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Luttinger-Liquid Behavior in Tunneling through a Quantum Dot at Zero Magnetic Field
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Thermodynamic and transport properties of a two-dimensional circular quantum dot are studied
theoretically at zero magnetic field. In the limit of a large confining potential, where the dot spectrum
exhibits a shell structure, it is argued that both spectral and transport properties should exhibit
Luttinger liquid behavior. These predictions are verified by direct numerical diagonalization. The
experimental implications of such Luttinger liquid characteristics are discussed.
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into a quantum dot in a strong magnetic field. Here, due to
the finite number of electrons in the dot N, the power-law
behavior of the tunneling density of states as a function of

with n � 1;2; . . . and ‘ ���n� 1�;��n� 3� . . . ; n� 1,
and where F is the confluent hypergeometric function.
Non-Fermi liquid systems—electronic systems whose
elementary excitations cannot be described by elec-
trons—have always fascinated physicists due to their
unusual properties (such as superconductivity and mag-
netism). Luttinger liquid (LL), describing interacting
electrons in one dimension, is one of the most studied
models of such a non-Fermi liquid system, since it has
been solved a long time ago [1]. The non-Fermi-liquid
characteristics are expected to play a major role in trans-
port through a LL or tunneling into it [2], giving rise to a
power-law dependence of the current or the tunneling
density of states on energy, voltage, or temperature. Ac-
cordingly, there have been many theoretical suggestions
of physical systems that should exhibit LL behavior and
numerous experimental attempts to observe this behavior
in such systems. These attempts have not been very suc-
cessful, due to the sensitivity of LL to disorder, and the
difficulty of making clean one-dimensional systems.
Only recently, several decades after the model was origi-
nally introduced, experimental observation of Luttinger
liquid behavior in one-dimensional systems such as nano-
tubes [3] and semiconductor systems [4] has been re-
ported. Two-dimensional systems are also expected to
exhibit LL behavior in strong magnetic fields, due to the
formation of one-dimensional edge states near the edge of
the systems [5]. However, tunneling experiments into the
edge of a two-dimensional electron gas in strong mag-
netic fields [6] have not been conclusive.

Quantum dots have been used in the last several years
to study various aspects of strongly correlated systems,
most notably the Kondo effect [7,8]. The experimental
control over the properties of the dot allow a more de-
tailed investigation of the strongly correlated states than
that accessible in bulk systems. An experimental study of
LL behavior in quantum dots has been suggested by
Kinaret et al. [9] who studied theoretically tunneling
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energy, characteristic of LL, will be manifested in the
power-law dependence of the tunneling probability on N.

Technological progress allows now a construction of
circularly symmetric quantum dots [10]. The addition
spectrum of these dots displays shell structure expected
from such symmetry, which has been numerically repro-
duced using a density-functional analysis of interacting
electrons in circularly symmetric harmonic potential
[10]. In this Letter, we propose and demonstrate a new
type of Luttinger liquid behavior in such circular two-
dimensional quantum dots at zero magnetic field, which is
manifested in the spectral and transport properties of the
dot. The main idea in this work is that because of the shell
structure, one of the two quantum numbers needed to
characterize an electronic state in two dimensions is
frozen (for excitations within the shell), and thus these
excitations are described by an effective one-dimensional
Hamiltonian. We explicitly solve the quantum dot Hamil-
tonian with long-range electron-electron interactions and
obtained the low-energy spectrum and wave functions of
this many-body system. The spectrum and the tunneling
amplitude indeed follow the predictions of Luttinger
liquid behavior.

We describe a quantum dot by a system of N interact-
ing spinless electrons in two dimensions, confined by a
parabolic potential,
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with the interaction potential V�r�. The noninteracting
part of the Hamiltonian is trivially diagonalized, and its
eigenstates and energies are given by

�n;‘�r� � Arj‘je�r2=2���‘
1F1���n�j‘j� 1�=2; j‘j� 1; r2�;
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r and � are, respectively, the radial and azimuthal coor-
dinates of the two-dimensional vector r, and r is in units
of

����������������
�h=m!0

p
. Thus the spectrum consists of equally spaced

shells. The energy of the nth shell is n�h!0, and its
degeneracy is n. Within a given shell the states are char-
acterized by a single quantum number, e.g., the angular
momentum ‘.

The average mean-field Coulomb interactions between
electrons leads to the usual Coulomb blockade, but does
not affect the spectral properties for a given electron
number N . For the rest of the paper, while including
the full Coulomb interaction [the last term in (1)], we
make the assumption that the intershell gap �h!0 is sig-
nificantly larger than the fluctuations in the Coulomb
interactions between electrons in different levels. Thus
the Coulomb interactions cannot excite electrons from
one shell to another. (This assumption is appropriate for
the lowest three shells in the experiments [10], where
these fluctuations are at most a few percent of the inter-
shell addition energy.) Consider now a quantum dot con-
taining N electrons occupying nsh shells. All shells
except the last will be fully occupied, leaving N � N �
nsh�nsh � 1�=2 electrons in the partially occupied shell
(POS). Since the Coulomb interactions do not excite
electrons between the shells, then the ground state and
the lowest excited states will belong to a subspace con-
taining �nsh

N � states, each consists of N � N electrons
fully occupying the lower nsh � 1 shells and N electrons
occupying N of the nsh states in the POS. All these states
are degenerate in the noninteracting limit. Our aim is to
diagonalize the full interacting Hamiltonian (1) in this
subspace.

In principle, the Coulomb interactions scatter two elec-
trons from two initial states onto two final states, with the
conservation of angular momentum. In the absence of
intershell excitations, these terms can be divided into
three contributions—(a) those where the two initial states
(and thus the final states) are in the filled shells, (b) those
where one of the initial states is in the filled shell (and is
necessarily one of the final states), and (c) those where the
two states are in the POS. In the relevant subspace the first
contribution is a constant, and thus is disregarded. The
second type of terms, the effective potential due to the
filled shells, contribute to the diagonal of the Hamil-
tonian matrix, leading to the removal of the energy
degeneracy between the different angular momenta
states (angular momenta 	‘ are still degenerate). The
resulting dispersion turns out to be very close to an
inverse parabola.

Thus, the effective Hamiltonian in the relevant sub-
space can be written as

H eff �
X
‘

�‘c
y
‘ c‘ �

X
j;k;‘

Vk;j;‘c
y
‘�kc

y
j�kcjc‘; (3)
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where c‘ annihilates a particle with angular momentum ‘
in the POS, and the summations in H eff are over all
angular momenta states in the POS.

This effective Hamiltonian in the POS resembles the
Hamiltonian describing interacting electrons in one di-
mension,

H 1d �
X
k

�kc
y
k ck �

X
k

Vk�k��k; (5)

where �k �
P

j cyk�jck, �k � vFk, with k the momentum
quantum number and vF the Fermi velocity. Comparing
the effective Hamiltonian (3) to (5) we note that in our
case the interaction V depends on three quantum num-
bers, and not only on their difference. Thus unlike the LL
model, the interaction is not merely a product of densities.
This difference arises because the system is not strictly
one dimensional, but the electronic wave functions in the
nshth shell, while having the same value of hr2i / nsh, do
have a nontrivial dependence on r. Additionally, the
number of the electrons in the POS, which are described
by the effective Hamiltonian (3), is finite (and could be
small).

Since the one-dimensional Hamiltonian (5) is exactly
solvable and is described by LL theory, it is tempting to
check whether the two-dimensional behavior of a sym-
metric quantum dot is governed by LL physics. In order to
investigate the relevance of LL behavior to the spectral
and transport properties of the dot, we diagonalized
numerically the Hamiltonian (3) for several values of
nsh and N, and for a particular choice of interaction,
V�r� � log�1=jrj�. This choice allows us to evaluate all
the matrix elements �‘ and Vj;k;‘ analytically. To inves-
tigate the particular role of the interaction term [the
second term in (3)], we multiplied it by a prefactor �
and carry out our study for several values of �. The results
shown here are for nsh � 20. For each value of total
angular momentum L, the Hamiltonian was diagonalized
in the subspace of the lowest six eigenstates [11], in order
to determine the lowest energy state with angular mo-
mentum L.

For an even number of electrons, the lowest energy
state is of total angular momentum L � 0, the first ex-
cited states carry angular momentum L � 	2, then
L � 0;	4, etc., According to LL theory (for spinless
electrons), the low-energy spectrum of (5) is given by
[12]

Ep � p
���������������������������������
v2

F � 2vFVp=�
q

: (6)

In order to check the spectrum of the two-dimensional
quantum dot (4) against the predictions of LL theory, we
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compare in Fig. 1 the evaluated gap, � � �EL�2 �
EL�0�=2, to the expectation from LL theory (6). As can
be clearly seen from the figure, the nontrivial dependence
of the gap on the interaction strength, �, is very well
fitted by the functional form expected from LL theory,
with a single fitting parameter Vp�2 � 0:055. (Note that
in our case the Fermi velocity, vF, is also � dependent,
due to the diagonal interaction terms.) Numerically we
indeed find that the interaction integrals V2;j;‘ are about
0:05	 0:01 for several values of k and ‘ (independent of
what branch k and l are on). The interaction integrals for
higher values of p are much smaller, e.g., V4;j;‘ ’ 0:01.
For � � 20, however, we see deviations from the theo-
retical predictions, indicating perhaps that such strong
interactions involve states beyond the linear dispersion
regime.

LL characteristics are manifested not only in the spec-
trum, but also in the matrix elements, or the tunneling
probabilities. The amplitudes of the Coulomb blockade
peaks, TN , in the linear response conductance through the
quantum dot are proportional, when the temperature is
smaller than the gap in the excitation spectrum, to [13]

TN / jh�Njd‘j�N�1ij
2; (7)

where �N is the many-particle ground state of a system
with N particles is the POS, and d‘ annihilated a particle
with the corresponding angular momentum (namely, the
difference in total angular momentum between �N and
�N�1). This quantity was studied extensively for the case
of quantum dot in the fractional quantum Hall regime by
Kinaret et al. [9]. Using the explicit form of the edge-state
propagators they showed that TN / N��1="�1�=2, where " is
the filling factor. This dependence was also verified nu-
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FIG. 1. Comparison of the numerically evaluated gap � in the
quantum dot spectrum to the prediction of Luttinger liquid
theory [Eq. (6)]. There is a single fitting parameter, Vp�2 �
0:055 (see text). Inset: Plot of ��2 � v2

F�=vF vs the interaction
strength. Luttinger liquid theory predicts a straight line, of
slope 2V2=�.
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merically. The fractional quantum Hall liquid turned out
to be a special case of the general theory of tunneling into
a LL [2], where it was shown that the tunneling proba-
bility depends on energy in a power-law manner,

TN / �#�1; # � �g � g�1�=2; (8)

where g characterizes the strength of interactions in LL
theory (g � 1 no interactions, g < 1 repulsive interac-
tions). The power-law dependence on � is directly trans-
lated into a power-law dependence of TN on N,
TN / N��#�1�=2 (the factor 2 comes from the two-
dimensionality, N � L2 � k�2 � ��2).

To check these LL predictions we have evaluated nu-
merically the matrix elements jh�Njd‘j�N�1ij

2, for the
same set of parameters mentioned above, and for differ-
ent values of the interaction strength �. As can be seen in
Fig. 2, these matrix elements exhibit power-law depen-
dence on the number of particles in the POS, in agreement
with LL theory. Surprisingly, the power-law behavior is
already manifested in tunneling into a quantum dot with
a small number of electrons in the POS.

To further check the relevance of LL theory to the
tunneling matrix elements, we employ the functional
dependence of the LL parameter g on the interaction
strength, which can be explicitly evaluated for a one-
dimensional model with long-range interactions [only
V0 � 0 in (5)]. For this case [12],

g �
1��������������������������

1� V0=�vF

p : (9)

In Fig. 3 we compare the resulting exponent to the pre-
diction of LL theory with such long-range interactions.
We see an excellent agreement between the numerically
obtained exponent and the theoretical prediction, with a
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FIG. 2. The numerically evaluated tunneling matrix elements
TN , which are proportional to the Coulomb blockade peak
amplitudes, for several values of the interaction strength �.
In agreement with Luttinger liquid theory, a power-law depen-
dence of TN on N is observed, with an exponent that increases
with the strength of the interactions.
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FIG. 3. The numerically evaluated tunneling matrix exponent
#, derived from Fig. 2, as a function of the interaction strength
�. The dependence upon � exhibits a good agreement with the
predictions of Luttinger liquid theory, Eqs. (8) and (9).
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single fitting parameter V0 ’ 0:33 (with again a deviation
at very large interaction strength, � � 20). The agree-
ment between the theoretical prediction and the numerical
calculation also indicates that the logarithmic interac-
tions used in the numerics mimic the long-range nature
(Vp � 0; p > 0) of the prediction (9).

To conclude, we have demonstrated, by heuristic argu-
ments and by numerical calculations, that the excitations
in a circular quantum dot at zero magnetic field are
described by Luttinger liquid theory. These should have
an observable influence on transport through quantum
dots. We predict that in a given shell the amplitude of
the Coulomb blockade peak decreases in a power-law
fashion. Taking into account that this power law was
observed numerically for a quantum dot with a small
number of electrons in the outer shell (see Fig. 2), this
prediction can be tested with existing structures. Indeed,
the peak amplitudes seem to be decreasing as a function
of the electron number within the third shell in circular
dots [10]. Intriguingly, nanotube quantum dots, where
intrinsic symmetry leads to an observable shell structure
[14], also exhibit decreasing peak amplitudes within a
given shell. The relevance of our theory to these obser-
vations will be studied in the future.

An even more intriguing possibility is the relevance of
this work to transport through a system of interacting
electrons in the presence of potential disorder, which is
one of the most challenging problems of condensed mat-
ter physics.When the disorder potential is large enough to
break the electron liquid system into puddles, or effective
quantum dots, the overall dissipative resistance may be
determined by transport through such a random quantum
dot array [15]. Thus the present calculation suggests that
transport in a two-dimensional disordered interacting
256401-4
system may be dominated by LL behavior, similar to
transport in such a system in a strong magnetic field [16].

In this paper the spin of the electrons was ignored. It
would be quite interesting to investigate the role of spin in
such devices and explore the possibility of, e.g., spin-
charge separation and its relevance to transport through
a quantum dot. Another avenue worth exploring is the
question of whether other systems exhibiting shell struc-
ture, such as nuclei and atoms, can also, under some
circumstances, exhibit Luttinger liquid behavior. These
questions will be investigated in a future publication.
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