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p6 chiral resonating valence bonds in the kagome antiferromagnet
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The kagome Heisenberg antiferromagnet is mapped onto an effective Hamiltonian on the star superlattice
by contractor renormalization. A comparison of ground-state energies on large lattices to density matrix
renormalization group justifies truncation of effective interactions at range 3 (36 sites). Within our accuracy,
magnetic and translational symmetries are not broken (i.e., a spin liquid ground state). However, we discover
doublet spectral degeneracies which signal the onset of p6 chirality symmetry breaking. This is understood
by a simple mean field analysis. Experimentally, the p6 chiral order parameter should split the optical phonon
degeneracy near the zone center. The addition of weak next to nearest neighbor coupling is discussed.
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The antiferromagnetic Heisenberg model on the kagome
lattice,

H = J
∑

〈ij〉
Si · Sj , J > 0, S = 1

2
, (1)

is a much studied paradigm for frustrated quantum magnetism.
In the classical approximation S → ∞, this model exhibits
macroscopic ground-state degeneracy which encumbers semi-
classical approximations. There is evidence, both numerical
and experimental [in ZnCu3(OH)6Cl2 (Ref. 1)], that quantum
fluctuations lead to a paramagnetic “spin liquid” ground
state.2

Exact diagonalization (ED) studies,3 and ED in the vari-
ational dimer singlet subspace,4 have not approached the
thermodynamic limit due to severe computer memory limi-
tations. Many methods have proposed paramagnetic ground
states, including lattice symmetry breaking “valence bond
crystals,”5–8 algebraic spin liquids,9 and a time reversal
symmetry breaking, chiral spin liquid.10

To date, the lowest energy on long cylinders has been found
by the density matrix renormalization group (DMRG).11,12 The
DMRG ground state is a translationally invariant singlet, with
apparently no broken translational or rotational symmetries.
This state is consistent with a resonating valence bond (RVB)
state13 with a spin gap �S=1 = 0.13 (henceforth we express
energies in units of J ) and Z2 topological order.12,14 It
is still unclear, however, what are the low-energy singlet
excitations of this state,11,15 and whether or not any other
symmetry of H may be broken in the infinite two-dimensional
limit.

This Rapid Communication reports a surprising result:
The thermodynamic ground state appears to break reflection
symmetries, and to possess two-dimensional p6 chirality (not
to be confused with “spin chirality” which also breaks time
reversal symmetry).10 Our conclusion is obtained by contractor
renormalization (CORE)16 with 12-site star blocking (see
Fig. 1). The star scheme is found to reach sufficient accuracy
with range-3 (36 sites) interactions. This is evidenced by
comparing ground-state energies of the effective Hamiltonian
H CORE3 to high-precision DMRG on large lattices. The small

modulation of bond energies is consistent, within our accuracy,
with a translationally invariant singlet state as deduced by
DMRG.11,12

H CORE3 is diagonalized on up to 27 stars (effectively
324 kagome sites). The spectra exhibit doublet degeneracies
between states with opposite parity under reflection.17 These
signal an unexpected spontaneous symmetry breaking in
the thermodynamic limit into a chiral ground state. This
chirality is understood as the effect of three-star interactions.
Classical mean field theory on the effective Hamiltonian
explains this symmetry breaking. A two-dimer chirality order
parameter is defined on the microscopic kagome model. We
propose an experimental signature of this broken symmetry
in the phonon spectrum: a splitting of symmetry-protected
degeneracy between two zone center optical modes. Finally,
we add weak ferromagnetic next nearest neighbor interactions
J2, and find that it eliminates the chirality at J2 ≈ −0.1.

CORE procedure. Previous CORE calculations for the
kagome model18,19 started with up-triangle blocking, and did
not reach sufficient convergence at range 3. Here we use
much larger and more symmetric blocks of 12-site (“Star of
David”) stars which form a triangular superlattice. In each star,
we retain just the two degenerate singlet ground states |Li〉
and |Ri〉, depicted in Fig. 1, which form a pseudospin-1/2

FIG. 1. (Color online) The CORE-blocking scheme on the
kagome lattice. R and L denote the two pinwheel ground states of the
12-site stars, and the arrows (pseudospins) denote the symmetrized
Ising basis which spans the reduced Hilbert space of H CORE [see
Eq. (2)].
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basis:

|↑i〉 = 1√
2 + 1/16

(|Ri〉 + |Li〉),
(2)

|↓i〉 = 1√
2 − 1/16

(|Ri〉 − |Li〉).

Note that the two states are C6 invariant, and have opposite
parity under all D6 reflections.

The CORE effective Hamiltonian on a superlattice of size
Ns stars is defined by the cluster expansion

H CORE =
Ns∑

i=1

h
(1)
i +

∑

i1i2

h
(2)
i1,i2

+ · · · +
∑

i1,...,iN

h
(Ns )
i1,...,iNs

,

(3)
h(n)

α ≡ H (n)
α −

∑

m<n

∑

β(m)∈α(n)

h
(m)
β .

Here β(m) is a connected subcluster of size m in a cluster
α(n) of size n stars, and h(n) is defined to be an interaction of
range n. The operators H (n)

α are constructed by ED of Eq. (1)
on a kagome cluster α:

H (n)
α =

2n∑

ν

εα
ν

∣∣�̃α
ν

〉〈
�̃α

ν

∣∣. (4)

Here (εα
ν ,�α

ν ) are the exact 2n lowest singlet energies and wave
functions. The states |�̃ν〉 are an orthogonal basis constructed
by sequential projections of |�α

ν 〉,ν = 1,2, . . . ,2n onto the
pseudospin states. After projection, the states are orthogonal-
ized sequentially by using the Gram-Schmidt procedure.

If interactions of all ranges n � Ns are included, then
H CORE has the identical low-energy singlet spectrum as Eq. (1)
on the equivalent kagome lattice. However, the ED cost to
compute h(n) grows exponentially with n. Thus, the success of
CORE depends on the ability to truncate the cluster expansion
at feasible n while maintaining sufficient accuracy in the
truncated Hamiltonian.

The error in the ground-state energy δE
COREn

0 can be
computed by comparison to high-precision DMRG on large
lattices with m > n stars. This error should be much smaller
than the important interactions in H COREn .

Lattice translations. Our choice of stars for the reduced
Hilbert space nominally breaks lattice translational symmetry
as seen in Fig. 1. The microscopic spin correlations are
computed by a functional differentiation of the CORE ground-
state energy with respect to source terms.20 In principle,
one must compute the effective interactions to all ranges to
restore full translational symmetry. Nevertheless, symmetry
breaking artifacts decrease with the truncation range n. We
can therefore identify any spontaneous translational symmetry
breaking which significantly exceeds the truncation error.

CORE range 2. We start with the lowest-order truncation at
range 2. The general form of the two-star interactions allowed
by lattice reflection symmetries is

H CORE2 = Nc0 + h
∑

i

σ z
i +

∑

〈ij〉
J ασα

i σ α
j , (5)

where i labels sites, and 〈ij 〉 nearest neighbor bonds on the
triangular lattice. σα , α = x,y,z, are Pauli matrices.

TABLE I. Parameters of the CORE range-2 Hamiltonian, by exact
diagonalization and second order perturbation theory (Ref. 21).

c0 h J x J y J z

ED −6.26391 0.13818 0.00713 −0.00105 −0.00045
PT −5.268 0.046 0 −0.00025 −0.00175

The parameters derived from the lowest four eigenstates of
24 spins are computed by the Lanczos algorithm, and are listed
in Table I. It is instructive to compare the ED parameters to the
second order perturbation theory (PT) in the interstar bonds,
as was calculated by Syromyatnikov and Maleyev.21 Second
order PT in the connecting bonds is not very accurate when the
connecting bonds have exchanges equal to 1. For example, PT
misses the important J x interactions. The dominant interaction
of H CORE2 is the field h = 0.138, which would yield in the
thermodynamic system a ferromagnetic ground state polarized
in the |↓〉 direction. In terms of kagome spins, the ground state
would be a product of antisymmetric superposition of pinwheel
states, with local ↑ fluctuations generated by the xx,yy terms.

Within CORE2, the connecting bonds energy is Einter =
−0.212 83 versus the intrastar bonds at Eintra = −0.2225.
Interestingly, the modulation is already diminished from 100%
to 4.3% with range-2 interactions.

How accurate is H CORE2 ? Unfortunately, it is not as
accurate as is needed. The exact ground-state energy per site of
H for 36 sites is EED

0 = −0.412 76 while the CORE2 energy
per site for three stars is E

CORE2
0 = −0.4277. The error in

energy per site on the triangular lattice is 72|EED
0 − E

CORE2
0 | =

1.0757. This amounts to a large correction, just from range 3,
of 780% of the CORE2 field term h = 0.138 (see Table I).
Hence, we must add the range-3 interactions.

CORE range 3. To obtain H CORE3 we compute the interac-
tions h(3) on the three-star triangular cluster.22 This required
ED of Eq. (1) of 36 spins with open boundary conditions
(OBCs). For verification, we ran both a standard Lanczos
routine on a supercomputer, and the memory-economical
Lanczos singular value decomposition (SVD) routine23 on a
desktop computer. Adding contributions from ranges 1 to 3 we
obtain the following effective Hamiltonian:

H CORE3 = Nc0 +
∑

i

hσ z
i +

∑

〈ij〉,α
Jασα

i σ α
j

+
∑

〈ijk〉�,α

Jzαασ z
i σ α

j σ α
k , (6)

where 〈ijk〉� label nearest neighbor triangles on the triangular
lattice. The interaction parameters are listed in Table II. We do
not list terms that cancel in the superlattice summation with
periodic boundary conditions (PBCs).

The magnitude of the truncated interactions is estimated
by subtracting the ground-state energy of H CORE3 from that
of high-precision DMRG24,25 on clusters of ranges up to 15
stars. In Table III we see that these interactions contribute
less than <0.004 per site. If we extrapolated CORE3 ground-
state energy to the thermodynamic limit, we get −0.447
which underestimates the extrapolated DMRG result −0.439
(Ref. 12) by at most −0.008 per site. When we compare this
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TABLE II. Interaction parameters of CORE range 3, with three
values of J2.

J2 J2 = 0 (kagome) J2 = +0.1 J2 = −0.1

c0 −5.24629 −5.17068 −5.48631
h −0.069224 0.059323 −0.362797
Jx −0.009028 −0.015421 0.001123
Jy −0.011879 0.001832 −0.017699
Jz 0.021056 0.003686 0.020141
Jzxx −0.027920 −0.019649 −0.009524
Jzyy 0.004550 −0.004749 0.002394
Jzzz 0.000660 −0.001410 0.010495

estimate of the total magnitude of neglected interactions to the
size of the dominant fields in H CORE3 , which are h and Jxzz, we
estimate that total neglected terms of all ranges >3 are at most
of order 14% of the most important interaction couplings.

The effects of the truncated interactions on the ground state
depend on the energy spacing and frustration of H CORE3 .
We shall soon see that the latter yields a nonfrustrated
canted ferromagnet, and excitation energies of magnitude
0.1. Therefore the neglected interactions of order 0.008 are
not expected to modify the ground-state correlations and
symmetry breaking of H CORE3 . Thus, we believe that CORE
truncation at range 3 is sufficiently accurate to predict the
correct thermodynamic phase.

p6 chirality. The ED spectrum of H CORE3 is evaluated on
lattices of up to Ns = 27 stars (324 kagome sites) with PBC.
The most striking feature on lattices larger than Ns = 9 is
the emergence of ground-state degeneracy of two singlets
with opposite parity under reflections. In the pseudospin
representation, even (odd) parity states include only an
even (odd) number of stars with antisymmetric |↓〉 states.
These degeneracies signal a spontaneous reflection symmetry
breaking p6m → p6 in the thermodynamic limit.

A mean field (MF) energy of H CORE3 in spin-1/2 coherent
states |�i〉 is

EMF = Nc0 + h
∑

i

cos θi +
∑

〈ij〉,α
Jα�α

i �α
j ,

+
∑

〈ijk〉,α
Jzαα cos θi�

α
j �α

k , (7)

where �i = (sin θi cos φi, sin θi sin φi, cos θi). In Table II we
see that for J2 = 0, the dominant couplings are the field h and
the Jz and Jzxx exchanges. The last coupling is responsible
for the chiral symmetry breaking, as it pulls the spins in the
±x̂ direction.

TABLE III. Ground state energies per site of H CORE3 and
comparison to DMRG (Ref. 26) on equivalent kagome clusters (with
OBC).

Number of stars E
CORE3
0 EDMRG

0 Error

2 × 2 −0.418452 −0.417213 −0.001239
2 × 3 −0.423953 −0.422336 −0.001617
3 × 4 −0.431150 −0.428046 −0.003104
3 × 5 −0.432688 −0.429191 −0.003497

σz

σx

Ci = i i

(a)

(b)

(c)

FIG. 2. (Color online) (a) The mean field ground state of H CORE3

exhibiting 〈σ x〉 > 0 order, which corresponds to two-dimensional
chirality. (b) A typical singlet configuration in the corresponding
ground state of the kagome lattice. Notice that there is no translational
order, but that there are more pinwheel configurations of |R〉 than |L〉.
(c) The two-dimer chiral order parameter defined in Eq. (8).

Minimizing EMF, we find a ferromagnetic state depicted in
Fig. 2(a). The z polarization MMF

z = 1
2 cos θ̄ is compared to

ED in Table IV. For J2 = 0, we find that the chirality order
is substantial with 1

2 sin θ̄ = 0.424 by MF and 1
2 〈σx〉 = 0.397

by ED.
In Fig. 2(b) we depict a typical dimer configuration which

contributes to the p6 chiral RVB state. One can see the
predominance of R pinwheel chirality over L. The most local
order parameter for this chirality is the two-dimer correlation
depicted in Fig. 2(c),

Ci =
∑

d

(SdSηr (d) − SdSηl (d)), (8)

where the dimer singlet projectors are

Sd = 1/4 − Sd1 · Sd2 , (9)

and ηr (d) [ηl(d)] is the bond emanating from i at angle π/3
(2π/3) relative to the dimer bond opposing i. The two terms
in C measure parts of pinwheels of opposite chirality.

Translational symmetry. At range 3, the energy of internal
triangles E�inter = −0.686 and connecting triangles is E�intra =
−0.665 (depicted by solid and dashed lines, respectively, in
Fig. 1). This relative modulation of about 3.0% lies within the
truncation error. Thus we can affirm that CORE3 ground state

TABLE IV. Ground state z polarization of H CORE3 on a 27-star
lattice.

J2 MMF
z MED

z

0.0 0.2647 0.2257
+0.1 0.1390 0.1476
−0.1 0.5 0.4999
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FIG. 3. (Color online) Kagome phonon spectra in the p6m phase
and p6 chiral phase calculated within a nearest neighbor spring
constant model given in Ref. 28. In the top right, the dimer chiral
correlations induce a linear coupling between excess dimer density
δρd and chiral ionic displacements, as depicted by the arrows. This
adds a chiral term to the dynamical matrix which splits the degeneracy
of the optical phonons at the zone center.

is consistent with translational invariance, in agreement with
DMRG.11,12

Singlet excitations. In the 27-star lattice, the lowest singlet
excitation above the two degenerate ground states is �ES=0 =
0.28, which has a nonzero wave vector. This excitation gap
does not vary much with lattice size. Within the pseudospin
Hamiltonian, it can be understood as a local spin flip from
the ferromagnetic ground state. We note that the singlet gap is
slightly higher than two S = 1 magnons at energies ES=1 =
0.13. This conclusion differs from that obtained by ED on the
36-site PBC, which found a large number of singlets below
the spin gap.27 Since our effective Hamiltonian describes
excitations on much larger lattices, we are inclined to associate
these low singlets with the smaller PBC lattice geometry.

Experimentally, fluctuating two-dimer correlations are
tricky to observe directly. Fortunately, real compounds have
a sizable magnetoelastic coupling between the ions and
the dimer singlets. While, on average, dimer density and
bond lengths are uniform in the RVB state, dimer density
fluctuations, δρd governed by the characteristic singlet energy
scale, are linearly coupled to the ionic displacements. In Fig. 3,

the effect of a temporary excess of dimers on a triangle is
shown. In the chiral phase, imbalance between the left and
right bonds emanating out of the triangle produces a chiral
force on the ions, as depicted by the arrows. Integrating out
the dimer density fluctuations results in a chiral perturbation to
the phonon dynamical matrix.17 By symmetry, the degeneracy
between two optical modes is removed at the zone center, as
shown in Fig. 3. These phonons are polar, and therefore acces-
sible to infrared spectroscopy but not to Raman scattering.29

Finite J2. We have added next nearest neighbor interactions
with coupling J2 to Eq. (1), and calculated the parameters
of H CORE3 , as shown in Table II. For J2 = 0.1, we find the
same doublet degeneracies and chirality as for the pure model
J2 = 0.14 In contrast, for a weak negative J2 = −0.1 the
spectrum changes dramatically: The doublets are removed,
and the ground state is fully polarized in the ↑ direction. The
precise nature of this phase needs to be explored. Interestingly,
we notice that, in proximity to the parameters of Table II,
one finds the Ising antiferromagnet in the field. Its ground
state contains ferromagnetic hexagons with reversed spins in
their center. It represents the hexagonal valence bond solid
state, previously shown to have low variational energies,5 and
proposed for J2 � −0.1.30

Summary. Using CORE we arrived at an effective Hamil-
tonian, whose accuracy was determined to be sufficiently high
so as to trust its predictions for the thermodynamic limit. Its
ground state is consistent with a translationally invariant RVB
phase, but with broken p6 chiral symmetry. A two-dimer chiral
order parameter is defined, which may be numerically explored
on large lattices. Experimentally, it may be detected by splitting
of optical phonon degeneracy.
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