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We discuss superconductor to insulator and quantum Hall transitions which are of first order i
clean limit. Disorder creates a nearly percolating network of the minority phase. Electrical tran
is dominated by tunneling or activation through the saddle point junctions, whose typical resistan
calculated as a function of magnetic field. In the Boltzmann regime, this approach yields resistivity
which agree with recent experiments in both classes of systems. We discuss the origin of dissipa
zero temperature. [S0031-9007(98)05748-2]
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Two-dimensional (2D) electron systems subject to di
order potentials and external fields exhibit a rich set
quantum phase transitions, indicated by dramatic chang
in their transport properties at low temperatures. Here w
concentrate on two prominent classes: (i) supercondu
tor to insulator (S-I) transitions [1–4] observed in a var
ety of superconducting films and in Josephson arrays, a
typically tuned by either disorder or magnetic field an
(ii) analogous transitions in the quantum Hall (QH
regime: the QH to insulator (QH-I) transition, and tran
sitions between different QH plateaus [5–7].

The longitudinal sheet resistivityrxx in these systems
is a continuous function ofT , B, andn, the temperature,
magnetic field, and carrier density, respectively. A sha
change in limT!0 rxx as a function ofB has been inter-
preted as a quantum phase transition, between localiz
bosons and localized vortices [1,5].

Recent experiments, however, found a remarkab
simplenoncritical behavior of the resistivity which seems
to hold in a sizable portion of the phase diagram.

(i) On both sides of the QH-I transition [8]

rxx ­
h
e2 exp

(
2sn 2 ncd
aT 1 b

)
, (1)

where n ­ nf0yB (with f0 the flux quantum) is the
average Landau level filling factor [9], andnc is its
value at the critical point.a and b are sample specific
parameters.

(ii) Near the field-tuned S-I transition [3]:

rxx ­
h

4e2
3

8<: exps B2Bcr

āT d largeT ,

exps B2Bcr

b̄
d T ! 0 ,

(2)

whereBcr , ā andb̄ are constants. Note that both Eqs. (1
and (2) indicate finite dissipation atT ­ 0 at all magnetic
fields.

It is the purpose of this Letter to provide an interpre
tation of these resistivity laws using Boltzmann transpo
theory of a binary composite of two phases: conductin
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(C) and an insulating (I). The primary underlying
assumption of this approach is thatwithout disorder,
the thermodynamic transition atT ­ 0 is first order.
Mathematically, a crossing of two ground state energ
surfaces,ECsB, md and EIsB, md is assumed. Herem is
the chemical potential of the charge carriers. The surfac
cross at a critical linemcr sBcr d. Associated with the
two phases are finite size correlation lengthsji , i ­ C, I.
These provide the lower limit to the linear size of an
ordered domain.

A smooth random potentialV sx, yd, kV l ­ 0, with fluc-
tuation length scalelV . ji can be incorporated as a local
shift in the chemical potential, such that the local energ
density iseisssB, m 2 V sx, ydddd. A large kV 2l breaks the
system into domains which are approximately bounde
by equipotential contoursV sxm, ymd ­ m 2 mcrsBd. In
QH systems, detailed calculations indicate phase sepa
tion [10] and domain sizes have been estimated [11].

The first order “quantum melting” assumption is sup
ported by theoretical arguments and some direct expe
mental evidence.

The theoretical models describing this type of sys
tem exhibit a competition between superconductivity an
charge density correlations, as well captured by their ma
ping to an anisotropicXXZ pseudospin model on a lattice.
Sizable portions of parameter space for bipartite [12] an
frustrated lattices [13] yield first order transitions betwee
solid and superfluid phases [12–14]. Even when the cla
sical transition is of second order, quantum correction
can make it first order [15]. A similar result was found
for the Chern-Simons field theory of the QH problem [16]

An experimental evidence for a quantum melt scenar
is provided by photoluminescence (PL) data in QH sys
tems [17], which show two distinct modes of relaxation
within the sample. These are interpreted in terms o
sample inhomogeneity due to binary phase separation.

The assumption of a binary composite structure has al
been used to explain nonuniversal critical conductivit
in QH transitions [18], and the quantization of the Hal
© 1998 The American Physical Society
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resistivity at the QH-I transition [19] and in the QH
insulator phase [20].

The random potential eliminates the first order therm
dynamic transition and produces a second order tran
tion of the transport coefficients which is of a percolativ
nature [21,22]. This accounts for many universal fea
tures observed in different transitions. It can also he
explain, at least qualitatively, a duality relation observe
when C and I phases are interchanged across the tran
tion [7,8,23,24].

The primary contribution to the resistivity comes from
saddle points of the potential nearV sx, yd ­ mcr . Here
we concentrate on the Boltzmann regime, where it is im
plicitly assumed that incoherent scattering occurs within
single domain size. This requires sufficient zero temper
ture dissipation, a point we shall return to in the end
Boltzmann theory uses the current density and elect
field as classical variables which depend locally on ea
other. For a finite width distribution of junction resis-
tances in a two-dimensional array, the total resistance
given by the resistance of the typical junction [20].

A saddle point junction has two domains separated
minimal distanced. The Ohmic response depends on th
transition rateT of the relevant quasiparticles which pas
through the junction.

T ,

8<: exps2 V 00d2

8T d largeT ,

exps2 S00d2

h̄ d T ! 0 ,
(3)

where V 00 cand S00 are the curvatures of the potentia
barrier and tunneling action, respectively.

The resistivity of a single junction is given by

Rxx ,
h

Q2

1 2 T

T
. (4)

In the insulating side of the percolative transition, quas
particles which flow between superconducting domain
are chargeQ ­ 2e Cooper pairs (bosons), and for QH
domains, they are electrons (Q ­ e) in the lowest Landau
level.

In the conducting side, the quasiparticles are of vortic
or edge quasiparticles which tunnel with rateT̄ between
edges of a narrow superconducting or QH liquid chann
respectively. Since a current of vortices produces
longitudinal voltage drop, the channel’s resistance is giv
by the inverse expression to (4):

Rxx ,
h

Q2

T̄

1 2 T̄
. (5)

T̄ is given by an expression of the form (3), with an
appropriate definition ofS00. A recent calculation [25]
of the quasiparticle tunneling rate across a quantum H
strip has foundS00 ­ h̄

Q
e

p

4l2 [where l2 ­ h̄cyseBd] for
quasiparticles of chargeQ for the QH liquid. For vortex
tunneling through a superconductor there are two limi
which depend on the vortex core dissipation [26]: Whe
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dissipation due to the normal core is negligible, vortices
obey “Hall” dynamics andS00 ø h̄p2rsy2, wherers is
the superfluid density. In the opposite, viscous dynamic
limit, S00 ø h, where the viscosity of the normal core is
given by Bardeen and Stephen [27] as

h ­ h̄2ys2pj2e2rnd , (6)

where j is the vortex core size, andrn is the normal
state resistance measured above the bulk superconducti
transition temperature.

In order to compare theory to experimental results (1
and (2), the typical junction widthd as a function of
external magnetic field is required. These can be derive
by geometrical arguments. We start with the QH case.

The QH resistivity law.—We focus on the transition
from a n ­ 1 liquid to the insulator [28]. TheC
component is an incompressible liquid atn ­ 1, while
I consists of an electron solid of (lower) average filling
fraction, nI . nI depends on details such as the disorde
potential, and hence is sample dependent [29]. Th
average filling fraction of the samplen is

n ­ p 1 s1 2 pdnI , (7)

wherep is the area fraction of the liquid. The percolation
threshold in two dimensions is atpc ­ 0.5. The excess
area of the majority phase near a saddle point is given b
integrating between hyperbolas (see Fig. 1)

dA ­
1
2

lnslV yddd2. (8)

The total excess area fraction is thus related to the typica
d andlV by

p 2 pc ­ 6gd2, g ­ Nsp lnslV yddys2Ad , (9)

FIG. 1. A typical junction in a C-I mixture (a) in the
insulating phase, and (b) in the conducting phase. The thic
lines represent the boundaries of theC component, dictated
by equipotential contours near a symmetric saddle point o
the potential; the dashed lines are the boundaries ofC at
percolation.
3353
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where A is the total area of the sample andNsp is
the number of saddle points. Using (7), (4), and (3
we find that in both the insulator and liquid sides o
the transitionrxxsnd is given by the universal formula
Eq. (1), with nc ­ s1 1 nI dy2. The constantsa and
b give the simplest interpolation formula between th
tunneling and activation regimes:

a ­
8g

V 00
s1 2 nI d b ­

4l2g

p
s1 2 nI d . (10)

Note that the above analysis does not require extre
proximity to the percolation transition. The crucial as
sumption is that the solid component of the quantum m
state is sufficiently insulating, such that the transport
dominated by a path that avoids it as much as possib
The same assumption is necessary for observing a qu
tized Hall resistance, as discussed in [20]. This analy
therefore holds well beyond the critical dynamical scalin
regime.

Resistivity in field tuned superconducting-insulato
transitions.—The picture described above explains th
remarkable similarity of the empirical laws (1) and (2
Both originate from the Gaussian decay of transitio
rates at the saddle points. For the superconducting s
of the field-tuned transition in amorphous MoGe [3
we consider vortices crossing a narrow superconduct
channel of widthd.

The effects of internal interactions in the supercondu
tor is provided by the first order linemcrsBd. This allows
us to relate the magnetic field to the width of the chann
near the percolation fieldBcr .

≠m

≠B

Ç
Bcr ,mcr

sBcr 2 Bd ­
1
2

V 00d2, (11)

which yields

ā ­
4

≠m

≠Bc

, b̄ ­
V 00

p2rs
≠m

≠Bc

. (12)

One can obtain a semiquantitative estimate ofrxx for the
amorphous MoGe data [3] as follows. At the critica
field Bcr , there is a vortex lattice of spacingj in the
superconductor. Consider a saddle point channel wh
is pinched to zero width by two vortices at distancej.
As the magnetic field is reduced their touching cor
will separate by a distanced ­

p
Csfp

0yB 2 f
p
0yBcr d,

where C is a dimensionless constant of order unity an
f

p
0 ­

h
2ec . Thus a superconducting channel of widthd is

formed. Using the viscosity from Eq. (6), we obtain th
zero temperature tunneling exponent, which yields

rxx ø
h

4e2
exp

"
Cpy2

√
h̄ye2

rn

! √
B 2 Bcr

Bcr

!#
. (13)

We note that experiments of Ephronet al. [3] have found
very good agreement to (13) withC . 1.24.

Discussion.—Here we have used Boltzmann theory t
explain observed resistivity laws S-I and QH-I transition
3354
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The absence of localization at zero temperature indica
a presence of strong dissipation. This allows us
neglect quantum interference effects at long length sca
and justify the use of incoherent Boltzmann transpo
theory. However, the origin of this dissipation is not we
understood. One may expect that coupling to gaples
Fermi liquid excitations would give rise to dissipation
But how could Fermi liquid excitations be present in S
wave superconductors at zero temperature? “Norm
electrons are recovered in mean field theory where
BCS gap is destroyed by the magnetic field. However,
the local pair correlationsare present, one might prefer to
consider at the boundaries of theS domains, a system of
quantum disordered Cooper pairs subject to a penetra
field of B ø Hc2. This field puts approximately one flux
quantum per Cooper pair. A flux attachment transform
a Cooper pair into a composite fermion atB ­ 0 [30].
A metallic state can thus be formed surrounding t
S domains which could be responsible for the resisti
response atT ­ 0.
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