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Haldane Gap and Fractional Oscillations in Gated Josephson Arrays
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An analogy between the twisted quanturry model and a gated Josephson junction array is used
to predict sharp structure in the critical currents versus gate voltage, and fractional ac Josephson
frequencies. We prove selection rules for level crossings which imply fractional periodicities of ground
states with varying Aharonov-Bohm flux. Extrapolated numerical diagonalization on ladders indicates a
Haldane gap at moderate easy-plane anisotropy, with vanishing superfluid stiffness. Physical parameters
for experimental realization of these novel effects are proposed. [S0031-9007(98)07646-7]

PACS numbers: 74.50.+r, 75.10.Jm

Quantum phase fluctuations in superconductors caits classical value) that decays exponentially with It
drive zero temperature superconductor to insulator tranis also characterized by a high ac Josephson frequency
sitions [1], as observed, for example, in disordered filmsfy, = 2¢V /h, where the classical Josephson frequency of
[2]. Their effects can be enhanced and studied in detaihe array isf.; = 2¢V /hL,.
using a weakly coupled, low capacitance Josephson junc- (ii) Fractional oscillations—At fractional Cooper pair
tion array (JJA) [3,4]. densitiesn = p/(qL,), p,q integers, selection rules de-
Theory of quantum phase fluctuations has used modeléved below produce sharp dips in the critical currént
of interacting bosons on a lattice [5], and quantum dy-versus gate potential. In these states, ac Josephson os-
namics of vortices [6]. The latter approaches have progeillations appear a&;ubharmonidrequencieg”g = fo/q.
posed collective phases such as vortex Bose condensatiéor g > 1 the ground states are at legstold degenerate,
[7] (for the insulator), and fractional quantum Hall phasesand qualitatively different from the = 1 Haldane phase.
(for JJAs in magnetic field [8]). We conclude by proposing physical parameters for
Lattice bosons map onto effective models of quanturexperiments.
spins. A popular approximation to the phase diagram is The short-range Bose-Hubbard (BH) model is given by
mean field theory on the classical (lar§¢ spin model o
[9]. In the strongly quantum regime, the same mappingHBH = UZ_”? + Z[V”i”j — 2J(e 9"b;rbj + Hol.
relates the Mott insulator (integer bosons per site) and the ' (@) @
quantum disordered antiferromagnet [5]. t ) ;
In this paper we explore the quantum magnetism analvhere b; creates a boson (Cooper pair [11]) at site
ogy further. We focus our attention to the effects of a" @ Square lattice with nearest neighbor bofigis and
periodiclattice on superconductivity. We study the quan-7: = b; b;. The lattice is placed on a cylinder penetrated
tum xxz model with twisted boundary conditions [i.e., an Py an AB flux ®, introduced via the gauge phasts =
Aharonov-Bohm (AB) flux] both numerically and analyti- 8;.i+:27¢ /Ly, Where ¢ = ®/®,, and &y = h/(2ec).
cally. The many body spectrum, vortex tunneling rates,The supercurrent in thedirection is given by, = %(%}.
and superfluid stiffness are computed for different lattice AtlargeU > J,V one can keep the two lowest energy
dimensions and magnetization (Cooper-pair density). Weock states at every site, shy) and|i; + 1), and project
prove general selection rules for symmetry protected levebut all other occupations. In the projected subspace,
crossings. This rule imposdsactional periodicities of b;r,b[,ni — i; are replaced by spin half operatdis, S;
the ground state as a function of AB flux, and is closelyand SF + %, respectively. This transformation maps (1)
related to the “fractionally quantized phases” found bypnto the quantuns = %xxz model [12]

Oshikawa, Yamanaka, and Affleck (OYA) in magnetized J? J .

Heisenberg chains [10]. H™ = Z[ﬁsfsf by (e8] S; + H.c.)}, 2
The following effects may be observed in JJAs of (i)

dimensiondL, X L,. where the Ising coupling ig* = V /4, and we limit our

(i) Haldane gap—Our numerical results for thexz  discussion to easy plane anisotropy =< J, in order to
model on a two leg ladder find a Haldane gap, at leasavoid the charge density wave phases [9]. A pure gauge
for weak easy plane anisotropy. The lowest gap remaingansformation¢ — ¢ + 1 on (1) or (2) leaves their
finite, while the superfluid stiffness decays exponentiallyspectrum invariant.
for L, — . In a finite size system, the Haldane phase It is instructive to consider the classical (lardgg
is indicated by a suppressed critical current (relative tayround state energies of (2) which are adiabatically
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connected to the ground states &t=i, i = 0,1,....  correlation length. ¢ was calculated from the superfluid
For lack of space we simplify the demonstration bystiffnessK = 9?>E/d¢?, which was found to fit to an
settingJ? = 0 and neglecting charge density waves in theexponentialK(L,) « exp(—L,/£). We find that in the
classical energy regime J%/J* € (0.5,1), the correlation length i €
‘ 2m(p — i) (4.26,2.13) which is safely smaller than the larger system
Ey(¢) = JLyL,6n(1 — én)cof ——— |, (3)  dimensions. For the purey model at/* = 0, however &
reaches our largest system size. In this regime, therefore,
where §n = n — . At ¢ = q/2, q integer, pairs of an extrapolated finite gap &fL, = 0 is not credible.
classical ground states of oppositely directed supercur- An easy-plane Haldane phase is explained as follows.
rents become degenerate, as depicted in Fig. 1. The path integral of an even leg ladder §f= 1/2
Tunneling paths between the two classical ground statespins can be mapped onto a classical partition function
can be constructed as histories of vortices traversing thgf an O(2) relativistic field theory in two dimensions
lattice in they direction, or nucleation and separation[13,17]. Its temperatur@?P scales asymptotically as
of a vortex-antivortex pairs up to the two edges. The(sz,)~! [21]. This suggests that below a certain spin size
tunneling matrix elementsnless prohibited by selection and ladder width, a disordered phase with exponentially
rules,open minigaps at the avoided level crossings. Thislecaying correlations is possible, which translates into a
allows their precise computation from the (many body)finite gap for excitations and vanishing stiffness for long
eigenenergies as a function of AB flux [14—-16]. ladders. Above a critical widtiL, > LXT, correlations
The Hamiltonian (2) was diagonalized using the Lanc-should decay as a power law with a finite (1D) superfluid
zos algorithm using lattice momentum and total magnetidensity4 72 ps = limy _.(L,K) > 0.
zation to block diagonalize the matrix. For the two leg Selection rules for avoided level crossingsVortex
ladder atSg,, = 0, we find a regime off* < J where the tunneling is enabled by the lattice since it breaks con-
minigaps akp = 1/2 remain finite ad., increases, which tinuos translational symmetry. However, the remaining
indicates a Haldane gap phase in the thermodynamic limidiscrete translational symmetry imposes selection rules
This phase has been previously established for isotropighich are given by the following theorem.
integer spin chains [17], and half-odd-integer ladders [18] Theorem: For the Hamiltonian (2), at = ¢/2, for
and chains at finite magnetic fields [10]. integer ¢, any eigenstatelSi,, k., @) where k, is the
To establish this phase we plot in Fig. 2, theagnon |attice momentum in the direction, andsZ, is the total

gap [19] at¢ = 1/2 as a function ofl/L,, and ex- magnetization, is at least twofold degeneratdessthe
trapolate the results to/L, — 0. However, for the ex- following condition is satisfied:

trapoltion to be justified, we must be certain that we have 5 X
reached the asymptoti, > ¢ regime whereé is the L+ =+ 8L, =p/q (p,q integers. (4)
o

X

X

The theorem is similar to the Lieb, Shultz, and Mattis

(LSM) theorem [20] for half-odd-integer spin chains, and
its extension to finite magnetizations by OYA [10]. Here,
1
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FIG. 1. Schematic adiabatic ground state energies as a fun¢G. 2. Haldane gaps: Magnon excitation energies for two leg
tion of Aharonov-Bohm fluxE(®), where E, = E(0). Thin  Josephson ladders for different anisotrofyJ. HereJ = 1
lines: Classical energieB., (3). Thick lines: Quantum adia- and E,, is the lowest eigenenergy of magnetizatianat flux
bats of periods;®,, for ¢ = 1,2,3. Notice the level crossings ® = ®,/2. ¢ is the stiffness correlation length given by finite
for ¢ # 1, which are protected by the selection rules (4). size scaling of ladder lengths up Ig = 12.
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however, we provexactdegeneracies of the twistadz
model onfinite lattices, while previous work concerned

p

density én = L The selection rule implies that as
¢ is increased, the adiabatic ground state pagsesl

gaplessness in the thermodynamic limit at zero externatxact level crossings before reaching the first minigap

gauge field.

Before providing the proof, let us review three impor-
tant classes to which the theorem for= 1/2 applies.

(1) Odd laddersy = 1, k, = 0, S¢, = 0.—The selec-

tion rules (4) cannot be satisfied, implying exact ground-

state degeneracy at = 1/2. This is closely related to

the existence of gapless excitations in the thermodynamic

limit of short-rangehalf-odd-integer spin chains [20].

allowed by (4). Hence it is clear that the ground state
adiabatic periodicity in AB flux isy®. Figure 1 depicts
the ground-state evolution for the casgs= 1,2,3. The
critical current is bounded by

>, (11)

which holds up tog = L,/2 where the bound coin-

Iee(q) = (J/R)LySn(1 — &n) sin(Li q

X

(2) Even ladders with integer magnetization percides with the classical critical curredf! = (J/#) X

rung.—The selection rule is obeyed far = 1, which

Lyén(l — én).

implies a minigap at the first avoided crossing of the At 4 = 1 when conditions for the Haldane phase are

ground states. If this minigap survives thg — < limit,
the system is in the Haldane gap phase.

(3) Even ladders with rational magnetization per
rung—The selection rule is obeyed only for some
g > 1. This gives rise to dractional AB periodicity of
the ground state.

Proof: The twist operator is defined as

O(¢) = ex;(—izL—”¢ZSZ(r)x). (5)

In addition, an x-inversion operator/, is defined
1,821, = S . For any stateg = S5, k., @), we
define the §-conjugated” state), as

lpy) = O(=@)L]o) . (6)
Lemma (degeneracy):
(WqlH(q/2) [hg) = ol H(q/2) lho) . (7)

The lemma is proved by a direct substitution of (6) in
(7) noting thatO(¢) is the explicit gauge transformation
OnH,
H(p) = O(=¢)H(0)0(¢),
and using the identitiesl,O(¢)I, = O(—¢),
[H(()), Ix] = 0.
The theorem is proved by showing that will be

transformed by ¢ conjugation” into an orthogonal state

(8)

and

(g | o) = 0 unless the selection rule (4) is obeyed. The

unit lattice translation in the direction isT,. We make
use of the two identities

T.0(—q)T; ' = expi2mgSi, /L, + i2mqSL,)
X 0(=q), 9)
LTI, =T "

The lattice momentum af, is given by
.27mq : :
Tx|',/fq> = ex[(—l L—q Stor T i2mqSLy + lkx) |1,//q).
X

(10)
It follows that(y, | o) = 0 unless the momentum differ-
ence 6k, = 2m(qS%,/Lx — qSLy) + 2k, is an integer
multiple of 27, which proves selection rules (4). Q.E.D.

met, a finite gap opens, and the stiffness constant vanishes
exponentially withL,. Hencel., would similarly vanish
in the thermodynamic limit.

In Fig. 3 the schematic structure of the critical current
is plotted against the Cooper pairs density for a Josephson
ladder withL, = 20. Notice the sharp dips in the critical
current at rational densities which obey the selection
rule. For weak easy plane anisotropy, these minima are
expected to vanish in the thermodynamic limit, reflecting
vanishing stiffness and gapped excitations at these points.

The classical Josephson frequency of an array of length
L, array isf. = 2eV/hL,, whereV is thetotal voltage
drop in thex direction. However, at rational densities
ny = p/qL,, for bias current slightly abovg,(n,), an ac
Josephson effect should be observed with frequéfijcy
2¢V /qh. This could be pictured as current oscillations
caused by moving on the adiabatic curves of Fig. 1.
Alternatively, this effect could perhaps be better detected
as fractional Shapiro steps in an external high frequency
electromagnetic field [22].
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FIG. 3. Schematic diagram of critical currents versus Cooper
pair densityn for an array of sizeL, =20 and L, = 2.
Rational numberg /g = n,L,, which label the dips at,, are
indicated. The classical critical current is depicted by a thin
line. Above the critical currents at,, fractional ac Josephson
frequencies are expected arV/hg. Spatial disorder and

0

Translating back into the boson language, we considégnite temperature are introduced qualitatively by broadening of

the ground state ap = 0, with k, = 0, and excess Bose
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Experimental realizatior—One of the experimental A. Kampf, A. van Otterlo, and G. Shon, Phys. Sée,
setups described in Ref. [4], has individual gate voltage 159 (1992); R.T. Scalettar, G.G. Batrouni, A.P. Kampf,
probes which control the Cooper pair density at each  and G.T. Zimanyi, Phys. Rev. Bl, 8467 (1995).
island to high accuracy. The short-range Bose Hubbard[6] G.E. Volovik, JETP Lett.15, 81 (1972); P. Ao and D.J.
model for this type of JJA can be justified if the ratio ~ rhouless, Phys. Rev. Lett2, 132 (1994); D.P. Arovas
of interisland capacitance to gate capacitance oleeys '?An%JAA'F'.:rﬁ're' Pr('jys[') Ff_ievl._!lﬁ 1&?8 (1297)' & 2756
C/Cy < 1. The junction parameters reported in Ref. [4] [71 M.P. A Fisher and D.H. Lee, Phys. Rev. 8,

= . - (1989).
were Cp = 0.64 fF, and C = 1.0 fF, and J = 0.63 K [8] A. Stern, Phys. Rev. B0, 10092 (1994).

whereJ is the Josephson coupling between islands. ThiS[g] T. Matsubara and H. Matsuda, Prog. Theor. PHy;.569
implies € = 1.56. To reach the desired regime, JJA (1956); K. S. Liu and M. E. Fisher, J. Low. Temp. Phys.
parameters should be pushed to olieyC, = 0.1. To 10, 655 (1973); A. Aharony and A. Auerbach, Phys. Rev.
lowest order ine, the interactions of Eq. (1) are given by Lett. 70, 1874 (1993).

U =~ 2¢%(1 — 4€)/Cy and V = e4e?/Cy, respectively. [10] M. Oshikawa, M. Yamanaka, and |. Affleck, Phys. Rev.

The demand/ > V is automatically satisfied. Lett. 78, 1984 (1997).

In order to map (1) to (2), we must demand thats>  [11] While (1) is sometimes used as a coarse grained theory
J. The easy-plane anisotropy regime is givenvbys 4. of homogenous superconductors, it does not contain the
ie., €e2/Co=J < 221 — 4€)/Co.  As emphasized fermion (pair breaking) excitations.

earlier, these bounds are crucial for eliminating char élZ] For bipartite lattices, we replace the negative Bose
’ 9 9 hopping by a positivexy exchange using a sublattice

density phases, that also exhibit critical currents dips at | io4ion [13].

commensurate fillings. [13] A. Auerbach, Interacting Electrons and Quantum Mag-
Useful discussions with J. Avron, M. Greven, A. Stern, netism (Springer-Verlag, New York, 1994), Ch. 3; Chia

A. van Oudenaarden, and S.-C. Zhang are gratefully  Laguna lecture notes, cond-mat/9801294.
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