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Oscillating Superfluidity of Bosons in Optical Lattices
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Following a suggestion by Orzel et al. [Science 291, 2386 (2001)], we analyze bosons in an optical
lattice undergoing a sudden parameter change from the Mott to superfluid phase. We introduce a
modified coherent states path integral to describe both phases. The saddle point theory yields collective
oscillations of the uniform superfluid order parameter. We calculate its damping rate by phason pair
emission. In two dimensions the overdamped region largely overlaps with the quantum critical region.
Measurements of critical dynamics on the Mott side are proposed.
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istic Gross-Pitaevskii action, with one (gapless) phase
With recent experimental developments of ultracold
atoms in optical lattices, the fascinating phenomena of
Bose-Einstein condensation have entered the domain of
strong interactions [1,2]. Macroscopic quantum states can
be effectively manipulated, and time evolution of order
parameters (OP), adiabatic [2] or nonadiabatic [1], can be
probed by varying the optical lattice parameters.

In one such experiment, the strength of a three-
dimensional optical lattice potential was tuned to induce
a quantum phase transition between a Mott insulator and
a superfluid of bosons [2]. This phase transition has been
extensively analyzed theoretically [3–7] and numerically
[8]. The two phases are characterized by markedly differ-
ent many body states. The Mott phase, at large lattice
potential barriers, is well described by definite real space
occupation numbers. The compressible superfluid phase,
on the other hand, sustains long range phase order. This
phase is detected by self-interference patterns after the
gas is released from the trap.

In an interesting proposal, Orzel et al. [1] suggested the
possibility of observing OP time evolution. Basically, the
bosons are prepared in the number squeezed Mott state,
and then the potential is suddenly reduced into the super-
fluid phase. The consequent evolution of the superfluid
order can be deduced from the intensity of interference
patterns appearing when the atoms are released from the
trap at sequential times. This would open up exploration
of a new regime of macroscopic quantum dynamics
[9–11]. The initial questions which come to mind are
the following: (i) Could coherence oscillations be ob-
served? (ii) What would be the time scale of superfluid
OP evolution? (iii) What would be the damping mecha-
nism, and damping rate of such effects?

These are the primary issues addressed in this paper.
We derive the effective Hamiltonian of the superfluid OP
starting from interacting bosons in a periodic lattice. We
find a variational bosonic representation which describes
the phase diagram and treats the elementary excitations
on both the Mott and superfluid phases. In the Mott phase,
the two degenerate gapped excitations become gapless at
the transition. The superfluid phase reduces to a relativ-
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mode and one (gapped) amplitude mode. We obtain a
semiclassical solution of a macroscopically oscillating
superfluid order and calculate its relative damping rate.
This provides an estimate of the experimental regime
where such oscillations should be visible. In two dimen-
sions this region largely overlaps with the quantum criti-
cal region, as we estimate from Ginzburg’s criterion. We
end by commenting on critical dynamics, and how they
might be observed.

The Bose Hubbard model (BHM) describes interacting
bosons in an optical lattice,
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where ni is the boson occupation on site i. The tunneling J
and interactionU are known functions of the microscopic
forces [12]. At integer fillings, �nn � 1; 2; . . . , the BHM
exhibits quantum phase transitions. For large tunneling
(weak optical potential barriers) J �nn 	 U the ground
state is a superfluid (Bose condensed) with long range
phase order. Below a critical tunneling strength J < Jc� �nn�,
bosons are localized in incompressible (integer occupa-
tions) Mott phases.

In the vicinity of the Mott phase, number fluctuations
are small. An effective Hamiltonian truncated into
the subspace of lowest local number states j �nn � 1i;
j �nni; j �nn � 1i, captures the essential correlations around
the transition. The reduced Hilbert space can be repre-
sented by three commuting t bosons j �nn � i � tyij0i,
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large �nn [13], the effective Hamiltonian assumes a par-
ticularly simple pseudospin-one form
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(2)
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The complex superfluid OP field breaks planar spin
symmetry 
�xi� �

����
�nn

p
hS�i i. It is tempting to describe

the action of Heff using spin one coherent states [14].
However, the Mott ground state is perturbatively
connected to the O(2) rotationally invariant stateQ
i jS

z
i � 0i. Thus, it is difficult to describe this phase as

a saddle point of a spin coherent states path integral.
Alternatively we can use modified coherent states de-

fined by

j���; �;�; ��i � f cos��=2�ty0 � ei� sin��=2�
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The mean field theory is similar to previous variational
approaches [4,5]. A homogeneous variational wave func-
tion which captures both phases is j�mfi �
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fluid OP 
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where z is the lattice coordination number. The Mott
phase boundaries found by minimizing evar are given by
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where u � U=4J �nnz. For large �nn (and commensurate den-
sity) the Mott transition occurs at � � 0 and u � 1. For
�nn � 1 it occurs at U � 5:8zJ.

The error incurred by truncation to three states per site
is estimated by comparing (3) with a variational ansatz
which includes 11 occupation states. Even for �nn � 1 we
find a wide regime (u > 0:4) in which the probability
weight of states outside the truncated Hilbert space is
less than 1%. The particle number fluctuation �n < 0:6 in
this range and the error in �n is less than 10%.

To keep the presentation simple, we focus on the limit
of large occupation numbers. This amounts to treating
(2), which we believe retains the correct qualitative dy-
namics even for low occupations.

Excitations.—Consider the canonical transformation
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(6)

with local constraints
P
m b

y
mibmi � 1. The mean field

variational state is simply the Fock state j�mfi �Q
i b

y
0ij0i. The remaining by and by’ bosons create fluctu-
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ations about this state. The next step is to apply the
constraint in (6), and eliminate b0 from the
Hamiltonian [15]:

bymb0 � bym
��������������������������������������
1� byb � b

y
’b’

q
� bym�1� 1

2b
y
b �

1
2b

y
’b’ . . .�: (7)

Truncation at quadratic order is valid provided
hbybi; hb

y
’b’i � 1, which can be tested self-consis-

tently in the regime of interest.
Now we can expand Eq. (2) in terms of the fluctuation

operators b and b’, to obtain a harmonic Hamiltonian
with normal and anomalous terms. It is diagonalized by a
standard Bogoliubov transformation to obtain
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X
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In the superfluid phase, there is an amplitude mode and
phasons
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at the Mott transition and becomes degenerate with !’.
In the Mott phase, the two modes
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are gapped, representing particle and hole excitations.
The local density of fluctuations is found to be relatively
small hbymibmii< 0:08 even at the critical point. This
measures the accuracy of the variational state (3) at least
for the short wavelength correlations. In the critical re-
gion, which will be estimated later, we do not expect this
mean field theory to yield correct exponents for the
vanishing of the gap or the long wavelength correlations.

Using the modified coherent states j� i , we can con-
struct a path integral for the evolution operator as follows.
A resolution of identity is found to be of the formZ %

0
d�

Z %

0
d�

Z 2%

0
d’

Z %=2

�%=2
d�M���j�ih�j � I ;

(11)

with the invariant measure M��� � C cos��3 cos�� 1�.
It is also straightforward to calculate the kinetic term

h�j
d
dt

j�i � i sin2��=2�� _�� � cos� _’’� � �i��t�: (12)

Equations (11) and (12) are the necessary ingredients for
the path integral

U�t� �
Z

D�M��� exp
�
i
Z t

0
dt0���t0� �H�t0��

�
: (13)
250404-2



0 10 20 30
0

0.5

1

0 0.5 1 1.5

0

ψ/ψ
0
 

ψ/ψ
0
 

t⋅∆ 

E
MF

 (a) 

(b) 

(2) 

(1) (3) 

(1) 

(3) (3) 

(1) (1) 

FIG. 1. Oscillations of the superfluid OP 
 in a system
prepared in the Mott state. (a) Mean field energy, where the
equilibrium ground state is marked by point (2). (b) Solutions
of the saddle point Eq. (15), which exhibits macroscopic
oscillations. The dashed line indicates the superfluid OP in
the ground state (2).
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We now focus on the commensurate case � � 0. An
action in terms of 
 �

����
�nn

p
sin�e�i’ is obtained by inte-

grating over the massive fields � and �. Expanding to
fourth order in j
j and taking the continuum limit, we
arrive at a ‘‘relativistic’’ Gross-Pitaevskii action

S �
1

8Jz �nn2

Z t

0
dt0

Z
ddrfj _

j2 � �2J �nn�2zjr
j2

� �2J �nnz�2�u� 1�j
j2

� �Jz�2 �nnuj
j4g: (14)

This derivation is valid to second order in the dimension-
less distance to the critical point j1� uj.

Saddle point collective oscillations.—The time evolu-
tion of the system after a sudden change of parameters
from the Mott to the superfluid state is determined by
the saddle point of the action (14). The equation of motion
for the OP, rescaled by its equilibrium value, j
0j ����������������������������
2 �nn�1� u�=u

p
is given by

!

 � c2r2� � 1
2�

2��1� j�j2�: (15)

The constants � � 2
���
2

p
Jz �nn

������������
1� u

p
and c � 2J �nn

���
z

p
are

identical to the expressions below (9) to leading order in
j1� uj. For a uniform field configuration (15) is readily
integrated to give the nonlinear oscillations shown in
Fig. 1(b) whose time scale is set by �. Figure 1(a) shows
the motion of the OP on the potential landscape.

Restriction to a uniform field is not justified a priori. In
particular, topological defects may be trapped by the so-
called Kibble-Zurek mechanism [16]. However, the num-
ber of trapped vortices can be diminished. If the initial
Mott state is close to the transition, a large correlation
length )M determines the distance between seed vortices.
If, on the other hand, we start deep in the Mott phase,
we should consider initially zero OP with small random
fluctuations, uncorrelated on the scale of a lattice con-
stant. This amounts to a seed vortex on almost every
plaquette. However, we argue that only a few will survive
the first stage of evolution. To describe the initial growth
of the OP, consider the linearized version of (15) around

 � 0, whose eigenmodes are easily found to be !�k� �
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��������������������������
�ck�2 � 1

2 �
2

q
. Since it is the fastest growing, the

uniform k � 0 mode will dominate the development
of an OP. Moreover, fluctuations with k > 1=�)

���
2

p
� do

not grow at all. This implies that defects with the same
topological charge must be separated by at least ) � c=�,
a large distance in the regime of interest, not far from the
transition point. The impact of the few remaining vortices
on the evolution is an interesting open issue which de-
serves further study.

Damping of the oscillations.—The collective oscilla-
tions in Fig. 1 are, in fact, a macroscopic occupation (in a
coherent state) of the zero wave vector amplitude mode
!a�k � 0�. Since this mode is coupled anharmonically to
the low energy phasons, we expect a finite damping of the
oscillations due to phason pair emission.

Expanding the action in Eq. (14), up to the harmonic
and cubic interactions, we obtain
S �
1

8Jz �nn2

Z
dt0ddxf _2 � c2�r�2 ��22 � �j
0j

2 � 2j
0j�� _’’
2 � c2�r’�2�g; (16)
where  � j
j � j
0j is the linearized amplitude mode
and c � 2

���
z

p
J �nn. In order to compute the damping rate of

the oscillating field , it is convenient to recast the con-
tinuum theory in operator form, using the amplitude and
phason operators of Eq. (8)
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�������������
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�!1;q�0 � !

y
1;q�0�;
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�����������������
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0j
2

s
�!2;k � !

y
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(17)
Phason pair creation is dominated by the vertex

Hint �
1����
N

p
X
k

Vk�!1;0!
y
2;k!

y
2;�k � H:c:�: (18)

By Fermi’s golden rule, the damping rate is

# �
N

�2%�d�1

Z
ddkV�k�2��2ck���: (19)

At wave vector j �kkj � �=�2c�, the vertex coupling con-
stant is given by
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V2
�kk �

�2J �nnz�2

N
���
2

p u�1� u��1=2: (20)

Consequently, the relative damping rate diverges in one
and two dimensions as

Qd �
#d
�

�
u���
2

p �1� u��d�3�=2: (21)

Oscillations could be observable for #=�< 1 which im-
plies u < 0:59 for d � 1 and u < 0:73 for d � 2. In three
dimensions, Qd is finite at the transition.

The damping ratio (21) can also be derived from the
one loop correction to the longitudinal susceptibility [17].
Higher order terms can be resummed using a large N or
renormalization group approach to obtain expressions
valid in the critical region [17–19].

We comment that emitted phasons will eventually
thermalize, bringing the system to a new, finite tempera-
ture, equilibrium. However, we are concerned with the
shorter time transient of the system, regardless of its
ultimate equilibrium fate.

Critical phenomena.—Time dependent experiments
such as those proposed in Ref. [1] could potentially mea-
sure quantum critical fluctuations directly. By our mean
field theory, the collective oscillation frequency, !1�k �
0�, vanishes at the transition as �1� u�1=2 according to
Eq. (9). We can estimate the quantum critical region
below the critical dimension d � 3, using Ginzburg’s
criterion for the (d� 1)-dimensional action (14). For d �
2, we have obtained j1� uj � 0:15, which overlaps
with the overdamped region of the critical amplitude
oscillations.

In the critical region, the mean field gap exponents as
read from (9) and (10) should be modified. To leading
order in 0 � 3� d the gap exponent is given in Ref. [19]
by 1 � 1

2 � 0:10.
Experimental parameters for the boson Hubbard

model extracted from Ref. [1] can be translated into �nn �
50, 2% �h=2Jz �nn � 0:7 ms. The oscillation period is
therefore larger than this time scale by a factor
of 1=

��������������
1� u2

p
.

In summary, we have described the dynamics of bo-
sons in an optical lattice using a modified coherent states
path integral. This affords a unified description of both
the superfluid and Mott phases. A system prepared in the
unstable Mott state, is expected to exhibit macroscopic
oscillations of the superfluid OP, with damping which
increases towards the transition in one and two dimen-
sions. It would be very interesting to investigate super-
fluid oscillations on the Mott side of the transition, where
250404-4
there are no low energy phason modes to cause damping.
Close to the transition, this would provide direct mea-
surement of the dynamical critical exponents.
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Note added.—After completing this paper, we received
a preprint by Polkovnikov et al. addressing a similar
Mott to SF transition, using a dynamical rotator repre-
sentation [20].
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