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We discuss superconductor to insulator and quantum Hall transitions which are of first order in the
clean limit. Disorder creates a nearly percolating network of the minority phase. Electrical transport
is dominated by tunneling or activation through the saddle point junctions, whose typical resistance is
calculated as a function of magnetic field. In the Boltzmann regime, this approach yields resistivity laws
which agree with recent experiments in both classes of systems. We discuss the origin of dissipation at
zero temperature. [S0031-9007(98)05748-2]

PACS numbers: 73.50.—h, 68.35.Rh, 73.40.Hm, 74.76.—w

Two-dimensional (2D) electron systems subject to dis{C) and an insulating 7). The primary underlying
order potentials and external fields exhibit a rich set ofassumption of this approach is thatithout disorder,
guantum phase transitions, indicated by dramatic changeke thermodynamic transition & = 0 is first order
in their transport properties at low temperatures. Here wiathematically, a crossing of two ground state energy
concentrate on two prominent classes: (i) superconducurfacesEc(B, u) and E;(B, u) is assumed. Herg is
tor to insulator (S-1) transitions [1—4] observed in a vari-the chemical potential of the charge carriers. The surfaces
ety of superconducting films and in Josephson arrays, anctoss at a critical lineu.(B.;). Associated with the
typically tuned by either disorder or magnetic field andtwo phases are finite size correlation lengéhs = C, I.

(i) analogous transitions in the quantum Hall (QH) These provide the lower limit to the linear size of an
regime: the QH to insulator (QH-I) transition, and tran- ordered domain.
sitions between different QH plateaus [5—7]. A smooth random potentid (x, y), (V) = 0, with fluc-

The longitudinal sheet resistivity,, in these systems tuation length scalg, > £; can be incorporated as a local
is a continuous function df, B, andn, the temperature, shift in the chemical potential, such that the local energy
magnetic field, and carrier density, respectively. A sharmglensity ise;(B, u — V(x,y)). A large (V?) breaks the
change in lim—g p., as a function ofB has been inter- system into domains which are approximately bounded
preted as a quantum phase transition, between localizésy equipotential contour® (x,,y,) = u — per(B). In
bosons and localized vortices [1,5]. QH systems, detailed calculations indicate phase separa-

Recent experiments, however, found a remarkablyion [10] and domain sizes have been estimated [11].
simplenoncritical behavior of the resistivity which seems  The first order “quantum melting” assumption is sup-

to hold in a sizable portion of the phase diagram. ported by theoretical arguments and some direct experi-
(i) On both sides of the QH-I transition [8] mental evidence.
The theoretical models describing this type of sys-
Prr = h ekaM]’ (1) tem exhibit a competition between superconductivity and
e? al + B charge density correlations, as well captured by their map-

where v = n¢o/B (with &, the flux quantum) is the ping to an anisotropi&XZ pseudospin model on a lattice.

average Landau level filling factor [9], and. is its Sizable portiqns of parameter space for bipartite [12] and
value at the critical point.ae and 8 are sample specific frustrated lattices [13] yield first order transitions between

parameters. solid and superfluid phases [12—14]. Even when the clas-
(ii) Near the field-tuned S-I transition [3]: sical transition is of second order, quantum corrections
can make it first order [15]. A similar result was found
_h exq% largeT, for the Chern-Simons field theory of the QH problem [16].
Pee = 42 exp(%) T -0, (2) An experimental evidence for a quantum melt scenario

is provided by photoluminescence (PL) data in QH sys-
whereB,;, @ andf are constants. Note that both Egs. (1)tems [17], which show two distinct modes of relaxation
and (2) indicate finite dissipation &t = 0 at all magnetic within the sample. These are interpreted in terms of
fields. sample inhomogeneity due to binary phase separation.
It is the purpose of this Letter to provide an interpre- The assumption of a binary composite structure has also
tation of these resistivity laws using Boltzmann transportbeen used to explain nonuniversal critical conductivity
theory of a binary composite of two phases: conductingn QH transitions [18], and the quantization of the Hall
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resistivity at the QH-I transition [19] and in the QH dissipation due to the normal core is negligible, vortices
insulator phase [20]. obey “Hall” dynamics andS” =~ hx?p,/2, wherep, is

The random potential eliminates the first order thermothe superfluid density. In the opposite, viscous dynamics
dynamic transition and produces a second order transiimit, S” = », where the viscosity of the normal core is
tion of the transport coefficients which is of a percolativegiven by Bardeen and Stephen [27] as
nature [21,22]. This accounts for many universal fea- ) 22
tures observed in different transitions. It can also help n=R/Qmeepa), (©)
explain, at least qualitatively, a duality relation observedwhere ¢ is the vortex core size, and, is the normal
when C and/ phases are interchanged across the transptate resistance measured above the bulk superconducting
tion [7,8,23,24]. transition temperature.

The primary contribution to the resistivity comes from In order to compare theory to experimental results (1)
saddle points of the potential ne&i(x,y) = u.. Here and (2), the typical junction width/ as a function of
we concentrate on the Boltzmann regime, where it is imexternal magnetic field is required. These can be derived
plicitly assumed that incoherent scattering occurs within &y geometrical arguments. We start with the QH case.
single domain size. This requires sufficient zero tempera- The QH resistivity law—We focus on the transition
ture dissipation, a point we shall return to in the endfrom a » =1 liquid to the insulator [28]. TheC
Boltzmann theory uses the current density and electri€omponent is an incompressible liquid at= 1, while
field as classical variables which depend locally on eacH consists of an electron solid of (lower) average filling
other. For a finite width distribution of junction resis- fraction, »;. »; depends on details such as the disorder
tances in a two-dimensional array, the total resistance igotential, and hence is sample dependent [29]. The
given by the resistance of the typical junction [20]. average filling fraction of the sampleis

_A. saddl_e point junction ha§ two domains separated by v=p+ (- py, 7)
minimal distancel. The Ohmic response depends on the ) ) o )
transition rateZ” of the relevant quasiparticles which passWherep is the area fraction of the liquid. The percolation

through the junction. threshold in two dimensions is at. = 0.5. The excess

g area of the majority phase near a saddle point is given by

_ {exp(—v) largeT, 3) integrating between hyperbolas (see Fig. 1)
S//dZ
exp(— T—0, 1
=) S5A = 5|n(zv/d)d2. (8)
where V' cand S” are the curvatures of the potential L .
barrier and tunneling action, respectively. The total excess area fraction is thus related to the typical
The resistivity of a single junction is given by d andly by
hl-T p — pe = xyd’, vy =NyIn(ly/d)/4), (9)
Ry ~ — . 4

T (4)
In the insulating side of the percolative transition, quasi- @ C ,
particles which flow between superconducting domains
are chargeQ = 2e¢ Cooper pairs (bosons), and for QH
domains, they are electron@ (= ¢) in the lowest Landau I >'
level.

In the conducting side, the quasiparticles are of vortices

or edge quasiparticles which tunnel with rafe between # C N
edges of a narrow superconducting or QH liquid channel,
respectively. Since a current of vortices produces a (b)

longitudinal voltage drop, the channel’s resistance is given
by the inverse expression to (4):

h T
Ry ~ — — .
0’1 -T

T is given by an expression of the form (3), with an
appropriate definition ofS”. A recent calculation [25]
of the quasiparticle tunneling rate across a quantum HafFIG. 1. A typical junction in aC-I mixture (a) in the
strip has founds” = h%% [where I2 = fic/(eB)] for insulating phase, and (b) in the conducting phase. The thick

. . A lines represent the boundaries of tlde component, dictated
quasiparticles of charg@ for the QH liquid. For vortex . "eqinotential contours near a symmetric saddle point of

tunneling through a superconductor there are two limitshe potential; the dashed lines are the boundariesC ot
which depend on the vortex core dissipation [26]: Whenpercolation.

(5)

3353



VOLUME 80, NUMBER 15 PHYSICAL REVIEW LETTERS 13 ARIL 1998

where A is the total area of the sample and,, is The absence of localization at zero temperature indicates
the number of saddle points. Using (7), (4), and (3),a presence of strong dissipation. This allows us to
we find that in both the insulator and liquid sides of neglect quantum interference effects at long length scales,
the transitionp,,(») is given by the universal formula and justify the use of incoherent Boltzmann transport
Eq. (1), with . = (1 + »;)/2. The constantse and theory. However, the origin of this dissipation is not well
B give the simplest interpolation formula between theunderstood. One may expect that coupling to gapless

tunneling and activation regimes: Fermi liquid excitations would give rise to dissipation.
8y 412y But how could Fermi liquid excitations be present in S-
a = W(l - v) B = T(l - vy). (10) wave superconductors at zero temperature? “Normal”

, ) electrons are recovered in mean field theory where the
Note that the above analysis does not require extremgeg gap is destroyed by the magnetic field. However, if

proximity to the percolation transition. The crucial as-,q|ocal pair correlationsare present, one might prefer to

sumption is that the solid component of the quantum m‘?'&onsider at the boundaries of tiledomains, a system of

state is sufficiently insulating, such that the transport igyantum disordered Cooper pairs subject to a penetrating
dominated by a path that avoids it as much as possiblgia|q of B ~ H.,. This field puts approximately one flux

The same assumption is necessary for observing a quagantum per Cooper pair. A flux attachment transforms

tized Hall resistance, as discussed in [20]. This analysig Cooper pair into a composite fermion &t= 0 [30].
therefore holds well beyond the critical dynamical scalinga metallic state can thus be formed surrounding the

regime. o S domains which could be responsible for the resistive
Resistivity in field tuned superconductmg-msulatorresponsear = 0.
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