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The long-standing problem of the Hall resistivify,, in the Hall insulator phase is addressed
using four-lead Chalker-Coddington networks. Electron interaction effects are introduced via a finite
dephasing length. In the quantum coherent regime, we find ghatscales with the longitudinal
resistivity p,., and they bothdiverge exponentially with the dephasing length. In the Ohmic limit
(where the dephasing length is shorter than the Hall puddle gizejemains quantized and independent
of p,.. This suggests a new experimental probe for dephasing processes. [S0031-9007(99)08448-3]

PACS numbers: 73.40.Hm, 72.20.My

The ideal quantum Hall (QH) effect can be defined adating phase. Differing from a previous calculation [11],
the simultaneousquantization of Hall conductance and we directly compute the four-terminal resistandesg,
vanishing longitudinal conductance: a, B = x,y for random CC networks using the Landauer-

Gy = ve*/h, G, =0, (1) Bittiker quantum transport theory. Distributions &f 5
q are obtained for different linear system siZzesnd mag-
r{1etic field parameterg, defined below.

Our key result is that, at largé, the Hall resistance
R, (6,L) of the CC network changes from the asymp-
ically approaching quantized valug/ve? in the QH

phase to arexponential divergenci the insulator [16].

where v, the filling factor, is some integer or od
denominator fraction. Consider a perfect QH sample wit
four Ohmic leads. By Kirchoff's laws, it is easy to see
that, while themeasuredG,,, G.., and R,, depend on

the lead resistances, the Hall resistance is independent

them and is precisely quant|zed2at Second, effects of inelastic scattering due to electron-
Ry = h/ve”. (2)  electron and electron-phonon interactions are introduced
This robustness oR,, generalizes to large circuits, as via a phenomenologicalephasing lengtt,, [3,17] (for
proven by Shimshoni and Auerbach [1] for the two convenience, we measure all physical length in the units
dimensional Ohmic puddle network model. However, asof typical puddle sizely). For [, shorter than the
we shall see below, the quantum interference betweepuddle size (phase-incoherent limit), we map the chiral
different tunnel junctions (absent for the Ohmic transportnetwork to the Ohmic puddle network model [1], which
spoils the quantization at,, [2]. has a quantized Hall resistance. In general, the macro-

Quantum interference also drives localization and rescopic resistivity is approximately given by an Ohmic re-
lated 7 = 0 QH-to-insulator transition [3,4]. This has sistor network formed by elements of size= [, with
been confirmed by explicit calculations of the localizationthe computed distributions af,z. The Ohmic network
length exponents, in quasiclassical approximation [5] anghroblem is solved using percolation theory following Am-
numerically [6,7] on Chalker-Coddington (CC) networks. begaokar, Halperin, and Langer [18] (AHL). This ap-

There is no consensus, however, about interferencproach, justified by the wide distribution &f,, yields the
effects on the Hall resistivity; its value in the insulating ensemble of elements which determine the Hall voltage.
phase is still controversial. Several theories expect it to b&he macroscopic Hall resistivity,, is obtained as an av-
finite [8,9] pI~° < o, or even quantized [10,14]° =  erage over this ensemble. We show that the divergence
h/e? (“semicircle law”). Experimental observations also of both Hall and longitudinal macroscopic resistivities in
vary: some data can be fit by the Drude form [12,13]the insulator is consistent with one length scé{e). We
pxy < B, while others see a weaker magnetic fi¢R)  conclude with the suggestion that,(7) could serve as
dependence, witp,, nearly quantized [14]. an experimental probe of the dephasing length.

In contrast, Entin-Wohlmast al. [15] pointed out that Four-terminal CC network—Consider a square CC
pry=° is not a self-averaging quantity in the insulator. network in Fig. 1, with corner puddles serving as exter-
Using a model of local hopping in an external magneticnal leads. Carriers, described at a given energy by com-
field, they concluded that,, diverges in the limit7 —  plex amplitudedA}}, wherea, p are the edge and puddle
0. Unfortunately, the applicability of this model to QH labels, respectively, can propagate only in one direction
systems is somewhat questionable. around the puddles, as indicated by arrows. The corre-

The purpose of this paper is to determine the low temsponding currents are jusf = IAglz. Edge amplitudes
perature Hall resistivity in the magnetic field driven insu-across each tunnel junctiong are related by a unitary

0031-900799/82(6)/1253(4)$15.00 © 1999 The American Physical Society 1253



VOLUME 82, NUMBER 6 PHYSICAL REVIEW LETTERS 8 EBRUARY 1999

Ain Aot and right sides _of the ;ample. (sc_ee Fig. ;). We used

p q the transfer-matrix technique with intermediate orthogo-

sP9) nalizations [22] to reduce numerical errors for large sys-
tems. Then the closed edges were “linked” by eliminating
the corresponding pairs of incoming and outgoing ampli-
tudes. This resulted in a reducddx 4 transfer matrix,
b Aout Ain with which the full scattering matrixs;; was computed.

P a The numerical accuracy was controlled by checking the
FIG. 1. (a) Four-terminal = 6 CC network. QH puddles unitarity of S;;, and by test runs at quadruple accuracy.
are shaded. Edge currents with amplitudéspropagate along To obtain the distributions oR,, andR,, for differ-
the arrows. (b) The incoming and outgoing amplitudes at theant values of9 and the system size, we repeated each
tunnel junction between puddlgs and g are related by the calculation up tol0° times, taking(ﬁ’xx,i?yy) as two dif-
scattering matrix (3). ferent members which have the samRg. In the insu-
lating phased > 6., R., has a very wide, resembling
log-normal, distribution over several decades, as generally
expected in a localized insulator phase [15]. The Hall re-
A% = sif,‘f)eiﬁuw , sistanceR,, is seen to have a much narrower distribution,

r=p.yq 3) bL_Jt with mean and variancg also _increa_sing exponentially
o) — ( C0S0,,  Sin6,, ) with the size of the system in the insulating phase.

scattering matrix (79,

—sing cos d Phase-incoherent network modelin the opposite

pq pPq imi i i i i

limit, we consider a network where inelastic mechanisms
where 6,, € [0 + 6,0 — 6], and edge phase$ €  completely destroy quantum interference between dif-
[0,27) are independent random variables; we have choseferent tunnel junctions. In this case, different tunneling
[7] 6 = 0 to reduce the statistical errors. The magneticevents happen independently, and the incoming and
field paramete® can be tuned across the QH-insulatoroutgoing currents are related at each junction,
transition atf, = /4. In the QH regimef < 6. the }
neighboring leads are connected by highly transmitting = IshAPIn, (6)
edge states, while the insulating phase< 6. consists r'=p.q
of weakly connected puddles without global edge statesyhere the tunneling matrix element&’? are given by
Near the transitiong — 6. < B — B.. Away from the = gq (3) According to Eq. (4), local chemical potentials at
transition, tunneling across saddle points yields asymptotigach edge are proportional to the corresponding currents.
cally tar(§) = e A5 [19]. _ __Thus, the dissipative and Hall voltages at each junction
The scattering relationships provide a set of linearyq related to the tunneling currehy, as

equations for allA7 which depends on the incoming Vs — p g VE — sian(B) (h/ved) 7
amplitudesA™ in the external leads = 1-4. The global pa — P4TPe pa = SIGNB) (/ve)lpg, (7)
scattering matrixS;;[6,, ¢] relates the amplitudes at the whereR,, = (h/Vez)_CO_tZqu is symmetric under the re-
external leadsA%" = j_l S;A", so that the current Versal of the magnetic field. These local relations reduce

i - o

transmission matrif;; = |Sij|2 defines the probability of the network model to the Ohmic puddle network model

scattering from incoming channélto outgoing channel ©f Ref. [1], for which Ry (ly = ly) = (h/ve?) for any
j. We assume that the external leads, also formed b alization of{, ¢}. This model equally applies to in-
an incompressible QH liquid, are in equilibrium, which t€9€r and fractional QH regimes. Equations (7) also im-

implies that the chemical potentials of their edges are [20P!Y that the phase-incoherent network model has an exact
turrent-voltage duality [2,10,11], which interchanges the

ui = (h/ve)l. (4) QH and insulating regions and simultaneously inverts the
The resistance tensor is now given by a compactifiedesistancer,, associated with each junction. This dual-
version of the Buttiker-Landauer formula [21]: ity also inverts the macroscopic dissipative resistance of
Rap = (h/ve?)AL (1 + T)P[P(1 — T)P]_lpAB’ the system, determined, according to the AHL percolation
, , argument [18], by the median of the distributionR, .
Ay =(1,0,-1,0), Ay =1(0,1,0,—1), To describe the regime of intermediate dephasing

where the vectord!, are transposed,, and the operator length,ly < I, < «, wherely is a typical puddle size,

P projects out the zero eigenvectdt, 1,1,1) of the  we use finite-size four-lead CC networks. In the simula-

matrix 1 — T (matrix S is unitary). It is easy to show tion, the phase breaking occurs only at the leads, and we

that the field-antisymmetrized Hall resistanceRs, =  defineL = /,. Square blocks of linear sizég or larger

(Ryy — Ryx)/2. connect as Ohmic resistors, with the resistarit,gs(L =
Numerically, we calculated thé. X L transfer ma- [,) chosen from the numerically determined distribution.

trix relating the amplitudes o open wires at the left Ignoring relatively small Hall voltages at this stage, we
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notice thatR,, is exponentially widely distributed. So, we with k = 0.32-0.35 (Fig. 3). This divergence, one of the
can again follow AHL and insert all resistors in increas-primary results of this paper, contradicts the expectations
ing order ofR., until the percolation threshold is reached. [8—11] of finite Hall resistivity in the insulator af, —
Here, we assume a percolation threshold of 50%, applic. Our results agree with the conclusion of Ref. [15],
cable for self-dual lattices. Thus the last resistors taalthough here we have used a different model, applicable
connect the percolating cluster (PC) have the mediafor transport in quantizing magnetic fields.
valueR™4. Since all higher resistorB,, > R™¢ trans- Figure 2 also showgp,, in the metallic QH phase for
port negligibly little current, they can be discarded. Byé# > 6.. In this phase, as expecteg,,(L) approaches
AHL, and subsequent numerical confirmations [18], thethe quantized value at large system sizes. We did not
macroscopic resistivity of the network is simpps, =  attempt to determine the corresponding correlation length
RIed(],). since our geometry has narrow leads (see Fig. 1). We
The Hall resistivity p,, can now be determined as did, however, check that our results are not limited to
the weighted average over the PC. Since, numericallysystems with narrow leads by making a limited set of runs
|Ryy| < R,,, and we draw no current from the Hall leads, for a special self-dual network geometry, which remains
it is safe to assume that the Hall voltage fluctuations acrosslentical under the interchange of QH and insulating
the PC are averaged out by secondary local currents, amdgions and the replacemeht— 26, — 4.
the macroscopic Hall resistivity can be estimated by the We also attempted to suppress the quantum interference
:;1veratgepx<ymedl = (Ryy)r..<rm. As an upper bound, we by calculating the ensemble averag@d;), which is for-
also calculate the average Hall resistance of the necks afally equivalent to considering the same noninteracting
the PC given bya;f;ed = (Ryy)r, ~grmes, Which gives similar  system at very high temperatures. This averaging resulted
results as shown below. in both Hall and longitudinal resistance of an insulating
Results—In the localized regimef > 6., both p,,  phase much smaller than the average quantum values.
[7] and p,, diverge exponentially at largé,. Both  However, the specific values of these resistances differed
resistivities fit very well [see Fig. 2 for the fit ¢f,,(L)]to  significantly from the values obtained numerically for the
an exponential scaling function with finite-size correction:phase-incoherent networks of identical geometry; particu-
p(L) ~ AgL? exdL/&(0)], (8) larly, the Hall resistance was not quantized, with the offset

h is a0-ind dent ¢ determined by th increasing into the insulating phase. This demonstrates
wherey 1S a g-independent exponent determined by ey, a1 > 0, without inelastic scattering quantum inter-

geometry of_t_he system,_arg‘cw) is the localization length ference cannot be completely suppressed.

(bo_th quantities are defined _separately_ﬁq; and p.y). In the fractional Hall effect regime, electron-electron in-
AS ||Iust_rated in the inset of F!g. 2, th_e dlverg_ence of IOOthteraction effects are primarily threefold: (i) stabilization
correlatqr;/lgength§ ag — 6. 1S cqnglstent withe'(6) ~ of fractional» < 1 QH phases in the puddles, (i) renor-
(O B 0)~""". _Th|s form for £, Is in agreement W'th. malization of interpuddle electron tunneling rates, and
previous studies [6’7’_23]' The _fact that the correlatlor’k“i) dephasing of charge carriers by inelastic scattering.
!eng_th for p,, also _d!ver_ges with the same exponent a oy, temperatures, the second effect is expected to be
implies that the transition is actually governed by a Slnglefinite, since infrared divergence of the tunneling ampli-

I ~ k —_ . . e . .
length scaleg (), and asymptotically.y ~ (px.) * tudes is cut off by the finite size of the puddles. In this
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FIG. 2. QH to insulator transition in finite-size scaling. Solid Pxr

lines are the best fits of Eq. (8), and dashed lines are guidesIG. 3. Asymptotic correlation betweep,, and p,, deter-
to the eye. Inset: The resulting inverse correlation lengths arenined by two averaging procedures (see discussion in teit).
consistent with the critical exponent= 7/3. is the slope on the log-log plot.
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