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We present a modified Lanczos algorithm to diagonalize lattice Hamiltonians with dramatically reduced
memory requirements, without restricting to variational ansatzes. The lattice of size N is partitioned into two
subclusters. At each iteration the Lanczos vector is projected into two sets of nsvd smaller subcluster vectors
using singular value decomposition. For low entanglement entropy See, (satisfied by short-range Hamiltonians),
the truncation error is expected to vanish as exp(−n

1/See
svd ). Convergence is tested for the Heisenberg model on

Kagomé clusters of 24, 30, and 36 sites, with no lattice symmetries exploited, using less than 15 GB of dynamical
memory. Generalization of the Lanczos-SVD algorithm to multiple partitioning is discussed, and comparisons
to other techniques are given.
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I. INTRODUCTION

Numerical (exact) diagonalizations (EDs) of quantum
many-body Hamiltonians on finite clusters are often used to
advance our understanding of larger lattices. For example,
the Contractor Renormalization group (CORE) method [1–3]
uses EDs to compute the short-range interactions of the
effective Hamiltonian. EDs on various size clusters [4] are
indispensable as unbiased tests of mean field theories and
variational wave functions. They are also used to obtain short
wavelength dynamical correlations [5] and Chern numbers of
Hall conductivity [6].

EDs commonly use Lanczos algorithms [7,8], to efficiently
converge to the low eigenstates. However, for a lattice of size
N , with m states per site, the dimension of the Lanczos vectors
(which are stored in the dynamical memory) increases as mN .
Therefore, EDs on larger lattices are prevented primarily by
memory limitations, rather than processor speed.

The central idea of this paper is to significantly reduce the
memory cost, in order to enable EDs of larger lattice sizes.
We use singular value decomposition (SVD) to compress all
Lanczos vectors into sets of 2nsvd vectors of size mN/2.

As long as entanglement entropy of the target eigenstates
obeys See � N/2 log(m) [9], one can greatly economize on
memory while maintaining high numerical accuracy. Many of
the important many-body Hamiltonians of condensed matter
(e.g., Hubbard and Heisenberg models) have short-range
interactions. As a consequence, their ground states possess
low entanglement entropy [10–13].

The idea of exploiting low entanglement entropy to com-
press wave functions by SVD is not new. This is the key to the
remarkable success of density matrix renormalization group
(DMRG) [14], which has been used extensively to obtain low-
energy state correlations of a large variety of Hamiltonians.
DMRG is equivalent to variational minimization in the space of
matrix product states [10,15,16]. Extensions to wave functions
with longer-range correlations were given by multiscale
entanglement renormalization [17]. Nevertheless, sequential
minimization may sometimes get stuck in false minima and
not converge to the ground state. Therefore Lanczos methods
are often called for to independently test the variational results.

The paper is organized as follows. We begin by defining
the SVD for a bipartite split of the lattice, and proceed
to explain in practice how to perform a single Lanczos
step followed by an SVD projection, which prevents the
expansion of the memory cost. We describe the intermediate
matrix manipulations needed for orthonormalizations and
diagonalizations. In Sec. III, we estimate the SVD truncation
error after projection, as a function of nsvd. We relate the error
estimation to the bipartite entanglement entropy See, using
a generic asymptotic form for the entanglement spectrum,
which is based on a classical gas model. We test in detail the
convergence of the Lanczos-SVD algorithm for the spin-half
Heisenberg antiferromagnet on Kagomé clusters of up to 36
sites. The entanglement spectrum asymptotics are verified
for a partitioning of a 30-site cluster (Fig. 1). Ground state
energy of 36 sites with Lanczos-SVD converges to relative
errors of 6 × 10−8 for the three-star line (Fig. 2) and 1.3 ×
10−4 for the three-star triangle (Fig. 3). We use a desktop
computer with less than 15 GB of memory and no lattice
symmetries. The results agree with our analytical estimate of
the truncation error. In Sec. VI we discuss a possible extension
of this approach to multipartitioning, and estimate the optimal
reduction in memory cost that could be achieved. We conclude
by elaborating on the relative advantages and disadvantages of
Lanczos-SVD, standard Lanczos, and DMRG.

II. THE LANCZOS-SINGULAR VALUE DECOMPOSITION
STEP

A. Bipartite singular value decomposition

Any state |ψ〉 of the full cluster (see, as an example, Fig. 4)
can be represented in a unique SVD form as

|ψ〉 =
∑

α

λα|α〉1|α〉2,
∑

α

λ2
α = 1, 〈α|α′〉i = δαα′ ,

(1)

where the λα are positive, and |α〉i are small basis vectors of
subclusters i = 1,2 (the subclusters on the two sides of the
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FIG. 1. (Color online) Partitioning of 30 sites containing 5
hexagons. Ground state entanglement entropy is See ≈ 1.27.

partitioning). Truncating the sum into the largest nsvd terms
defines the SVD projector,

Psvd|ψ〉 =
nsvd∑
α=1

λα|α〉1|α〉2, (2)

which introduces a wave-function error ε = ∑
α>nsvd

λ2
α .

B. Application of Psvd H

Lanczos-SVD economizes on the storage space by applying
an SVD projection after each application of the Hamiltonian
on the Lanczos vector,

|ψ〉′ = PsvdH |ψ〉. (3)

The projection entails the following computational steps. H

can be written as a sum of products of the two subcluster
operators,

H = H 0
1 ⊗ I2 + I1 ⊗ H 0

2 +
M∑

μ=3

H
μ

1 ⊗ H
μ

2 , (4)

FIG. 2. (Color online) Partitioning 36 sites for three stars in a
line. Ground state entanglement entropy is See ≈ 1.12.

FIG. 3. (Color online) Partitioning 36 sites. Ground state entan-
glement entropy is See ≈ 2.59.

where H 0
i includes all internal interactions of subcluster i.

H
μ

1 ⊗ H
μ

2 is a product of operators residing on both sub-
clusters. For example, a nearest-neighbor Heisenberg model
(
∑

ij Si · Sj ) with K bonds connecting the two subclusters
has M = 2 + 3K terms. For example in Fig. 3, K = 7 and
M = 23.

Acting with H on |ψ〉 produces a new state,

H |ψ〉 =
nsvdM∑
ν=1

|ν)1|ν)2, (5)

where the (nonorthonormal) small vectors are labeled by the
fused index ν = (μ,α) (i.e., |ν)i = H

μ

i |α〉i). The state [Eq. (5)]
lies outside the nsvd subspace and we need to project it back
using Psvd in order not to further expand the memory cost.

FIG. 4. (Color online) Partitioning 24 sites Kagomé cluster
for application of the Lanczos-SVD algorithm. The ground state
entanglement entropy is See ≈ 1.51.
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We first orthonormalize |ν)i by diagonalizing the Hermitian
overlap matrices (of row dimensions nsvdM)

〈ν ′|ν〉i = (V †
i DiVi)νν ′ i = 1,2

(6)

|β〉i =
∑

ν

(
D

− 1
2

i Vi

)
βν

|ν)i ,

where Di are diagonal and positive semidefinite, and Vi are
unitary. |β〉i ,i = 1,2 are orthonormal sets in their respective
spaces. Thus, the new vector is given by

H |ψ〉 =
nβnβ′∑
ββ ′

Cββ ′ |β〉1|β ′〉2

(7)
C =

√
D1V

∗
1 V

†
2

√
D2.

Now we perform an SVD on the matrix C,

C = ν2
c U

t
1	U2, (8)

where νc is the normalization. Ut
1,U

†
2 are unitary matrices that

diagonalize the Hermitian products CC† and C†C respectively.
After computing 	,U1,U2 we obtain the SVD form of the
state. 	 is diagonal and normalized to Tr	2 = 1 with positive
eigenvalues λ′

α . We keep only the nsvd largest λ′
α and obtain

PsvdH |ψ〉 =
nsvd∑
α=1

λ′
α|α〉′1|α〉′2, (9)

where the small vectors of i = 1,2 are,

|α〉′i =
nsvdM∑
ν=1

(UiD
− 1

2 Vi)αν |ν)i . (10)

III. ENTANGLEMENT SPECTRUM AND SINGULAR
VALUE DECOMPOSITION TRUNCATION ERROR

The Lanczos algorithm rotates a set of basis states |ψn〉
into the lowest-energy eigenstates with which the basis has
a finite overlap. If we choose ε to be much smaller than the
lowest relative energy gap, the Lanczos-SVD vectors converge
to states which are within ε distance from the SVD projection
of the corresponding exact eigenstate.

To get an idea of how ε(nsvd) converges, we must know
the entanglement spectrum. sα are pseudoenergies of the
entanglement spectrum defined by sα ≡ −2 ln λα . One can
model the high end of the spectrum where sα 
 1, by a power
law form

ρp(s) =
∑

α

δ(s − sα) = sp

�(p + 1)
, p > −1, (11)

which describes the many-body density of states of a classical
gas with constant (Dulong-Petit) specific heat [18]. The
corresponding entanglement entropy is easy to evaluate,

See = −
∑

α

λ2 log(λ2) =
∫ ∞

0
dssρp(s)e−s = p + 1. (12)

Choosing a high cutoff exponent sc such that

nsvd =
∫ sc

0
dsρp(s) ∼ s

p+1
c

�(p + 1)(p + 1)
, (13)

FIG. 5. (Color online) Entanglement spectrum. We extract the
asymptotic behavior of the entanglement density of states ρ(s), for
the first excited state of the five-hexagon cluster of Fig. 1. The line
depicts a pure power law at large pseudoenergies s, consistent with
the Dulong-Petit form given in Eq. (11).

we arrive at the error estimate

ε =
∫ ∞

sc

dsρp(s)e−s  s
p
c e−sc

�(p + 1)
(14)

Combining Eqs. (13) and (14), yields for See 
 1, the
asymptotic expression

ε ∼ nsvdSeee
−See(nsvd)

1
See (15)

Hence by choosing the ratio nsvd/e
See 
 1 one ensures an

exponentially small truncation error.

A. Numerical entanglement spectrum

In Fig. 5, we plot the entanglement spectrum for the
first excited eigenstate of the 30-site, five-hexagon Kagomé
cluster depicted in Fig. 1. The log-log plot demonstrates the
asymptotic power-law density of states ∼sp, where p ≈ 2.55.
We note that for this system we are in the low See regime and
hence the difference between the fitted value of p + 1 and
the entanglement entropy of 1.27. Nevertheless, the density
of states at high pseudoenergies extrapolates well to the
asymptotic power-law behavior of a classical gas as modeled
in Eq. (11).

IV. IMPLEMENTATION OF THE LANCZOS-SINGULAR
VALUE DECOMPOSITION ITERATION

The Lanczos-SVD routine proceeds as follows: We initial-
ize |ψ〉(0) as a direct product of the two subcluster states. We
compute (PsvdH )n|ψ (0)〉 = |ψ (n)) as described above. Since
our method is economical in memory, we can afford to retain
L sequential Lanczos vectors |ψ (n)),|ψ (n+1)), . . . ,|ψ (n+L)),
which speeds up the convergence with iteration number
considerably. (If memory is scarce, one could use the slower
method of keeping only two Lanczos vectors.)
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Now, we compute the overlap matrix and orthonormalize
this set of Lanczos vectors. This produces a rotating basis of
dimension L

|ϕ(i)〉 =
n+L∑
n′=n

Ain′ |ψ (n′)〉, 〈ϕ(i)|ϕ(j )〉 = δij , (16)

where A are the coefficients determined by diagonalizing the
overlap matrix [see, e.g., Eq. (6)].

Subsequently, we compute the matrix elements of the
reduced Hamiltonian,

Hij = 〈ϕ(i)|H |ϕ(j )〉 i,j = 1, . . . ,L. (17)

The reduced Hamiltonian matrix is diagonalized. Its lowest
eigenvalue and eigenvector yield the best approximation to
the ground state at this level of iteration [19]. We bring the
resulting wave function to the SVD form, again truncated into
nsvd terms. It becomes the initial state |ψ (n+L+1)〉 for the next
Lanczos iteration. Excited states can be calculated by starting
with an initial state orthogonal to the converged lower-energy
states.

V. NUMERICAL TESTS

For the spin-half Heisenberg antiferromagnet

H =
∑
〈ij〉

Si · Sj , (18)

we tested the convergence of the Lanczos-SVD algorithm on
Kagomé clusters depicted in Figs. 1, 2, 3, and 4.

In Fig. 6, plot the Lanczos-SVD truncation error for the
ground state wave function and energy, as a function of
nsvd. The errors decrease rapidly on the logarithmic scale as
expected by Eq. (15), arriving at ε ≈ 10−13 for nsvd = 200.

For the 30-site Kagomé cluster depicted in Fig. 1, the
energies of the four lowest S = 0 eigenstates, and the first
triplet S = 1 state, converged to a very high accuracy of 10−11

using nsvd = 200.
In Fig. 7 show the convergence of ground state energy of

Lanczos-SVD versus iteration for clusters of 36 sites. We use

FIG. 6. (Color online) Lanczos-SVD truncation errors, for the
24-site Kagomé cluster of Fig. 4. nsvd is the number of retained
SVD states of the ground state in Eq. (3). ε is the wave-function
error [Eq. (2) and following text)]. E0/E0 is the relative error in the
Lanczos-SVD ground state energy as compared to the exact (standard
Lanczos) result. The rapid decay of the errors for low values of
nsvd � 212 is due to the low entanglement entropy (see Sec. III).

FIG. 7. (Color online) Lanczos-SVD error convergence as a
function of iteration, for 36-site Kagomé clusters. The main plot
is for Fig. 3, and the inset is for Fig. 2. E0(i) is difference between
the energy at iteration i and the converged ED result given by
standard Lanczos [20]. For both clusters we used nsvd = 200 and
L = 4 Lanczos vectors.

nsvd = 200, and L = 4. For the three-star triangle, the exact
ground state energy as determined by standard Lanczos is
E0 (36 sites) = −14.859 397 [20]. The entanglement entropy
is See ≈ 2.59. The calculation converges to relative energy
accuracy of 1.3 × 10−4, and an SVD truncation error of similar
magnitude.

In the inset of Fig. 7 we show a much smaller error for the
three-star line of Fig. 2, which converged to a relative error
of 6.3 × 10−8. This is to be expected since the entanglement
entropy of the linear arrangement of the three stars is only
See ≈ 1.12. The numerical tests were therefore consistent with
Eq (15).

All the above calculations were performed using multicore
workstations. The maximum memory usage was kept under
15 GB of memory, even though no lattice symmetries were
implemented in the computations. The time required for the
most intensive calculations (36 sites, nsvd = 200) on using
parallelization with 16 cores was a little more than 70 minutes
per iteration for Fig. 3 and about 35 minutes for Fig. 2. A
serial MAPLE 15 implementation used in the computations for
the 30-site case (Fig. 1) took about one day for each eigenstate
for the same nsvd.

VI. EXTENSION TO MULTIPLE PARTITIONING
OF LARGE LATTICES.

The Lanczos-SVD compresses the memory requirement by
a single division of the cluster into two subclusters i = 1,2.
This idea could be extended to recursive partitioning [17].
For the sake of crude memory estimation, each small vector
[e.g., |α〉i in Eq. (1)] can be decomposed into nsvd products of
even smaller subcluster vectors. If the SVD is thus iterated p

times, one obtains a representation in terms of small vectors of
P = 2p subclusters. |ψ〉 is thus stored in terms of a set of the
smallest vectors. The memory cost after applying a Lanczos
step is as follows.

For concreteness, let us consider a two-dimensional disk of
radius R 
 1, containing N  πR2 sites of spin half, divided
into P equal sections as shown in Fig. 8. The sections are
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FIG. 8. (Color online) Multiple subclusters.

labeled by a binary number i = (i1,i2, . . . ,ip), ik = 0,1. The
recursive SVD decomposition yields the expression

|ψ〉 =
∑

α1,α2...αp

λα1λ
i1
α1,α2

· · · λi1,...,ip−1
α1,...,αp

∏
i

|α1, . . . ,αp〉i. (19)

The SVD weights λi are labeled according to the boundaries
they describe, as shown in Fig. 8. Each αi runs over nsvd

numbers, which means that each section i is represented by
n

p

svd vectors of dimension 2N/P . By the area law See ∝ R on
each boundary. As shown before, we must retain nsvd ∼ ecR

terms in each SVD, where c(ε) > 1 in order to achieve a
desired truncation error ε.

After applying H to |ψ〉, we generate a factor of M ≈
6R more small vectors. Thus we should store 6PRn

p

svd small
vectors. Thus the memory cost is

Mc ≈ 6PR exp

[
cR log(P ) + πR2 log(2)

P

]
. (20)

Minimizing Mc(P ) one finds the optimal partitioning P opt,
and the optimal memory cost Mopt at large N to scale as

P opt ≈ π log(2)R

c
, Mopt

c ∼ Ne
c
2 [

√
N/π log(N/π)−2]. (21)

This would amount to a significant compression of memory
as compared to standard Lanczos M ∼ 2N . The remaining
challenge is to speed up the significantly larger computational
time needed to orthonormalize and SVD large sets of small
vectors.

VII. CONCLUSION

In this paper we have exploited the SVD to expand the
lattice sizes which can be treated by the Lanczos algorithm for
EDs. Relative to standard Lanczos, Lanczos-SVD demands
longer computation time due to additional matrix manipula-
tions.

Does the SVD projection interfere with the Lanczos
convergence? The SVD projection introduces a truncation
error in the rotating vector. However, the Lanczos vector is
rotated toward the ground state (or some other target state)
when the relative energy splitting to neighboring eigenstates

is larger than the truncation error. This rotation ceases once
the energy has converged within the SVD error. Increasing
nsvd will allow further convergence. It is simplest to think
about the SVD projection on the same footing as the floating
point error, which limits the accuracy of standard Lanczos
algorithms. In computing Fig. 7 we have indeed verified that
the implementation of SVD projection in each iteration does
not slow down the energy convergence per Lanczos step.

Computing time of Lanczos-SVD may be significantly
reduced by using multiple cores and by parallelizing the code.
In particular the overlap calculations, which are currently the
most time-consuming, are easily parallelizable. In standard
Lanczos, memory reduction can be achieved by exploiting
lattice and spin symmetries, which demands special boundary
conditions and extensive programming. Lanczos-SVD is there-
fore simpler to implement, and can address arbitrary boundary
conditions.

It is often asked what advantage a Lanczos-based ED has
over DMRG and related variational methods. The answer of
course depends on the purpose of the calculation. DMRG has
proven very efficient (especially for ground state correlations)
for larger lattices than Lanczos methods can address. How-
ever, in practical applications, DMRG advances toward the
ground state by sequential minimizations (e.g., sweeping the
parameters of the wave function in real space). In cases of high
frustration and competing phases (e.g., near a phase transition),
sweeping methods can get stuck in metastable states [21].
(Consider, e.g., the difficulty of getting rid of defects in a
phase-separated system by sweeping methods.)

The Lanczos step, on the other hand, does not necessarily
move the state in the direction of maximal slope. Instead,
if numerical accuracy is sufficient, it steadily rotates the
Lanczos vector toward the true ground state (or some other
target eigenstate). This said, it is important to note that
Lanczos algorithms also may have convergence problems
if the initial state is orthogonal to the target state and, as
in DMRG, when the target state is degenerate or nearly
degenerate. Then, satisfactory convergence of the wave func-
tion requires special tricks, which are well explored in the
literature.

Under these caveats, Lanczos-SVD can be used to deter-
mine the ground state and low excitations of limited size
clusters with well-controlled accuracy. It could be used to
check DMRG convergence and test variational ansatzes. As
mentioned in the Introduction, a primary purpose for using
EDs on small clusters is to derive an effective Hamiltonian
by the CORE method [22]. The CORE effective Hamiltonian
can then be studied on the coarse grained lattice by iterating
CORE, or by variational methods.
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