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Low-Energy Singlets in the Heisenberg Antiferromagnet on the Kagome Lattice
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The spin- 1
2 Heisenberg antiferromagnet on the kagome lattice, is mapped by contractor renormal-

ization to a spin-pseudospin Hamiltonian on the triangular superlattice. Variationally, we find a ground
state with columnar dimer order. Dimer orientation fluctuations are described by an effective O(2)
model at energies above an exponentially suppressed clock mass scale. Our results explain the large
density of low-energy singlets observed numerically, and the nonmagnetic T2 specific heat observed
experimentally.
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FIG. 1. CORE on the kagome lattice (solid circles).
Triangular blocks of first (second) CORE steps are encircled
by solid (dashed) lines. On the right: triangle four ground states
are labeled by spin (arrows) and pseudospins (wide arrows).
The "* state of the triangle is visualized as a dimer singlet on
the bottom rung.
Frustrated quantum antiferromagnets (AFM) are im-
portant paradigms of emerging phenomena in models of
condensed matter. It has long been appreciated that, due
to the extensive ground state manifold of the classical
kagome AFM [1], quantum fluctuations may destroy
magnetic order and replace it with paramagnetic phases
with novel excitations at low-energy scales.

Numerical studies of the spin- 12 kagome AFM have
suggested that its ground state does not support long
range spin order [2– 4]. The low spectra of finite kagome
clusters [5] consist of singlets whose number increases
exponentially with the lattice size.

Experimentally, there is a mounting evidence of un-
usual low-energy excitations in kagome like systems. In
spin- 3

2 SrCr9Ga12O19 [6,7] a significant fraction of the
spin moment is not frozen below the non linear suscepti-
bility maximum at T � 5 K. Recently, muon resonance
experiments on a spin- 12 system [8] reported that below
the susceptibility maximum of T � 20 K, low frequency
spin fluctuations were detected but without static magne-
tization down to 50 mK.

However, the specific heat of SrCr9Ga12O19 has an
unexplained large T2 coefficient which apparently does
not arise from spin waves [7].

Thus there is both numerical and experimental evi-
dence that there are seemingly nonmagnetic massless
modes whose origin has not yet been understood. Weak
bonds perturbation theory found that dimer singlets span
the low-energy spectrum [9,10], and interesting results
have been found for the kagome Quantum Dimer Model
[4,11]. However, the Quantum Dimer Model has not yet
been quantitatively derived from the Heisenberg model.

It is the purpose of this Letter to elucidate the nature of
low-energy excitations of the S � 1=2 Kagome AFM by
applying the nonperturbative contractor renormalization
(CORE) method [12]. CORE has been recently applied to
the square lattice Hubbard model [13], Heisenberg lad-
ders[14] (including detailed convergence tests [15]), and
the frustrated Checkerboard and Pyrochlore lattices [16].
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For the kagome lattice, CORE leads to an effective
spin-pseudospin (S-L) model on a triangular lattice. A
variational analysis reveals columnar dimer order in the
spin disordered ground state, and low-energy excitations
which can be understood as dimer orientation fluctua-
tions. We describe these fluctuations by a p � 6 quantum
clock model. Its mass gap is strongly suppressed by quan-
tum fluctuations by a factor estimated at about 10�4.
Thus, the low-energy singlet spectrum is in effect a
quasi Goldstone mode of an O(2) order parameter. The
number of sub gap singlets increases exponentially with
lattice size and gives rise to a T2 specific heat as seen
experimentally.

The Heisenberg Hamiltonian on the kagome lattice,
(see Fig. 1), is

H � J
X
hiji

Si � Sj; (1)

Henceforth we set the unit of energy to J � 1.
Blocks.—CORE involves (i) an initial choice of ele-

mentary blocks which cover the lattice, and (ii) a trun-
cated set of block eigenstates whose tensor product spans
the reduced Hilbert space. It is useful to choose mini-
mally sized blocks which respect (as much as possible)
the lattice point group symmetry. Here we select upward
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FIG. 2. CORE range 2. Directions of anisotropy vectors eij �
elij � ~eij for a horizontal bond. For other bond directions,
vectors must be rotated by �120�. The ground state singlet
correlations of two coupled blocks are depicted by thick lines.

TABLE I. CORE up to range 3: Interaction parameters for
the effective Hamiltonian H SL, Eq. (3). Underlined are the
dimerization fields (see text).

Jss Jsslele Jssll Jssle1 Jssle2 Jsslyly e12 e21
0.108 0.954 0.211 0.281 0.278 0.053 113� 248�

Jlele Jll Jlyly el12 el12
0.060 -0.001 0.038 132� 222�
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triangles, and a truncated basis of the four degenerate spin
half ground states, discarding the higher S � 3=2 states,
(see Fig. 1).

The S-L representation of the four ground states are
labeled by js; li, where s �"; # is the magnetization and
Lz � l �*; + is the pseudospin in the z direction.
Explicitly, in the Ising basis js1s2s3i,

js; *i �
�js"#i � js#"i����

2
p

js; +i �
js"#i � js#"i����

6
p �

���
2

3

s
j��s�ssi:

(2)

The pseudospin direction in the xz plane correlates
with the direction of the singlet bond, e.g. * describes a
singlet dimer on the bottom (� ẑ) edge (see Fig. 1). Thus,
the Ly eigenstates have definite chiralities.

Effective Hamiltonian.—The effective interactions be-
tween triangles is calculated by CORE [12,13]. We note
that this approach is feasible when two conditions are
met: (i) Interaction matrix elements fall off rapidly with
range such that the truncation error at finite ranges is
small, and (ii) the norms of the projected eigenstates
are sufficiently large for numerical accuracy. We have
computed all range 2 and range 3 interactions, and ne-
glected range 4 corrections, whose expectation values
were found to be an order of magnitude smaller. At
range 3, norms of projected eigenstates were greater
than 0.75, with most states above 0.9.

The effective Hamiltonian is a spin-pseudospin (S-L)
Model on the triangular lattice:

H SL � H ss �H ll;

H ss �
X
hiji

Si � Sj�Jss � Jsslele�Li � eij� � �Lj � eji�

�Jssll�L?
i �L?

j � � Jssle1�Li � eij�

�Jssle2�Lj � eji� � JsslylyL
y
iL

y
j�;

H ll � Jlele�Li � ~eij� � �Lj � ~eji� � Jll�L?
i �L?

j �

�JlylyL
y
iL

y
j :

(3)

Here L? � �Lx;Lz�, and eij; elij are unit vectors in the xz
plane. H ss describes interactions of the Kugel-Khomskii
type [10,17], where the pseudospin exchange anisotropy
depends on the sites and bond directions. (See Fig. 2). For
any other other bond hij0i, eij0 is simply found by rotating
eij by 0, �120� according to the O(2) rotation of
hiji ! hij0i.

The coupling constants and angles of H SL, are tabu-
lated in Table I. Missing from (3) are terms which vanish
in the periodic lattice by summation over nearest neigh-
bors, and three site (ring exchange) interactions. The
largest term KSi � SjL

z
iL

z
jL

z
k has a largest matrix element

of magnitude 0:02.
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While H SL may prove to be useful for numerical
studies of the spectrum of larger lattices, its complexity
somewhat obscures its physics. It is simple however to
study H SL variationally (i.e. classically) using pseudo-
spin coherent states [18]  �s�

Q
ijsi; lii where L � ljs; li �

1
2 js; li. Its energy Evar�l� �

P
ijhSiSji�l�F�l� � Ell�l� is

minimized with respect to the directions li.
We start by evaluating the energy of the magnetically

ordered state, where both the spins and the pseudospins
form three sublattice (3SL) Néel order on the triangular
lattice (and

���
3

p
�

���
3

p
order on the kagome). Other candi-

dates are the dimer coverings of two triangle singlets,
whose correlations are defined by Fig. 2. The dimer
singlet states have been shown by Mila and Mambrini
[10] to span much of the low singlet spectrum in finite
cluster calculations. The variational analysis highlights
the special role of the ‘‘dimerization fields’’, Jssle1 ; Jssle2 in
(3), for the formation of local singlets. These terms cancel
under summation in all uniform states defined by
hSiSji � const. Their significant magnitude (see Table I)
helps to lower the energy considerably by aligning li with
the anisotropy vectors eij to form singlets on certain
bonds and not others hSiSji � � 3

4�hijidim . This is a strong
argument in favor of a nonmagnetic ground state.
Consequently, H ll is crucial in selecting the true ground
state among the multitude of dimer singlet coverings. We
have found that the perfectly ordered columnar dimer
(CD) state minimizes H ll. A local ‘‘defect’’ of a rotated
dimer in the CD background costs a ‘‘twist’’ energy of
�0:01 per site.

In Fig. 3 we depict the 3SL and CD states. Their
energies per site are

ECD=site � �0:229; E3SL=site � �0:178; (4)
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FIG. 4 (color online). Clock fields ��x� (thick arrows) de-
fined by the dimer directions from the sites marked by large
circles.

FIG. 3. Variational states on the triangular superlattice: The
3SL and the CD state; arrows denote pseudospins, and thick
lines denote singlet dimers.
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where the evaluation uses the known spin correlations of
the Heisenberg AFM on the triangular lattice [19]
hSiSji � 0:18.

This result can be connected to numerical diagonaliza-
tions data as follows. The number of quasi degenerate CD
states on Kagome clusters with the lattice group symme-
try is 24: From a particular up-triangle site there are six
dimer directions. There are two equivalent dimer order-
ings of the neighboring lines of dimers. Another factor of
2 is given by the down triangle configurations. Between
these 24 CD states there are exponentially vanishing
overlaps at large lattices.

Quantum Clock Model.—A continuum Hamiltonian
for the low-energy fluctuations is derived as follows.
Using the subset of site positions x belonging to a 2� 2
superlattice (see Fig. 4), every dimer configuration defines
a unique configuration of sixfold clock angles ��x�’s
defining the orientations of dimers from the selected sites.

A ferromagnetic state of � ’s represents a CD ground
state (up to global translations, with vanishing overlap, of
an interpolating line of dimers). The resistance to local
twists, governed by Jlele, is described by energy density
1
2�s�r��

2, �s ’ 0:01. The barrier height between dimer
orientations is estimated from Eq. (4) to be h6 � 0:05
which defines the ‘‘clock field’’ h6 cos�6��. JlylyLyLy
interactions rotate the pseudospins and the dimers in the
plane, giving rise to a kinetic energy 1

2�
_�2, 1=� ’ 0:01.
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Thus we arrive at a long wavelength partition function
of a (2+1)D quantum clock model which describes the
lowest singlet sector of the kagome spectrum:

Zsinglets �
Z

D� exp
�
�

Z �

0
d�d2x

�
1

2
� _�2 �

1

2
�s�r��

2

�h6 cos�6��
	


(5)

The renormalization group analysis of José et. al. [20]
for the classical p-state clock model in two dimensions
found that at low temperatures T < Tp � 8!=p2 the
clock field hp is a relevant interaction which locks the
ground state into a clock minimum, with a finite gap for
domain wall excitations. For our quantum clock model
the clock term is still relevant, but quantum fluctuations,
which involve tunnelling between clock minima, drasti-
cally renormalize down the value of the clock field and
the mass gap for the long wavelength excitations.

This is shown as follows: we expand the action of (5) to
lowest order in h6 cos�6�� and integrate out the high
momenta and energy modes �>
h6
Z

D�> cos�p��< ��>�� exp��
1

2
�>G

�1�>� � h6 cos�p�<�e
�p2h�2

>i; hren6 � h6e
�Cp2

� 0:05� 10�4 (6)
Our rough numerical evaluation of C � 0:2 uses the zero
point phase fluctuations of an effective spin-2 quantum xy
model, describing four pseudospin half in the unit cell.
Equation (6) is our key result: tunnelling between p � 6
ground states renormalizes down the clock mass gap by a
Gaussian function of p. In particular, the dispersion of �
fluctuations

!S�0
q �

����������������������������������
�hren6 �2 �

�s
�
jqj2

s
(7)

resembles Goldstone modes of an O(2) xy model at fre-
quencies and temperatures larger than (6). In this regime,
the singlets’ contribution to the specific heat CV and
entropy S is quite large. Using thermodynamics of free
bosons, we obtain

CV �
�
�s
T2; S�E� � N�

E
N0:01

�2=3; (8)

where N is the number of effective sites, and E the total
energy. Thus, the smallness of hren6 provides the long
sought after explanation of the unusual exponential pro-
liferation of singlets at sub gap energies [5]. In addition,
the singlets pseudo Goldstone mode may now explain the
experimentally reported T2 term in the specific heat [7].

We note that the CD state has no long range spin order.
The spin gap can be estimated from the variational energy
difference between CD and 3SL states to be of the order of
187205-3



TABLE II. Second CORE iteration: Interaction parameters
for H SL evaluated up to range 2.

Jss Jsslele Jssll Jssle1 Jssle2 Jsslyly e12 e21
0.113 0.08 -0.005 0.026 0.182 -0.039 330� 280�

Jlele Jll Jlyly el12 el12
-0.019 -0.003 0.004 200� 160�
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h6 � 0:05. Another estimate can be obtained by iterating
CORE on HSL.

At the second CORE step, the triangular lattice is
covered by triangles (which are blocks of nine kagome
lattice sites). These form a triangular superlattice with
directed bonds (see Fig. 1). For both the Heisenberg and
H SL, each block has four degenerate S � 1=2 ground
states which can again be represented by a spin and a
pseudospin. The second CORE step thus maps the S-L
Hamiltonian (3) onto itself with new interaction parame-
ters and anisotropy vectors, as listed in Table II.

What can we learn from step 2?
In contrast to the first CORE step (see Table I), the

vectors eij � eji > 0, i.e., ferromagnetic. Jsslele has de-
creased while Jss did not. Thus the Hamiltonian prefers
local singlet correlations with aligned pseudospins,
which is consistent with columnar order.

Spin gap.—By iterating CORE we can compute the
splitting between the S � 1

2 ground state and the lowest
S � 3

2 excitation on triangular clusters. At second itera-
tion, the spin gap deduced for 81 original kagome lattice
sites is 0.06. CORE breaks down at the third step, where
many of the wave function overlaps vanish. This is ex-
pected due to the onset of long range CD order, since
states with high pseudospin parentage have lower energy.
Stopping at 81 sites, we can only observe that while the
spin gap is larger than the dimer fluctuations bandwidth,
there is no conclusive sign of saturation to a finite ther-
modynamic limit.

In summary, we have computed the effective
Hamiltonians of the S � 1=2 Heisenberg antiferromagnet
on the kagome lattices using CORE up to range 3.
Variationally, we conclude that the kagome lattice has
long range columnar dimer order and a very low gap for
singlet excitations in the thermodynamic limit. CD order
might induce experimentally detectable lattice distor-
tions. Further details can be found elsewhere [21].
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*In a recent preprint, Capponi, Laeuchli, and Mambrini
[22] have independently computed H SL of Eq. (3) by
CORE, and found excellent numerical agreement with
large cluster diagonalizations.
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