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We consider effects of a long-wavelength disorder potential on the zero conductance state (ZCS) of the
microwave-irradiated 2D electron gas. Assuming a uniform Hall conductivity, we construct a Lyapunov
functional and derive stability conditions on the domain structure of the photogenerated fields. We solve
the resulting equations for a general one-dimensional and certain two-dimensional disorder potentials, and
find nonzero conductances, photovoltages, and circulating dissipative currents. In contrast, weak white-
noise disorder does not destroy the ZCS, but induces mesoscopic current fluctuations.
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The observation of giant magnetoresistance oscillations
in a microwave-irradiated two-dimensional electron gas
(2DEG) [1], has spurred intensive theoretical activity.
Two distinct microscopic mechanisms for conductivity
corrections have been proposed: (i) The displacement pho-
tocurrent (DP) [2], which is caused by photoexcitation of
electrons into displaced guiding centers and (ii) the distri-
bution function (DF) mechanism, which involves redistrib-
ution of intra-Landau level population for large inelastic
lifetimes [3].

Andreev, Aleiner, and Millis [4] have noted that irre-
spective of microscopic details, once the radiation is strong
enough to render the local conductivity negative, the sys-
tem as a whole will break into domains of photogenerated
fields and spontaneous Hall currents. In their proposed
domain phase, motion of domain walls can accommodate
the external voltage, resulting in a zero conductance state
(ZCS) in the Corbino geometry, or a zero resistance state
for the Hall bar geometry, in apparent agreement with
experimental reports [1]. However, one may ask, what
should be the effects of long-wavelength (relative to the
cyclotron radius) disorder, which is either naturally present
or deliberately introduced? What is the nature of the cou-
pling between a disorder potential and the photogenerated
fields [5], and could the disorder pin domain walls? Such
pinning would affect the macroscopic transport and could
destroy the ZCS.

In this Letter we incorporate a long-wavelength disorder
potential ¢ ,(x) into the nonlinear magnetotransport equa-
tions. We explore its effects on the domain structure and
macroscopic transport coefficients. For the case of a con-
stant Hall conductivity, we construct a Lyapunov func-
tional [6] which greatly simplifies the determination of
the stable steady states and their conductance. We use it
to derive general stability conditions on domain walls in
the strong radiation regime. We also show that weak -
white-noise”” disorder is an irrelevant perturbation, which
does not destroy the ZCS. It does introduce, however,
mesoscopic nonlinear current fluctuations. We find solu-
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tions for the following disorder potentials: (i) The general
one-dimensional potential, where domain walls are pinned
to the potential extrema, which results in a nonzero con-
ductance and photovoltage. (ii) The simple “egg-carton”
potential solved variationally, and (iii) a generic nonsepar-
able potential depicted in Fig. 1, which is solved numeri-
cally. (ii) and (iii) exhibit two-dimensional domain-wall
pinning and frustration effects, which result in circulating
dissipative currents.

Nonlinear magnetotransport.—In the presence of an
external microwave field, we use a local relation between
the dc current j(r) and the local electrostatic field E(r):

j = j%E,r)+ o2 X E. (1)
Here we assume at the outset that the Hall conductivity o

is a constant, independent of r and E, which leads to
considerable simplifications. The dissipative conductivity,

FIG. 1 (color online). Domain phase in the presence of dis-
order: the photogenerated potential ¢(x, y) corresponding to a
generic long-wavelength disorder potential ¢,. The steady state
is determined by numerically minimizing the Lyapunov func-
tional (see text). The domain walls (potential edges) are pinned
by ¢,, yielding a finite conductance.
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The vector function j¢, in general, will depend explicitly
on the position r, due, e.g., to inhomogeneities in the
2DEG, and its direction may not be perfectly aligned
with E. Equation (1) is supplemented by the continuity
equation, V - j = —p, where p is the charge density. We
emphasize that Eq. (1) contains all microscopic interac-
tions at length scales shorter than the cyclotron radius /.,
which serves as an ultraviolet cutoff, of order 1 pwm.

Writing E = —V ¢, we may relate changes in the elec-
trostatic potential ¢ to changes in p through the inverse
capacitance matrix W:

5(r) = f LW (r, )5 p(r). 3)

If a time-independent steady state is reached, then we have
simply V-j=0, and the precise form of W is
unimportant.

In a Corbino geometry, one specifies the potential on the
inner and outer boundaries of the sample, and one looks for
a solution for ¢(r) consistent with these boundary condi-
tions. Since we assume o to be a constant, the Hall
current cannot contribute to V - j in the interior of the
sample, so it does not appear in Kirchoff’s equations.
Consequently, the solution for ¢(r) is independent of o/
and we may, for simplicity set o/’ = 0. To recover the Hall
current, one inserts the solution E into the second term in
(1).

Condition (2) on j¢ allows us to define a scalar Lyapunov
functional as

Gl = f Prg(E),  g— ﬁ(”dE’-jd(E') @)

A variation of (4) is given by

dsh - j%6¢.  (5)
bound

8G = ]d2rv L jlop —

The second integral vanishes on equipotential bounda-
ries, or in the absence of external currents. The extrema of
G are found to be steady states, with V - j = 0. Using the
positivity of the inverse capacitance matrix W, one may
show that G[ ¢ ()] is indeed a Lyapunov functional, i.e., a
nonincreasing function of time, so that its minima are
stable steady states. In general, G may have multiple
minima. Any initial choice of ¢(r) will relax to some local
minimum of G, but not necessarily the ““ground state” with
lowest G. Nevertheless, we expect that in the presence of
noise, the system might tend to escape from high-lying
minima and wind up in a state with G close to the absolute
minimum.

Using the boundary term in (5), the current across a
Corbino sample is equal to the first derivative of G with
respect to the potential difference V between two edges,
and the differential conductance is given by the stiffness, or

The domain phase.—We now consider a homogeneous
system, in the regime of strong microwave radiation at
frequencies slightly larger than the cyclotron harmonics
w>mow,m=1,2,..., ie., positive detuning. Both DP
and DF mechanisms produce a regime of negative con-
ductivity j(E) - E <0, which implies a minimum of g(E)
at a finite field |[E| = E,. > 0, which was estimated [7] to
be of order fiw,./(el.). In order to satisfy equipotential
boundary conditions, and the constraints Eﬁdl -E =0,
field discontinuities and charge density singularities must
form.

A second order expansion of g about E,. reads as

80(B) = () + 3 (E = E Vo, + AV -EE. (1)

The clean system of Eq. (7), is governed by a ‘“Mexican
hat” Lyapunov density, with a flat valley along |E| = E_,
i.e., the steady state local conductivity is ‘“‘marginally”
stable everywhere except inside the domain walls. The
field-derivative coefficient A = o /3 implements the ul-
traviolet cutoff, introducing a domain-wall thickness scale
14, assumed here to be of the order of /.. Domain walls
yield a positive contribution to G of order o .EZ2l,,, per unit
length. In the absence of disorder, the system will simply
minimize total domain walls contribution, subject to afore-
mentioned constraints, resulting in stable domain-wall
patterns.

A change in the average field (E), required if there is a
change in the applied voltage V, can be accommodated by
a motion of domain walls, or a reorientation of the local E.
The relative corrections to zero conductance vanish as [,
over the sample length. This defines the clean ZCS phase
described in Ref. [4].

Long-wavelength disorder.—In an inhomogeneous sys-
tem, there will be a nonzero electrostatic field, E,(r) =
—V ¢ ,(r), present in the thermal equilibrium state, with no
microwave radiation or bias voltage. We now see that
disorder fields can modify domain-wall stability, and hence
the zero conductance state itself.

At weak disorder field, |E;| < E,, the Lyapunov den-
sity near E =~ E, is modified to

8(E,E,) = g(E) — 0| (E)E - E4(r) + O(E),  (8)
which yields a current density

\— d\E-E
U0 = —o B, + S22

E, ©))
where X’ = 9X/0E, and the coefficient o; depends on
microscopic mechanisms.

We wish to elaborate on a physical issue regarding
Eq. (9): In the nonirradiated (dark) linear response theory,
the current is driven by the electrochemical gradient
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€ = E — E,. Similarly, one may expect the photocurrent
of the DF mechanism to also depend on €. In contrast, the
“upstream” photocurrent, pumped by the DP mechanism,
involves transitions between single particle states which
feel the local electric field E(r). Thus, due to both con-
tributions, even if the DP mechanism is relatively weak, E
cannot be eliminated from Eq. (9) by a change of variables
E — €. By our microscopic estimate [8], for the pure DP
mechanism, o, o;(E,) are close to the dark conductivity,
and o] < o./E..

Local stability requires that o(r), of Eq. (2), has non-
negative eigenvalues. The lower (transverse) eigenvalue is
given by

g0~ nE-E,
E

o_= + O(E;)? = 0, (10)
so marginal stability occurs at E = E. + o|E; - E/o,.

In a steady state, the normal current density (in direction
1) is continuous across a domain wall. If E; and E, are the
fields on its two sides, we find by (8) and (10) that

U—(EI)EI ‘0= U_(Ez)Ez -0+ @(E?i) (11)

When E; - i, i = 1, 2 have opposite signs (as they do in the
clean limit) (11) can only be satisfied for o_(E;) =
o_(E,) = O(E,)*. This restricts the fields at the domain
wall to be at their respective marginally stable values. As a
result, the current density (9) at the domain wall reduces to

i =-—0(E)E,;+ O™ (12)

By Eq. (12), current conservation and Gauss’s theorem,
and we obtain a global condition on any closed domain
walls,

0= fn “j= —2m0 0P + O(E?), (13)

where Q%P is the integral of the “2D disorder-charge
density,” V - E, /27, over the area enclosed by the loop.

Finally, we note that generically, the differential con-
ductance of a sample in the Corbino geometry can be
obtained by solving for the conductance of a linear system
with local conductivity given by o?[E(r)], in series with
resistive elements along the domain walls, which arise
from movement of the domain walls in response to a
variation in the applied bias V. (There could also be dis-
continuities in the current at discrete values of V, if the
system jumps discontinuously from one local minimum of
G to another.) We shall see that for weak long-wavelength
disorder, the scale of the macroscopic conductance is set by
the domain-wall contribution.

White-noise disorder.—In the ZCS, we now show that a
weak ‘“‘white-noise” disorder potential, with a correlation
length &, (of the order I;, ~ [.), and root-mean-square
value ¢, < E &, is an irrelevant perturbation which does
not introduce new domain walls or destroy the ZCS. This is
shown by using an Imry-Ma comparison [9] of surface to
bulk contributions to the Lyapunov functional. By (8), for a

square domain of area L3, the negative contribution of
aligning E with the averaged disorder field E,, scales as
—0,¢4E /L€, However, the linear cost of its domain
walls grows as +o.E.L,l;,. Therefore weak disorder
cannot necessarily break the system up into smaller
domains.

The disorder, however, will produce current fluctuations
across preexisting domain walls, needed to satisfy bound-
ary conditions on the sample. By Eq. (12), the current
density integrates across the domain wall to yield a random
number of order

Vg, 112

8l = *o 72 (14)
E.&?

while the conductance will average out to zero at voltages
V = E ¢, or if multiple domains are in series. The random
currents and conductance fluctuations should be observ-
able in small samples, or as harmonic noise generation for
oscillatory bias voltage.

The arguments above also show that for a disorder
potential ¢, which is correlated over a length scale &, >
14, 1t Will be favorable to introduce additional domain
walls spaced at length scale £, when E; > E 1, /&,. This
occurs even at weak disorder if &, is sufficiently large.

One-dimensional disorder.—In contrast to weak white-
noise disorder, potentials with long-range correlations can
be relevant perturbations. Consider the case of a general
one-dimensional disorder [see Fig. 2(a)], where ¢,(y) is
independent of the x coordinate. At wavelengths larger
than [;, , the Lyapunov functional is minimized if the
system breaks up into parallel domains, so that E is every-
where aligned with E,;, and j? = 0. These conditions
determine E(y) via (9), and the boundary conditions for a
rectangular Corbino geometry (periodic boundary condi-
tions at x = 0 and x = L). The voltage difference V be-
tween the leads at y=0 and y= W, satisfies
V(1) = [} dy[E(y) — E,(y)]. At strong radiation intensity
and zero current, (12) and transverse stability imposes that

a) One Dimensional Disorder | b)
$ly) ~\J=0
oY) \v=0
0,y)
0 y W

FIG. 2. (a) Photogenerated potential solutions ¢, for one-
dimensional disorder ¢ ,(y), with zero current and zero voltage
boundary conditions. (b) Map of V - E (light: positive; dark:
negative) for solution ¢(x, y) of Fig. 1, showing the domain
walls. Circulating dissipative currents are illustrated in one
domain.
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domain walls form precisely at maxima and minima of ¢,
given by the y;,, i = 1, ..., N. To lowest order in ¢ ,, there
will be a nonzero photovoltage which only depends on
these positions:

N
VO = E((-)'W =23 -0y ) + 0. (5)
=

where i = 1, 3... are maxima. The differential conductiv-
ity gy, is given, to lowest order in ¢4, by
1 2F.

2F. 1
— = ="c (16)
Tyy 0'1WZ|¢'d/(}’i)| oEy

If P(E,) is the probability distribution for E; at a random
point, it can be shown that £ = P(0). If E, is taken from
a Gaussian distribution, then Ed = (277)1/ zEjims, where
E;' = P(E; = 0), with P(E;) the probability distribution
for E; at a chosen point. If ¢, has a Gaussian distribution,
then E, = (2r)'/2E™. The differential conductivity o,
can also be calculated, using (10), and is given, to first
order in ¢, by o, = o {|E,|)/E,. For a Gaussian distri-
bution, one has o,, = (2/7)o,,, while for a single sine
wave, o, = (4/7)0,.

Two-dimensional potentials—The simplest 2D choice
for ¢, is the separable ‘“egg-carton” potential ¢, =
(EY/+/2)[cos(x) + cos(y)]. We construct a zeroth order
trial solution for zero bias current j¢ = 0 by placing do-
main walls on the lines x = n7r and y = mr, for integer n
and m. This yields constant electric fields in each square
domain E, = (E./v/2)(+% = 9). E, is a gradient of a
continuous potential, and satisfies charge neutrality (13).
Upon application of an external voltage in an arbitrary
direction, domain walls will move, as in the one-
dimensional case, and also tilt with E into a herringbone
pattern. A variational calculation, assuming that within
each domain E is constant, finds, to first order in E, that
Ty = 0.8301E2/ E.. Numerical calculations confirm that
the variational solution is at least close to the exact answer.

We have calculated analytically the first order (in E,;)
corrections to E for zero external voltage, by integrating
Kirchoff’s laws [8]. Away from the domain walls, we find
E > E., which corresponds to circulating dissipative cur-
rents, which match onto the tangential currents at domain
walls, given by Eq. (12). In Fig. 1, a generic two-
dimensional example is displayed. ¢, contains 20
Fourier components chosen from Gaussian distributions
with (| ¢ ,(k|?) independent of k. The potential ¢ is found
by numerically minimizing G. Figure 2(b) plots the 2D
charge density where domain walls appear as line singu-
larities. In both the egg carton and the potential of Fig. 1, G
is frustrated from perfect alignment of E and E ,(r) by the
conditions |E| = E. and V X E = 0. This frustration
underlies the circulating dissipative currents which are
illustrated in one of the domains in Fig. 2(b).

In summary, we have introduced long-wavelength dis-
order into the transport theory of the microwave-irradiated
quantum-Hall gas, using the Lyapunov functional as an
organizing principle for the stability of steady states. We
showed that weak white-noise disorder is irrelevant for the
stability of the ZCS although it produces mesoscopic cur-
rent fluctuations. For a strong and long-range potentials,
the ZCS state breaks up into domains, which will generally
result in a finite conductance and a photovoltaic effect. A
microscopic theory necessary for the steady states depen-
dence on microwave power and detuning frequency is
deferred to a forthcoming publication [8]. We have not
considered effects of conductivity anisotropy and varia-
tions in Hall coefficient. The latter will not affect the
domain pattern or the longitudinal conductivity for one-
dimensional disorder, but might have large effects and be
experimentally relevant in other geometries.
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