used instead of the O(L) points
typically used in computing the correlation function. In order to
implement this method accurately, it is necessary to account for
the weak anisotropy arising from the underlying cubic lattice.
This is done by projecting out the lowest cubic anisotropies
prior to the averaging.

The bulk of the data presented in this paper were obtained
by averaging over the three principal axes only, and not
taking advantage of the full spherical averaging. However,
preliminary numerical tests show that spherical averaging
does indeed yield high-quality results while requiring shorter
simulations. This effect may be significant in light of the high

sensitivity of numerical analytic continuation to noise. We
intend to develop this strategy further in future work.

APPENDIX C: COMPLEX CONDUCTIVITY

In this section, we will derive the complex conductivity
for the disordered and ordered phases in weak coupling. To
one-loop order, the paramagnetic response in the disordered
phase is given by23

�P
xx(p) =

∫
d3q

(2π )3

4q2
x

q2 + �2

1

(q + p)2 + �2
, (C1)

where � is the renormalized single-particle gap in the
disordered phase and p = (ωm,0,0). Introducing the Feynman
parameter x and shifting q → q − xp,

�P
xx(p) =

∫ 1

0
dx

∫
d3q

(2π )3

4q2
x

[q2 + x(1 − x)p2 + �2]2
. (C2)

Performing the q integration up to a cutoff �, we obtain

�P
xx(p) = 2

3π2

∫ 1

0
dx

[
� − 3π

4

√
p2x(1 − x) + �2

]
(C3)

up to corrections that vanish as � → ∞. To obtain the full
response, we must subtract the diamagnetic part. Since the
superfluid stiffness vanishes in the disordered phase, this
is given by �D

xx = �P
xx(p → 0). This cancels the linearly

divergent term, to yield

�xx(p) = − 1

2π

∫ 1

0
dx [

√
p2x(1 − x) + �2 − �] (C4)

= �

4π
− i

4�2 + p2

16πp
ln

(
2� − ip

2� + ip

)
. (C5)

We analytically continue by taking p → −iω + ε, resulting
in

�xx(ω) = �

4π
+ 4�2 − ω2

16πω
ln

(
2� − ω − iε

2� + ω + iε

)
. (C6)

The conductivity is then

σ (ω) = 1

iω
�xx(ω) = Reσ (ω) + iImσ (ω)

= 1

ω
Im�xx(ω) − i

ω
Re�xx(ω). (C7)

We note that Reσ (ω) vanishes for ω < 2�. Above the
threshold, we obtain

Reσ (ω) = ω2 − 4�2

16ω2
(ω > 2�). (C8)

The imaginary part is given by

Imσ (ω) = 1

16πω2

[
(4�2 − ω2) ln

∣∣∣∣2� − ω

2� + ω

∣∣∣∣ + 4�ω

]
. (C9)

In the ordered phase, the paramagnetic response is given
by5,6

�P
xx(p) =

∫
d3q

(2π )3

4q2
x

q2 + m2

1

(q + p)2
. (C10)
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Here, m is the Higgs mass. As before, we introduce the
Feynman parameter x and shift q → q − xp:

�P
xx(p) =

∫ 1

0
dx

∫
d3q

(2π )3

× 4q2
x

[q2 + (1 − x)(xp2 + m2)]2
. (C11)

Performing the q integration, we obtain

�xx(p) = ρs + m(3m2 + 5p2)

24πp2
− i

(p2 + m2)2

16πp3
ln

(
m − ip

m + ip

)
.

(C12)

In the final expression, we absorbed the constant term (includ-
ing the linear divergence) and the diamagnetic contribution
into the superfluid stiffness ρs .

After analytic continuation, the real conductivity is given by

Reσ (ω) = πρsδ(ω) + (ω2 − m2)2

16ω4
�(ω − m), (C13)

with ρs being the superfluid stiffness. The imaginary part of
the conductivity is

Imσ (ω) = ρs

ω
+ (m2 − ω2)2

16πω4
ln

∣∣∣∣m − ω

m + ω

∣∣∣∣
+ m(3m2 − 5ω2)

24πω3
. (C14)
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29A. Rançon, O. Kodio, N. Dupuis, and P. Lecheminant, Phys. Rev.

E 88, 012113 (2013).
30K. Beach, arXiv:cond-mat/0403055.
31S. Sachdev, Phys. Rev. B 59, 14054 (1999).
32A. Milchev, K. Binder, and D. Heermann, Z. Phys. B 63, 521

(1986).
33M.-C. Cha, M. P. A. Fisher, S. M. Girvin, M. Wallin, and A. P.

Young, Phys. Rev. B 44, 6883 (1991).
34There is ambiguity in the literature regarding the sign convention of

the reactive part of the optical conductivity. Here, positive/negative
values reflect inductive/capacitive behavior. This is opposite to the
convention often used in electric circuits.

35M. Stone and P. R. Thomas, Phys. Rev. Lett. 41, 351 (1978).
36D. P. Arovas and J. A. Freire, Phys. Rev. B 55, 1068 (1997).
37A. Mihlin and A. Auerbach, Phys. Rev. B 80, 134521 (2009).
38W. Witczak-Krempa, E. Sorensen, and S. Sachdev,

arXiv:1309.2941.
39K. Chen, L. Liu, Y. Deng, L. Pollet, and N. Prokof’ev,

arXiv:1309.5635.
40M. Swanson, Y. L. Loh, M. Randeria, and N. Trivedi,

arXiv:1310.1073.
41M. Jarrell and J. Gubernatis, Phys. Rep. 269, 133 (1996).
42G. A. Kalyabin, Funct. Anal. Appl. 35, 67 (2001).
43P. C. Hansen and D. P. O’Leary, SIAM J. Sci. Comput. 14, 1487

(1993).
44A. S. Mishchenko, N. V. Prokof’ev, A. Sakamoto, and B. V.

Svistunov, Phys. Rev. B 62, 6317 (2000).
45A. W. Sandvik, Phys. Rev. B 57, 10287 (1998).

235108-15

http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.39.2344
http://dx.doi.org/10.1103/PhysRevB.39.2344
http://dx.doi.org/10.1103/PhysRevLett.100.050404
http://dx.doi.org/10.1103/PhysRevLett.100.050404
http://dx.doi.org/10.1103/PhysRevB.84.174522
http://dx.doi.org/10.1103/PhysRevB.84.174522
http://dx.doi.org/10.1103/PhysRevB.81.054512
http://dx.doi.org/10.1038/nature11255
http://dx.doi.org/10.1103/PhysRevB.86.054508
http://dx.doi.org/10.1103/PhysRevLett.109.010401
http://dx.doi.org/10.1103/PhysRevLett.110.140401
http://dx.doi.org/10.1103/PhysRevLett.110.140401
http://dx.doi.org/10.1103/PhysRevLett.110.170403
http://dx.doi.org/10.1103/PhysRevLett.110.170403
http://dx.doi.org/10.1103/PhysRevB.39.2756
http://dx.doi.org/10.1103/PhysRevLett.83.800
http://dx.doi.org/10.1103/PhysRevLett.83.800
http://dx.doi.org/10.1038/nphys1738
http://dx.doi.org/10.1103/PhysRevB.37.2353
http://dx.doi.org/10.1088/0022-3719/2/11/315
http://dx.doi.org/10.1103/PhysRevLett.24.1346
http://dx.doi.org/10.1103/PhysRevLett.24.1346
http://dx.doi.org/10.1088/0022-3719/2/9/312
http://dx.doi.org/10.1088/0022-3719/2/9/312
http://dx.doi.org/10.1103/PhysRevLett.65.1068
http://dx.doi.org/10.1103/PhysRevLett.106.205301
http://arXiv.org/abs/1304.7087
http://dx.doi.org/10.1103/PhysRevLett.64.587
http://dx.doi.org/10.1103/PhysRevLett.64.587
http://dx.doi.org/10.1103/PhysRevB.56.8714
http://dx.doi.org/10.1103/PhysRevLett.87.160601
http://dx.doi.org/10.1103/PhysRevLett.87.160601
http://dx.doi.org/10.1088/0305-4470/34/40/302
http://dx.doi.org/10.1088/0305-4470/32/36/301
http://dx.doi.org/10.1088/0305-4470/32/36/301
http://dx.doi.org/10.1103/PhysRevLett.95.180603
http://dx.doi.org/10.1103/PhysRevA.77.015602
http://dx.doi.org/10.1103/PhysRevE.88.012113
http://dx.doi.org/10.1103/PhysRevE.88.012113
http://arXiv.org/abs/cond-mat/0403055
http://dx.doi.org/10.1103/PhysRevB.59.14054
http://dx.doi.org/10.1007/BF01726202
http://dx.doi.org/10.1007/BF01726202
http://dx.doi.org/10.1103/PhysRevB.44.6883
http://dx.doi.org/10.1103/PhysRevLett.41.351
http://dx.doi.org/10.1103/PhysRevB.55.1068
http://dx.doi.org/10.1103/PhysRevB.80.134521
http://arXiv.org/abs/1309.2941
http://arXiv.org/abs/1309.5635
http://arXiv.org/abs/1310.1073
http://dx.doi.org/10.1016/0370-1573(95)00074-7
http://dx.doi.org/10.1023/A:1004180718725
http://dx.doi.org/10.1137/0914086
http://dx.doi.org/10.1137/0914086
http://dx.doi.org/10.1103/PhysRevB.62.6317
http://dx.doi.org/10.1103/PhysRevB.57.10287



