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Haldane Gap and Fractional Oscillations in Gated Josephson Arrays
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An analogy between the twisted quantumxxz model and a gated Josephson junction array is used
to predict sharp structure in the critical currents versus gate voltage, and fractional ac Joseph
frequencies. We prove selection rules for level crossings which imply fractional periodicities of grou
states with varying Aharonov-Bohm flux. Extrapolated numerical diagonalization on ladders indicate
Haldane gap at moderate easy-plane anisotropy, with vanishing superfluid stiffness. Physical param
for experimental realization of these novel effects are proposed. [S0031-9007(98)07646-7]
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Quantum phase fluctuations in superconductors c
drive zero temperature superconductor to insulator tra
sitions [1], as observed, for example, in disordered film
[2]. Their effects can be enhanced and studied in det
using a weakly coupled, low capacitance Josephson ju
tion array (JJA) [3,4].

Theory of quantum phase fluctuations has used mod
of interacting bosons on a lattice [5], and quantum d
namics of vortices [6]. The latter approaches have pr
posed collective phases such as vortex Bose condensa
[7] (for the insulator), and fractional quantum Hall phase
(for JJAs in magnetic field [8]).

Lattice bosons map onto effective models of quantu
spins. A popular approximation to the phase diagram
mean field theory on the classical (largeS) spin model
[9]. In the strongly quantum regime, the same mappin
relates the Mott insulator (integer bosons per site) and
quantum disordered antiferromagnet [5].

In this paper we explore the quantum magnetism an
ogy further. We focus our attention to the effects of
periodic lattice on superconductivity. We study the quan
tum xxz model with twisted boundary conditions [i.e., a
Aharonov-Bohm (AB) flux] both numerically and analyti-
cally. The many body spectrum, vortex tunneling rate
and superfluid stiffness are computed for different lattic
dimensions and magnetization (Cooper-pair density). W
prove general selection rules for symmetry protected lev
crossings. This rule imposesfractional periodicities of
the ground state as a function of AB flux, and is close
related to the “fractionally quantized phases” found b
Oshikawa, Yamanaka, and Affleck (OYA) in magnetize
Heisenberg chains [10].

The following effects may be observed in JJAs o
dimensionsLx 3 Ly .

(i) Haldane gap.—Our numerical results for thexxz
model on a two leg ladder find a Haldane gap, at lea
for weak easy plane anisotropy. The lowest gap rema
finite, while the superfluid stiffness decays exponentia
for Lx ! `. In a finite size system, the Haldane phas
is indicated by a suppressed critical current (relative
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its classical value) that decays exponentially withLx . It
is also characterized by a high ac Josephson freque
fQ  2eVyh, where the classical Josephson frequency
the array isfcl  2eVyhLx.

(ii) Fractional oscillations.—At fractional Cooper pair
densitiesn  pysqLyd, p, q integers, selection rules de-
rived below produce sharp dips in the critical currentIcr
versus gate potential. In these states, ac Josephson
cillations appear atsubharmonicfrequenciesf

q
Q  fQyq.

For q . 1 the ground states are at leastq-fold degenerate,
and qualitatively different from theq  1 Haldane phase.

We conclude by proposing physical parameters f
experiments.

The short-range Bose-Hubbard (BH) model is given b

HBH  U
X

i

n2
i 1

X
kijl

fVninj 2 2Jseiuij b
y
i bj 1 H.cdg ,

(1)

where b
y
i creates a boson (Cooper pair [11]) at sitei

on a square lattice with nearest neighbor bondskijl, and
ni  b

y
i bi. The lattice is placed on a cylinder penetrate

by an AB flux F, introduced via the gauge phasesuij 
dj,i1x̂2pfyLx, where f  FyF0, and F0  hys2ecd.
The supercurrent in thex direction is given byIs 

1
h k ≠H

≠f l.
At largeU ¿ J, V one can keep the two lowest energ

Fock states at every site, sayjn̄il andjn̄i 1 1l, and project
out all other occupations. In the projected subspac
b

y
i , bi , ni 2 n̄i are replaced by spin half operatorsS1

i , S2
i ,

and Sz
i 1

1
2 , respectively. This transformation maps (1

onto the quantumS  1
2 xxz model [12]

Hxxz 
X
kijl

"
Jz

S2 Sz
i Sz

j 1
J

2S2 seiuij S1
i S2

j 1 H.c.d

#
, (2)

where the Ising coupling isJz  Vy4, and we limit our
discussion to easy plane anisotropyJz # J, in order to
avoid the charge density wave phases [9]. A pure gau
transformationf ! f 1 1 on (1) or (2) leaves their
spectrum invariant.

It is instructive to consider the classical (largeS)
ground state energies of (2) which are adiabatica
© 1998 The American Physical Society
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connected to the ground states atf  i, i  0, 1, . . . .
For lack of space we simplify the demonstration b
settingJz  0 and neglecting charge density waves in th
classical energy

Ei
clsfd  JLyLxdns1 2 dnd cos

√
2psf 2 id

Lx

!
, (3)

where dn ; n 2 n̄. At f  qy2, q integer, pairs of
classical ground states of oppositely directed superc
rents become degenerate, as depicted in Fig. 1.

Tunneling paths between the two classical ground sta
can be constructed as histories of vortices traversing
lattice in the y direction, or nucleation and separatio
of a vortex-antivortex pairs up to the two edges. Th
tunneling matrix elements,unless prohibited by selection
rules,open minigaps at the avoided level crossings. Th
allows their precise computation from the (many bod
eigenenergies as a function of AB flux [14–16].

The Hamiltonian (2) was diagonalized using the Lan
zos algorithm using lattice momentum and total magne
zation to block diagonalize the matrix. For the two le
ladder atSz

tot  0, we find a regime ofJz , J where the
minigaps atf  1y2 remain finite asLx increases, which
indicates a Haldane gap phase in the thermodynamic lim
This phase has been previously established for isotro
integer spin chains [17], and half-odd-integer ladders [1
and chains at finite magnetic fields [10].

To establish this phase we plot in Fig. 2, themagnon
gap [19] at f  1y2 as a function of1yLx, and ex-
trapolate the results to1yLx ! 0. However, for the ex-
trapoltion to be justified, we must be certain that we ha
reached the asymptoticLx ¿ j regime wherej is the

0 1 2 3 4 5

E
?E

0

Φ/Φ
0

FIG. 1. Schematic adiabatic ground state energies as a fu
tion of Aharonov-Bohm fluxEsFd, where E0  Es0d. Thin
lines: Classical energiesEi

cl (3). Thick lines: Quantum adia-
bats of periodsqF0, for q  1, 2, 3. Notice the level crossings
for q fi 1, which are protected by the selection rules (4).
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correlation length. j was calculated from the superfluid
stiffness K  ≠2Ey≠f2, which was found to fit to an
exponentialKsLxd ~ exps2Lxyjd. We find that in the
regime JzyJx [ s0.5, 1d, the correlation length isj [
s4.26, 2.13d which is safely smaller than the larger syste
dimensions. For the purexy model atJz  0, however,j
reaches our largest system size. In this regime, therefo
an extrapolated finite gap at1yLx  0 is not credible.

An easy-plane Haldane phase is explained as follow
The path integral of an even leg ladder ofS  1y2
spins can be mapped onto a classical partition funct
of an O(2) relativistic field theory in two dimension
[13,17]. Its temperatureT2D scales asymptotically as,
sSLyd21 [21]. This suggests that below a certain spin si
and ladder width, a disordered phase with exponentia
decaying correlations is possible, which translates into
finite gap for excitations and vanishing stiffness for lon
ladders. Above a critical widthLy . LKT

y , correlations
should decay as a power law with a finite (1D) superflu
density4p2rs  limLx!`sLxKd . 0.

Selection rules for avoided level crossings.—Vortex
tunneling is enabled by the lattice since it breaks co
tinuos translational symmetry. However, the remainin
discrete translational symmetry imposes selection ru
which are given by the following theorem.

Theorem: For the Hamiltonian (2), atf  qy2, for
integer q, any eigenstatejSz

tot, kx , al where kx is the
lattice momentum in thex direction, andSz

tot is the total
magnetization, is at least twofold degenerateunlessthe
following condition is satisfied:

Sz
tot

Lx
1

kx

p
1 SLy  pyq sp, q integersd . (4)

The theorem is similar to the Lieb, Shultz, and Matt
(LSM) theorem [20] for half-odd-integer spin chains, an
its extension to finite magnetizations by OYA [10]. Here

FIG. 2. Haldane gaps: Magnon excitation energies for two l
Josephson ladders for different anisotropyJzyJ. Here J  1
and Em is the lowest eigenenergy of magnetizationm at flux
F  F0y2. j is the stiffness correlation length given by finite
size scaling of ladder lengths up toLx  12.
4485
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however, we proveexactdegeneracies of the twistedxxz
model onfinite lattices, while previous work concerned
gaplessness in the thermodynamic limit at zero extern
gauge field.

Before providing the proof, let us review three impor
tant classes to which the theorem forS  1y2 applies.

(1) Odd ladders;q  1, kx  0, Sz
tot  0.—The selec-

tion rules (4) cannot be satisfied, implying exact groun
state degeneracy atf  1y2. This is closely related to
the existence of gapless excitations in the thermodynam
limit of short-rangehalf-odd-integer spin chains [20].

(2) Even ladders with integer magnetization pe
rung.—The selection rule is obeyed forq  1, which
implies a minigap at the first avoided crossing of th
ground states. If this minigap survives theLx ! ` limit,
the system is in the Haldane gap phase.

(3) Even ladders with rational magnetization pe
rung.—The selection rule is obeyed only for som
q . 1. This gives rise to afractional AB periodicity of
the ground state.

Proof: The twist operator is defined as

Ôsfd ; exp

√
2i

2p

Lx
f

X
r

Szsrdx

!
. (5)

In addition, an x-inversion operator Ix is defined
IxSa

x,yIx  Sa
2x,y. For any statec0  jSz

tot, kx , al, we
define the “q-conjugated” statecq as

jcql  Ôs2qdIxjc0l . (6)
Lemma (degeneracy):

kcqjHsqy2d jcql  kc0jHsqy2d jc0l . (7)
The lemma is proved by a direct substitution of (6) i
(7) noting thatOsfd is the explicit gauge transformation
on H,

Hsfd  Ôs2fdHs0dÔsfd , (8)
and using the identitiesIxOsfdIx  Os2fd, and
fHs0d, Ixg  0.

The theorem is proved by showing thatc0 will be
transformed by “q conjugation” into an orthogonal state
kcq j c0l  0 unless the selection rule (4) is obeyed. Th
unit lattice translation in thex direction isTx. We make
use of the two identities

TxÔs2qdT21
x  exp

°
i2pqSz

totyLx 1 i2pqSLy

¢
3 Os2qd , (9)

IxTxIx  T21
x .

The lattice momentum ofcq is given by

Txjcql  exp

√
2i

2pq
Lx

Sz
tot 1 i2pqSLy 1 ikx

!
jcql .

(10)
It follows that kcq j c0l  0 unless the momentum differ-
ence dkx  2psqSz

totyLx 2 qSLyd 1 2kx is an integer
multiple of 2p, which proves selection rules (4). Q.E.D

Translating back into the boson language, we consid
the ground state atf  0, with kx  0, and excess Bose
4486
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. The selection rule implies that as

f is increased, the adiabatic ground state passesq 2 1
exact level crossings before reaching the first miniga
allowed by (4). Hence it is clear that the ground state
adiabatic periodicity in AB flux isqF0. Figure 1 depicts
the ground-state evolution for the casesq  1, 2, 3. The
critical current is bounded by

Icr sqd # sJyh̄dLydns1 2 dnd sin

√
p

Lx
q

!
, (11)

which holds up toq  Lxy2 where the bound coin-
cides with the classical critical currentIcl

cr  sJyh̄d 3

Lydns1 2 dnd.
At q  1 when conditions for the Haldane phase are

met, a finite gap opens, and the stiffness constant vanish
exponentially withLx. HenceIcr would similarly vanish
in the thermodynamic limit.

In Fig. 3 the schematic structure of the critical curren
is plotted against the Cooper pairs density for a Josephs
ladder withLx  20. Notice the sharp dips in the critical
current at rational densities which obey the selectio
rule. For weak easy plane anisotropy, these minima a
expected to vanish in the thermodynamic limit, reflecting
vanishing stiffness and gapped excitations at these poin

The classical Josephson frequency of an array of leng
Lx array isfcl  2eVyhLx , whereV is the total voltage
drop in thex direction. However, at rational densities
nq  pyqLy, for bias current slightly aboveIcr snqd, an ac
Josephson effect should be observed with frequencyfq 
2eVyqh. This could be pictured as current oscillations
caused by moving on the adiabatic curves of Fig. 1
Alternatively, this effect could perhaps be better detecte
as fractional Shapiro steps in an external high frequenc
electromagnetic field [22].

FIG. 3. Schematic diagram of critical currents versus Coope
pair density n for an array of sizeLx  20 and Ly  2.
Rational numberspyq  nqLy , which label the dips atnq, are
indicated. The classical critical current is depicted by a thin
line. Above the critical currents atnq, fractional ac Josephson
frequencies are expected at2eVyhq. Spatial disorder and
finite temperature are introduced qualitatively by broadening o
the dips.
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Experimental realization.—One of the experimental
setups described in Ref. [4], has individual gate voltag
probes which control the Cooper pair density at eac
island to high accuracy. The short-range Bose Hubba
model for this type of JJA can be justified if the ratio
of interisland capacitance to gate capacitance obeyse 
CyC0 ø 1. The junction parameters reported in Ref. [4
were C0  0.64 fF, and C  1.0 fF, and J  0.63 K
whereJ is the Josephson coupling between islands. Th
implies e  1.56. To reach the desired regime, JJA
parameters should be pushed to obeyCyC0 # 0.1. To
lowest order ine, the interactions of Eq. (1) are given by
U ø 2e2s1 2 4edyC0 and V ø e4e2yC0, respectively.
The demandU ¿ V is automatically satisfied.

In order to map (1) to (2), we must demand thatU ¿
J. The easy-plane anisotropy regime is given byV # 4J,
i.e., ee2yC0 # J ø 2e2s1 2 4edyC0. As emphasized
earlier, these bounds are crucial for eliminating charg
density phases, that also exhibit critical currents dips
commensurate fillings.
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