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The fundamental mechanism of current dissipation in a Hall strip is investigated by searching fo
fastest process of charge relaxation between the edges. The tunneling rate of the fractional charge
a n ­ 1y3 Laughlin state of widthY on the cylinder is found to fitt1y3 ~ expf2aY 2y12l2g, wherel

is the Landau length, anda . 1.0. This rate is exponentiallylarger than the electron tunneling rate,
and can be interpreted by analogy to the tunneling of a vortex through a superfluid. Fractional c
tunneling dominates current relaxation. It determines the Aharonov-Bohm oscillation period, an
magnitude of quantum shot-noise. [S0031-9007(97)05065-5]

PACS numbers: 73.40.Hm, 73.40.Gk
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In a superconducting strip, the elementary process
current dissipation is the transfer of a vortex from on
edge to the other, or the nucleation of a vortex pair an
its separation to opposite edges. In a quantum Hall str
dissipation is given by moving a charge between the tw
edges. For bulk filling fractionsn ­ 1ym (m is an odd
integer [1]), there are low lying edge excitations whic
carry fractional chargeQ ­ ne. At zero temperature, and
low bias current, it is natural to wonder: Which tunnel
faster, fractionally charged quasiparticles, or electron
An impurity potential which breaks translational invari
ance in the longitudinal directionallows both processes.
For electrons, the tunneling rate is simply the matrix el
ment of the potential between single electron edge stat
For fractionally charged quasiparticles, however, the tu
neling rates involve an overlap of correlated many ele
tron wave functions.

Besides intellectual curiosity, there are experiment
implications which motivate us to find therelative rates
of fractional versus integer charge tunneling: (i) Luttinge
liquid edge theory [2] predicts different leading power
(of current and temperature) of the longitudinal resistan
for different elementary charges. (ii) The Aharonov
Bohm (AB) flux periodicity Df of current oscillations
which was measured in resonant tunneling [3] depends
the elementary tunneling charge asDf ­ enf0yQ [4].
(iii) The charges which dominate the backscattering cu
rentIB can be measured by the magnitude of the quantu
shot-noiseS by S ­ 2QIB [5]. Recent experiments in the
n ­ 1y3 phase report excellent fits to fractional charg
Q ­ ey3 [6].

Kane and Fisher (KF) [7] calculated the renormaliza
tion group flows of the tunneling coupling constants du
to low lying Luttinger liquid edge excitations. They found
that for n , 1, electron tunneling becomes irrelevant a
low enough temperatures while fractional charge tunne
ing flows to strong coupling as the infrared cutoff is re
duced. In KF theory, however, the tunneling rate is a fre
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parameter, which leaves the possibility that it might b
undetectable at experimental temperatures.

This Letter presents a microscopic calculation of fra
tional charge tunneling rates across a Hall fluid. Th
numerical results show that the fractional charge tunn
ing rate is much larger than the electron charge rate
large strip widths. Subsequently, we connect the mic
scopic tunneling matrix element to the interedge scatt
ing parameter of KF theory, and discuss its experimen
implications.

Our domain is the open cylinderx [ f0, 2pRd, 2` ,

y , `, with N electrons, and a radially penetrating fiel
B ­

f0

2pl2 , wherel, the Landau length, is henceforth ou
unit of distance. This geometry can describe a quant
Hall liquid strip with two symmetric edges.

The free electron states of the lowest Landau lev
(LLL) are labeled by momentak ­ gn, n integer, and
g ; 1yR. The wave functions are

cksx, yd ­

r
g

2p
exp

√
ikx 2

sy 2 kd2

2

!
. (1)

The Laughlin state of filling fractionn ­
1
m on the

cylinder was given by Thouless [8]

C1ym ­
Y
i,j

seigsxi1iyid 2 eigsxj1iyj ddm
Y

i

e2y2
i y2. (2)

It is the ground state of a suitably defined pseudopoten
Hamiltonian [1,9]. The expansion ofC1ym in the LLL
Fock basis is

C
1ym
L ­

X
fkg

Afkygg exp

√X
i

k2
i

!
jkl , (3)

wherejkl ­ jk1, . . . , kN l andki [ f0, Yg. Y ­ mgsN 2

1d is defined as thewidth of the Hall liquid strip (the
width of the area partially occupied by electrons depict
between the horizontal solid lines in Fig. 1.

There is an infinite family of other degenerate groun
states labeled by the total momentumP ­

P
i ki , which
© 1998 The American Physical Society 817
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FIG. 1. Fractional charge tunneling depicted by two displac
Laughlin states of bulk densityn on the cylinder. DNp are the
edge charge differences, andV is an impurity potential which
enables a transition between the states.

are given by uniformly shifting the momentaki mov-
ing the electron density up or down the cylinder.
weak sy ! 0d confining potentialV s yd ­

y

2 s y 2 Yy2d2

selects (3) as the ground state.
The expansion coefficientsA are given by [10]

Afng ­
1

N!

X
r1,...,rm

s21d
Pm

l­1
P frlg

NY
i­1

d

√
ni 2

mX
l­1

rl
i

!
, (4)

whererl is a permutation of the set0, 1, . . . , N 2 1, and
P is the parity of a permutation.

The coefficients A have a complicated structur
[11], but it is useful to note that the components wi
Afkygg fi 0 can be derived from a single parent Ta
Thouless (TT) state [12]

jkTT l ­ j0, mg, 2mg, . . . , Yl . (5)

For this stateAfkTT ygg ­ 1. All other jkl components
are given by successively squeezing pairs of mome
toward each other. Rezayi and Haldane have shown
that in the regime1 ø Y ø N the occupation numbe
is constant fork far from the edges, i.e.,nk ­ kcy

k ckl ­
1ym for 1 , k , Y 2 1.

An impurity potential in the LLL Fock representation i

V ­
X
kk0

Vk,k0 c
y
k ck0 , (6)

where c
y
k creates an electron in statefk. The ground

state to ground state tunneling rate of chargeqe between
the edges, to leading order inV , is

tq ­ kCjV UmqjCl , (7)

whereU is the unitary phase operator which translates
the single particle momenta by one interval

Uyc
y
k U ­ c

y
k1g . (8)

Uy moves a fractional charge1ym from the p ­ 21
to the p ­ 11 edge (see Fig. 1), and thus increases
818
ed

A

e
th
o-

nta
[9]

r

s

all

the

total momentum of the Hall state byP ! P 1 Q, where
Q ­ Ng.

For a weak impurity potential, the tunneling rate of
fractional charge is thus given by

t1ym ­ kCjV UjCl ­
X

k

Vk,k1QMk,k1Q

Mk,k1Q ­
1
Z

X
k,k0

AfkyggAfk0ygge
1

2
sk21k02d

3

NY
n­1

dN fk 1 Qsnd, k0 2 g1g , (9)

whereZ ­ kC j Cl, Qisnd ­ Qdin, and1i ­ 1. Mk,k1Q

reflects the many-body overlap of the relatively dis
placed Laughlin states. Its weighted sumMsQd ­
V 21

P
k Vk,k1QMk,k1Q was computed numerically for

local impurity potentialsVdsxd and Vdsxddsy 2 Yy2d.
The calculation was carried out forn ­ 1y3 states with
five up to eight electrons. As shown in Fig. 2 at larg
widths we find the asymptotic decay

jMsQdj ~ exp

µ
2

a

2
Q2

∂
, (10)

wherea ø 1.0, and independent of the number of elec
trons. Combining (10) withV0,Q ~ exps2 1

4 Q2d yields the
tunneling rate’s asymptotic dependence on width

t1y3 , exps2aY 2y12d . (11)

In comparison, a unit charge tunneling rate, which
proportional to the potential matrix element, is

t1 ­ kCjV U3jCl ­ n2
0V s0, Yd . (12)

For a localized potential of the formVdssddsy 2 Yy2d,

t1 , g2 exps2Y2y4d , (13)

wheren0 ø gb is appropriate for a density profile which
vanishes as a power lawnk ø kb at the edge. [The
numerical results fornk of the Laughlin state (3) up to
eight particles isb ­ 1.0.] Thus,the tunneling exponent
is 3 times larger for quasiparticles than for electrons.

The result (11) could be understood using the sup
fluid description of the fractional Hall phase, which ca
be derived by the Chern-Simons Ginzburg-Landau fun
tional [13]. At the mean field level, the ground state
a Bose superfluid of densityrs ­

1
m Byf0. The dissi-

pation of current involves tunneling of vortices betwee
opposite edges, where a vortex of unit circulation carri
a fractional electric charge ofeym. Ignoring auxiliary
gauge field fluctuations, and interactions at the core len
scale, the vortex dynamics are governed by a Magn
force ef0rsv 3 ẑ. Thus they are quantized as particle
with chargee in the lowest Landau level of an effec-
tive field B̃ ­ f0rs, and Landau length̃l ­

p
m l, with

wave functions given by (1). Form ­ 3, the matrix
element ofV between two vortex wave functions at th
edges readily recovers (11), witha ­ 1.
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FIG. 2. Numerical evaluation of the asymptotic decay o
the many-body factorMsQd; see Eq. (10) for then ­ 1y3
Laughlin states. (a) and (b) show similar dependence for tw
different localized impurity potentials.

How do tunneling matrix elements couple to edg
excitations? A half-strip density operator is defined as
follows:

rpsqd ­
Z Yp

Yy2
dy

Z 2pR

0
dx eiqxrsx, yd

ø
X

k

up,kup,k1qc
y
k1qck 1 O sq2d , (14)

where p ­ 61, Yp ­ s1 1 pdYy2 are the two edgey
coordinates, and

upk ­

(
1
0

psk 2 Yy2d . 0 ,
psk 2 Yy2d , 0 .

(15)

The last approximation in (14) applies to the long wave
length regimeq ø 1. The commutation relations of
f

o

e

-

rpsqd are

frpsqd, rp0 sq0dg ­ dpp0dq,2q0

X
k

upkup,k1qsnp,k 2 np,k1qd

1 dpp0hq fi 2q0j . (16)

Since excitations in the bulk have an energy gapDB, the
low energy sector includes only particle-hole excitatio
near the edges, i.e.,c

y
k dk1qC with k ø Yp , and energies

vq ­ yq, where y is the gradient of the confining
potential. hq fi q0j terms in (16) create excitations dee
in the bulk which introduce corrections suppressed
factors ofvqyDB and qyY . Also, in this sectornp,k is
approximately diagonal

np,k .

(
n

0
psYp 2 kd ¿ 1,
sYp 2 kd ¿ 1 .

(17)

Thus, Wen’s Kac-Moody algebra of edge bosons [2]
recovered:

frpsqd, rp0sq0dg . dpp0dq,2q0g21nq . (18)

The edge charge operator isNp ­
P

k upknp,k, which
is conjugate to the edge phase operatorsUp

fNp , Uy
p g ­ pnp,Yy2Uy

p . pnUy
p . (19)

The total phase operator (8) isUy ­ U
y
1 U21. The edge

quasiparticle creation operator is constructed followi
Haldane [14]

fp ­ pg

0@xNpy2 1 i
X
qfi0

us2pqd
e2iqx

q
rpsqd

1A ,

cy
p sxd ­ AeiYpxeif

y
p sxdUy

p eifpsxd, (20)

where A is an undetermined normalization constan
cy

p sxd creates a localized edge excitation of ext
chargen as evidenced by the commutator withrpsxd ;P

q eiqxrpsqd:

frpsxd, c
y
p0 sx0dg ­ ndpp0dsx 2 x0dcy

p0 sxd . (21)

The impurity potential operator in the low energy sect
simply transfers a localized fractional charge between
edges. It must therefore be proportional to the norm
ordered operator

V sxd ­ : cy
p sxdc2psxd : 1 H.c.

­ A2eiYxe
i
P

p
pf

y
p sxd

Uye
i
P

p
pfpsxd

1 H.c. (22)

The normalizationA2 is precisely the bare fractiona
charge tunneling parameter amplitude in KF theory [7
It can now be determined by sandwiching both sides
Eq. (22) between the relatively displaced ground sta
leading to

A2 ­ kCjV UjCl ­ t1ym . (23)

We make the following two comments: (i) Tao an
Haldane [15] have shown that in the absence of
819
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impurity potential, the quantum Hall ground state o
n ­ 1ym on thetorushas anm fold degeneracy. A time
dependent AB flux threading the torus moves the grou
state between them different states of this manifold,
and the Hall conductance is preciselysxy ­

1
m se2yhd.

An impurity potential couples between degenerate grou
states, as it does on the cylinder, opening a minigapD

between the ground state and the first excited state [1
The quantum Hall effect can be observed provided t
flux does not vary extremely slowly [15], i.e.,Dyh̄ ø

f0yVx, whereVx is the induced electromotive force.
(ii) For the infinite plane geometry, the tunneling expo

nent between twolocalizedquasiparticle states centere
on delta function impurities atr1, r2 is [17]

Ssr1 2 r2d ~ exp

√
2

B
4mf0

jr1 2 r2j
2

!
. (24)

The scaling of the tunneling action withBym was argued
to be a general property of low elementary excitation
with fractional charge1ym. Generalizing this idea fur-
ther, Jain, Kivelson, and Trivedi [18] have formulated
“law of corresponding states” which relate the dissip
tive response of quantum Hall liquids at different filling
fractions using a conjecture that they scale withe

m B. Al-
though the results reported here are consistent with t
law, they are limited towide Hall strips in the presence
of weakimpurity potentials. They depend on the partic
ular correlations of the Laughlin state.The Tao-Thouless
state [12], for example, has the same bulk density an
total momentum as Laughlin’s state,but its impurity ma-
trix element for transfer of fractional charge between th
edges is zero.

KF have shown that edge excitations enhance the fr
tional charge and suppress the unit charge contributio
to the backscattering current [7]. Thus the renormaliz
tion group flow enhances the bare tunneling ratio, whi
strengthens the experimental relevance of KF theory.

Current oscillations in the presence of a slowly time d
pendent AB flux measures the dominant current relaxati
mechanism. The lowest level crossing between adiaba
energy curves occurs atfAB ­ f0y2 between ground
states which are relatively shifted by chargeeym at their
edges [4]. The impurity potential opens there a miniga
of size t1ym. A minigap t1 opens at higher energies be
tween energy curves with minima separated bymf0. We
do not expect to observe transfer of chargee reflected by
a periodicity ofmf0 in the current oscillations, even for
nonadiabatic changes of flux, becauset1ym ¿ t1. At the
same time, resonant tunneling oscillations have direc
820
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measured the discrete fractional charge tunneling in a
out of an antidot from the edges [4].

Finally, the quasiparticle charge which dominates th
backscattering current between the edges can be measu
by quantum shot-noise at zero temperature and bi
[5]. Recent experimental reports of measuring fractiona
charge in quantum shot-noise of fractional quantum Ha
systems [6] are consistent with the expectation th
fractional charges tunnel faster than electrons.
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