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1 D. Mermin [31] advocates the spelling ‘‘Qbit”.
a b s t r a c t

Two qubits is the simplest system where the notions of separable
and entangled states and entanglement witnesses first appear.
We give a three-dimensional geometric description of these
notions. This description, however, carries no quantitative infor-
mation on the measure of entanglement. A four-dimensional
description captures also the entanglement measure. We give a
neat formula for the Bell states which leads to a slick proof of the
fundamental teleportation identity. We describe optimal distilla-
tion of two qubits geometrically and present a simple geometric
proof of the Peres–Horodecki separability criterion.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction and overview

Geometric descriptions of physical notions are often both useful and elegant. For example, the geo-
metric description of a single qubit1 in terms of the Bloch sphere is a natural way of introducing the
notion of a qubit [34] and at the same time is also a standard tool in the study of the polarization of pho-
tons [43].

Two qubits are the simplest setting where the notion of entanglement first appears. Our aim is to
describe the world of two qubits geometrically. Algebraically, the world of two qubits is associated
with 4 � 4 Hermitian matrices. This is a linear space of 16 dimensions. The large dimension makes
it hard to visualize. To have a useful geometric description one needs to introduce appropriate equiv-
alence relations which preserve the notions one wishes to describe while substantially reducing the
dimension.

The fundamental notion of equivalence in quantum information reflects the freedom of all parties
to independently choose bases for their Hilbert spaces. For a pair of qubits shared by Alice and Bob,
this freedom is expressed by a pair of SU(2) operations. Since dimSU(2) = 3, this freedom corresponds
c. All rights reserved.
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Fig. 1. The octahedron represents the equivalence class of separable states. The set of points that lie outside the octahedron but
inside the tetrahedron represent the equivalence class of entangled states. The set of points that lie outside the tetrahedron but
inside the cube represent entanglement witnesses. The vertices of the tetrahedron represent the equivalence class of pure
states. Points related by the tetrahedral symmetry represent the same equivalence class.
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to a six-dimensional family of unitary transformation. This reduces the 15 dimensions that describe
the (normalized) states of two qubits to 9, which is still too large to be really useful.2

To further reduce the dimension one can allow Alice and Bob more freedom. The standard protocols
of quantum information, such as local operation and classical communication (LOCC) [6] give Alice
and Bob an arsenal of local operation: Besides the local unitary transformations they are also allowed
to make local measurement and to communicate about what they did and what they got. They are not
allowed to exchange qubits, however. In LOCC they are also not allowed to discard qubits but are al-
lowed to do so in stochastic local operation and classical communication (SLOCC) [7]. This makes
SLOCC a filtering process.

LOCC and SLOCC do not naturally lead to equivalence relations but rather to partial order. For
example, it is a fundamental feature of entanglement, arguably its defining property, that entangle-
ment cannot be created by local operations [38] although it can be locally degraded and destroyed.

We therefore need to introduce a different class of operations that can serve as an equivalence rela-
tion. We shall consider two states as equivalent if each can be prepared from the other (filtered) with finite
probability by local operations. Unlike LOCC or SLOCC, this is a symmetric relation, and hence an equiv-
alence. It restricts the local operations to those represented by invertible matrices [28,47]. In partic-
ular, Alice and Bob are not allowed to make projective measurement or mix pure qubits because
these operations are not reversible, even probabilistically (more on this, below).

For describing notions, such as entanglement and witnesses, it is convenient to forget about the
normalization of states. This allows one to describe the world of two qubits in three dimensions
[28], as shown in Fig. 1. Interestingly, the same figure appears in various other contexts in quantum
information theory. It first appeared in the Horodeckie’s description [24] of two qubits with maximally
mixed subsystems. It also appears in the characterization of the capacity of a single qubit quantum
channel [41,20,26,42,54] and in other contexts [1,49,21,45].

The three-dimensional description, beautiful as it is, has weaknesses. One is that there are certain
(fortunately, non-generic) states that do not seem to fit anywhere in Fig. 1. An example is the family of
states where at least one subsystem is pure
2 The
ðpureÞA � ðmixedÞB; ðmixedÞA � ðpureÞB; ðpureÞA � ðpureÞB: ð1:1Þ
Another weakness is that the three-dimensional figure gives no information on the measure of entan-
glement: The distance from the octahedron does not reflect any of the accepted measures of entangle-
re are, however, certain interesting lower-dimensional families of states for which the reduction is powerful enough [24].



Fig. 2. Four-dimensional truncated cones describe the LSL equivalence classes of the of trace normalized witnesses, entangled
and separable states. The cross-section of the cones, here represented by nested rectangles, are the three-dimensional
polyhedra shown in Fig. 1. The largest cone is the cone of potential witnesses and the smallest cone is the dual cone of separable
states. The intermediate cone is the self-dual cone of states. The distance from the cone of separable states is a measure of
entanglement. The extraordinary families of Eq. (1.1) are represented by the apex of the cone.
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ment [39]. This is a consequence of the fact that the normalization of states does not matter in the
three-dimensional description.

To remedy this, we look at operations where the normalization of states matters. Specifically, we
allow Alice and Bob to act on their qubits by matrices MA;B 2 SLð2;CÞ, the group of 2 � 2 matrices,
with complex entries and unit determinant. The interpretation of this family in terms of measur-
ments shall be discussed in Section 5. We shall call this class of operations LSL (for local, special
and linear). LSL allows for a geometric description of the measure of entanglement. The price one
pays is that one needs to go to four dimensions. The geometric picture that emerges is illustrated
in Fig. 2, showing three nested cones. The largest cone is the cone of potential witnesses, whose
cross-section is the cube in Fig. 1. The boundary of the cone is special in that it is cohabited by
two inequivalent families: The ordinary and the extraordinary. This makes it pathological.3 It may
seem odd that the world of two qubits, which is a simple linear space in 16 dimensions, becomes path-
ological when viewed in terms of its equivalence classes. A useful analogy is the partitioning of (the
connected) Minkowsky space–time to the (disconnected) equivalence classes of time-like, light-like
and space-like vectors.

The four-dimensional description is faithful to the measure of entanglement. More precisely, the
concurrence, [51,52], is the distance from the cone of separable states, the smallest nested cone. In
particular, states represented by points near the apex of the cone have very little entanglement.

Many things will have to be left out. Among them: the notions of ‘‘entanglement of formation”,
‘‘entanglement cost” [6,7,18]; ‘‘bound entanglement” [22], ‘‘entanglement persistence” [10], multipar-
ities entanglement, GHZ states [16] and the different entanglement measures [39]. Comprehensive re-
views of entanglement, with extensive bibliography, are [55,4,25].

2. Bell states

The mothers of all entangled states are the four Bell states [9], commonly denoted by jbli, here cho-
sen to be
3 Wh
ffiffiffi
2
p
jb0i ¼ j00i þ j11i;

ffiffiffi
2
p
jb1i ¼ j00i � j11i;ffiffiffi

2
p
jb2i ¼ j01i þ j10i; i

ffiffiffi
2
p
jb3i ¼ j01i � j10i:

ð2:1Þ
en distinct points cannot be separated a space is non-Hausdorff.
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The (isotropic) singlet is then jb3i. It is not a coincidence that the number of Bell states coincides with
the number of Pauli matrices rl (with r0 the identity).

Proposition 2.1. The Pauli matrices give the unitary map from the computational basis, jai � jbi, with a, b
binary, to the Bell basis jbli; l 2 f0;1;2;3g. Explicitly:
ffiffiffi

2
p
jbli ¼ ðrlÞabjai � jbi;

ffiffiffi
2
p
jai � jbi ¼ ðrt

lÞabjbli: ð2:2Þ

Summation over repeated indices is implied and the four Pauli matrices are chosen as
r0 ¼
1 0
0 1

� �
; r1 ¼

1 0
0 �1

� �
;

r2 ¼
0 1
1 0

� �
; r3 ¼

0 �i

i 0

� �
:

ð2:3Þ
Note that the anti-symmetric Pauli matrix is r3 (rather than the more common choice r2), a choice
also made in [25].

Proposition 2.2. The basic two-qubit operations, ra � rb, act on the Bell states as a permutation (up to
phase factors), and generate the symmetry group of the tetrahedron.

Proof. From Eq. (2.2)
ra � rbjbli ¼
1ffiffiffi
2
p rarlrt

b

� �
ab
jabi: ð2:4Þ
Since
rlrm ¼

i�lmkrk; l–m; k 2 f1;2;3g;
r0; l ¼ m;

rl; m ¼ 0;

rm; l ¼ 0:

8>>><
>>>: ð2:5Þ
We see that ra � rb just permutes the Bell states (up to phase factors). Since 1
2 ð1þ irjÞ � ð1þ irjÞt

interchange jb0i $ jbji, they generate the permutation group of the four Bell states, S4. It is a fact that
the tetrahedral group coincides with S4. h

The Bell projections play a key role in what we do.

Proposition 2.3. The Bell projection Pl ¼ jblihblj (no summation over l, of course) have the form
4P0 ¼ r�2
0 þ r�2

1 þ r�2
2 � r�2

3 ;

4P1 ¼ r�2
0 þ r�2

1 � r�2
2 þ r�2

3 ;

4P2 ¼ r�2
0 � r�2

1 þ r�2
2 þ r�2

3 ;

4P3 ¼ r�2
0 � r�2

1 � r�2
2 � r�2

3 ;

ð2:6Þ
where we denote
r�2
l ¼ rl � rl: ð2:7Þ
Proof. From Eq. (2.2) one finds (no summation over l below)
8Pl ¼ 4ðrlÞabðrlÞdcjaihcj � jbihdj ¼ ðrlÞabðrlÞdcðrbÞcaðraÞdb rb � ra

¼ Tr rbrlrt
arl

� �
rb � ra: ð2:8Þ
We used
2jaihcj ¼ Tr jaihcjrb

� �
rb ¼ ðrbÞcarb: ð2:9Þ
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Since the Pauli matrices either commute or anti-commute, are either symmetric or antisymmetric,
and are mutually orthogonal we have (no summation over l here)
4 The
Tr rbrlrt
arl

� �
¼ �Tr rbrt

a

� �
¼ �Tr rbra

� �
¼ �2da;b ð2:10Þ
Hence, only the diagonals survive in Eq. (2.8). h
2.1. Teleportation

Bell states can be used to teleport [5] an unknown qubit. This is a consequence of the following
teleportation lemma:4

Lemma 2.4. Let jwi be a single qubit pure state. Then the following identity holds
2jwi � jbli ¼ jbmi � jrt
lrmwi: ð2:11Þ
Proof. From Eq. (2.2):
2jwi � jbli ¼
ffiffiffi
2
p

wcðrlÞabjci � jai � jbi ¼ wcðrlÞabðrt
mÞcajbmi � jbi ¼ ðrt

lrmwÞbjbmi � jbi
¼ jbmi � jrt

lrmwi: � ð2:12Þ
The identity has the following physical interpretation: The left-hand side describes the situation
where Alice has the (unknown) qubit jwi and shares with Bob the Bell state jbli. The right-hand side
describes the superposition of the following situations: Alice pair of qubits is in one of the four Bell
states while Bob’s qubit is a unitary transformation of jwi. Alice can then measure in the Bell basis
and tells Bob which Bell state she finds. Bob then performs the unitary operation rmrt

l on his qubit
to retrieve jwi.
2.2. The CHSH Bell inequalities

The Bell states have the distinguished property that they give maximal violation of the CHSH Bell
inequalities [13]. Bell inequalities [3] show that quantum mechanics cannot be simulated by classical
probability theory [2,30,35,46,19]. This bit of theory follows simply from the formulas above for the
Bell projections, as we now outline.

Let us denote by a1,2 the result of Alice measurement of r1,2 and by b+,� the result of Bob measure-
ment of ðr1 � r2Þ=

ffiffiffi
2
p

. All these measurements are dichotomic and yield only ±1. Any assignment of ±1
to the corresponding four measurements yields
�2 6 a1ðbþ þ b�Þ þ a2ðbþ � b�Þ 6 2: ð2:13Þ
The same inequality must also hold on the average for any ensemble of classical systems. This is the
CHSH Bell inequality [13,34,35].

Quantum mechanics is inconsistent with this inequality. To see this define the Bell operator [9] to
be the observable corresponding to Eq. (2.13):
B ¼ r1 �
r1 þ r2ffiffiffi

2
p þ r1 � r2ffiffiffi

2
p

� �
þ r2 �

r1 þ r2ffiffiffi
2
p � r1 � r2ffiffiffi

2
p

� �
¼

ffiffiffi
2
p

r�2
1 þ r�2

2

� �
¼ 2

ffiffiffi
2
p
ðP0 � P3Þ: ð2:14Þ
Clearly, jb0i; jb3i are eigenstates of B with eigenvalues �2
ffiffiffi
2
p

and hence violate Eq. (2.13). The prob-
abilistic aspect of quantum mechanics cannot be attributed to a classical probabilistic source that pre-
pares the qubits of Alice and Bob.
formula seems to be related to a formula in [53].
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3. Separable states

In classical probability theory, random variables x and y are independent when their joint proba-
bility distribution is a product PAðxÞPBðyÞ. Any joint probability distribution PABðx; yÞ can be trivially
written as a convex combination of product distributions:
PABðx; yÞ ¼
X
a;b

PABða;bÞ dx;ady;b; ð3:1Þ
where PABða; bÞ are thought of as weights and the two delta functions as probability measures.
This is not true in quantum mechanics [19]. A state q, a positive matrix with unit trace, is the

analog of a probability measure. A state of the form qA � qB describes the situation where Alice’s
and Bob’s qubits are uncorrelated. However, it is not true that all states can be written as convex com-
binations of uncorrelated states. The states that can be written in this way are called separable [50,25].

Definition 3.1. A (normalized) state qs is separable if
qs ¼
XN

n¼1

pn qðnÞA � qðnÞB ; ð3:2Þ
with pn P 0 probabilities and qðnÞA;B positive operators with normalized trace. A state q P 0 which is not
separable is entangled.

Clearly, the unnormalized separable states make a convex cone contained in the cone of all positive
(unnormalized) states.

Separable states can be interpreted as mixtures of uncorrelated states where Alice and Bob rely on
a common probability distribution, pn to create the mixture. This correlates Alice and Bob. Such cor-
relation never violates Bell inequalities. For the CHSH this can be seen from the fact that for any prod-
uct state
TrðBqA � qBÞj j ¼ a1ðbþ þ b�Þ þ a2ðbþ � b�Þj j 6 jbþ þ b�j þ jbþ � b�j 6 2;
where now
ja1;2j ¼ jTrðr1;2qAÞj 6 1; jbþ;�j ¼ Tr
r1 � r2ffiffiffi

2
p qB

� �				
				 6 1: ð3:3Þ
This result extends to separable states by convexity.
States that violate a Bell inequality are necessarily entangled. However, there are lots of entangled

states that do not violate any CHSH inequality. (The equivalence classes of states that satisfy the CHSH
inequality and their visualization is given in [1].)

There are no known general conclusive tests of separability. However, for two qubits the Peres–
Horodecki partial transposition test [36,23] gives a simple spectral test of separability. To describe this
test we first explain the notion of partial transposition for two qubits.

Any observable (Hermitian matrix) in the space of two qubits can be written as
A ¼ Almrl � rm; Alm 2 R: ð3:4Þ
For reasons that shall become clear later we call Alm the (contravariant) Lorentz components of A. The
partial transpose of A, which we denote by AP , is
AP ¼ Almrl � rt
m ¼ ðAPÞlmrl � rm: ð3:5Þ
Observing that only r3 is anti-symmetric we see that the partial transpose, when expressed in terms of
the Lorentz components, takes the form
ðAPÞlm ¼
Alm; m–3;

�Alm; m ¼ 3:



ð3:6Þ
The Peres–Horodecki test is [36,23].



Fig. 3. A cone with opening angle h is dual to the cone with opening angle p–h. The quadrant (left) is self-dual. The half-plane
(right) is dual to the positive half-line. Here the usual scalar product of vectors corresponds to the trace in Eq. (4.1).
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Theorem 3.2. A two qubit state q P 0 is separable iff qP P 0.

Proof. The ‘‘only if” part is easy: If q is separable, it can be written as in Eq. (3.2). Since qB P 0 implies
that also qt

B P 0, one has that qP , being a convex combination of positive operators, is also positive.
The ‘‘if” part requires more preparations. We shall give a simple geometric proof in Section 11. h
4. Witnesses

Witnesses are observables which can give evidence that a state is entangled. For our present pur-
poses it is convenient to slightly widen this notion and to allow for witnesses which are in a sense triv-
ial. We therefore define the cone of potential witnesses as follows:

Definition 4.1. The dual cone5 to the cone of separable states shall be called the cone of potential
witnesses. Explicitly, it is the collection of all observables W such that
5 The
TrðWqsÞP 0; ð4:1Þ
for all separable states qs. We shall call �TrðWqÞ the (entanglement) evidence.

A potential witness is called simply a witness iff there exist some (necessarily entangled) state q
such that TrðWqsÞ < 0. The witness then gives conclusive evidence that q is entangled. In fact by stan-
dard duality arguments [40] the definition implies.

Proposition 4.2. Any entangled state, q, has a witness W giving positive evidence, i.e.
�TrðWqÞ > 0: ð4:2Þ
The set of potential witnesses (unlike witnesses proper) is a convex set. A potential witness W may
not give positive evidence for any state q. Clearly, this will be the case whenever W P 0. Thus the cone
of potential witnesses contains the cone of states:
Potential Witnesses � States � Separables: ð4:3Þ
Observe that since q ¼ I is clearly a separable (un-normalized) state it follows that any potential
witness W has Tr W P 0. Moreover, the following holds:

Theorem 4.3. For any potential witness W, not identically zero:
Tr W > 0: ð4:4Þ
In particular, witnesses, like states, may be normalized to have unit trace.

Proof. Note that the elements hu� wjWju� wi suffice to determine all other matrix elements of W.
This may be verified by considering the case u� w ¼ ðu1 þ eiau2Þ � ðw1 þ eibw2Þ for all a’s and b’s. For
any W – 0 one can therefore always find a normalized product state ju0i � jw0i such that
hu0 � w0jW ju0 � w0i > 0. Complete this to an orthonormal product base fjuai � jwbiga;b¼0;1. Since
Tr W ¼ hua � wbjWjua � wbi; ð4:5Þ
(summation implied), has no negative terms one concludes the strict inequality. h
notion of dual cones is illustrated in Fig. 3.
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It remains to demonstrate that there indeed are entangled states or, equivalently, that the inequal-
ity equation (4.3) is strict. An example for a witness that is not a positive operator is the swap, which
exchanges the qubits of Alice and Bob:
Sjwi � j/i ¼ j/i � jwi: ð4:6Þ
Proposition 4.4. The swap has the following properties:

1. S is positive on separable states.
2. S ¼ P0 þ P1 þ P2 � P3 gives positive evidence that the singlet is entangled.
3. The swap is the partial transpose of a Bell projection: S ¼ 2PP

0.

Proof. That S is positive on all pure product states follows from:
Ahwj � Bh/jSjwiA � j/iB ¼ hwj/iAh/jwiB ¼ jhwj/ij
2
: ð4:7Þ
It is then positive on all separable states by convexity and so belongs to the cone of potential wit-
nesses. This proves 1. Part 2 follows by noting that the Bell states are eigenvectors of the swap. Part
3 follows from the observation that swap can be written as S ¼ jabihbaj, while P0 ¼ 1

2 jaaihbbj. h

It is, of course, not a coincidence that the swap is a witness of a Bell state. In Fig. 1 Bell states are
represented by the (blue) dots at the vertices of the tetrahedron and the optimal witnesses by the red
dots at the corners of the cube obtained by reflection about the three axes. We shall see in Corollary
7.2, that the swap is, in fact, an optimal witness.

5. Equivalence and local operations

We shall consider equivalence classes where q and qM are considered equivalent provided
q#qM ¼ MqMy; M ¼ MA �MB; ð5:1Þ
with MA;B taking values in the groups
SUð2Þ � SLð2;CÞ � GLð2;CÞ: ð5:2Þ
The equivalence clearly preserves the positivity and the separability of states but, in general, not its
normalization.

MA;B 2 SLð2;CÞ will turn out to be our main tool and shall be designated by the acronym LSL for lo-
cal, special (-unit determinant) and linear.

The linear maps in Eq. (5.1) with MA;B 2 SLð2;CÞ or GLð2;CÞ do not represent, in general, opera-
tions that Alice and Bob can perform on their qubits. Legitimate quantum operation are positivity
preserving and trace non-increasing [35,34]. This means that M in Eq. (5.1) must satisfy MyM 6 1.
Quantum operation with MyM < 1 are interpreted as a generalized measurement, aka POVM
[14,19,35,34,8].

When MA;B 2 SLð2;CÞ or GLð2;CÞ, MyMi1 so the linear map in Eq. (5.1) do not represent legitimate
quantum operations. Nevertheless, with every such group element M we can associate the bona-fide
POVM element
M#
M
kMk : ð5:3Þ
The corresponding measurement filters [33,11] the state
q#
MqMy

TrðMqMyÞ
: ð5:4Þ
Filtering wastes a fraction of the qubits, which Alice and Bob need to discard. Indeed, the filtration suc-
ceeds with probability
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pðqÞ ¼ TrðMqMyÞ
kMk2 6 1: ð5:5Þ
(With MA;B 2 SUð2Þ the ‘‘filtration” succeeds with probability one, but with MA;B 2 SLð2;CÞ;GLð2;CÞ
not.) Alice and Bob need to communicate over a classical channel, so they both keep only the qubits
that pass the tests. This makes LSL a special case of SLOCC.

The equivalence classes introduced in Eq. (5.1) therefore admit the interpretation that two states
are equivalent provided each can be filtered from the other and the filtration succeeds with finite
probability. This imposes a restriction on what Alice and Bob are allowed to do. In particular, mixing
is not an admissible operation. This is easily seen from the fact that M preserves the rank of q and so
maps pure states to (unnormalized) pure states.

5.1. The equivalence classes of a single qubit

To appreciate the various notions of equivalence introduced above consider a single qubit. Any sin-
gle qubit state q, can be identified with a (real) four-vector rl
q ¼ rlrl: ð5:6Þ
We shall refer to rl as the (contravariant) ‘‘Lorentz components” of q. States admit the following sim-
ple geometric characterization:

Lemma 5.1. The four-vector rl represents an (un-normalized) state iff it lies in the forward light-cone.
Pure states are light-like. Normalized states lie on the time slice t ¼ 1

2.

Proof. This easily follows from
det q ¼ rlrmglm; Trq ¼ 2r0; ð5:7Þ
where g is the Minkowsky metric tensor, g ¼ diagð1;�1;�1;�1Þ. Positivity q > 0 requires that both
the trace and determinant are non-negative. The four-vector rl must then lie in the forward light cone.
A pure state, being rank one, has det q ¼ 0 and is represented by a light-like vector. A normalized state
has Trq ¼ 2r0 ¼ 1 and so lies on the fixed time-slice. h

It follows from Eq. (5.7) that if qM ¼ MqMy, with M 2 SLð2;CÞ then the Lorentz component indeed
transform like a vector under Lorentz transformation
ðrMÞl ¼ ðKMÞlm rm; ð5:8Þ
where KM 2 SOþð1;3Þ is an (orthochronos) Lorentz transformation. If M 2 SUð2Þ then it just rotates the
spatial part of the four-vector.

It is instructive to compare the equivalence classes associated with normalized states of a single
qubit with M taking values in the three groups SUð2Þ; SLð2;CÞ;GLð2;CÞ, shown in Fig. 4.

� SU(2) acts as spatial rotations and can be used to map any normalized state to the x–t-plane at time
slice t ¼ 1

2.
� SLð2;CÞ acts as Lorentz transformations and can be used to transform any time-like vector to the

time-axis and any light-like vectors to any other light-like vector. This means that the LSL equiva-
lence classes are represented by the semi-open interval ð0; 1

2	 and a point. It is natural to close the
interval by gluing the point to the origin (since a light-like vector can be transformed to the origin
of the time axis in the limit of infinite boosts). The SLð2;CÞ and SUð2Þ equivalence classes of normal-
ized one qubit states are then in 1-1 correspondence.

� The GLð2;CÞ equivalence classes, however, are represented by two points: One representing all pure
states (light-like vectors) and one representing all mixed states.

For a normalized qubit the von Neumann entropy, HðqÞ ¼ �Trðqlog2qÞ, is uniquely determined by

detq. To see this express k be the large eigenvalue of q, as 2k ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 det q

p
. Then



x

t

Fig. 4. The light cone is represented by the diagonal (red) line. The equivalence classes of the SU(2) (normalized) states are
represented by the horizontal (black) line at fixed time. The GLð2;CÞ equivalence classes are the two (blue) dots. The dot on the
time axis represents the equivalence class of mixed states and the other, on the light cone, the pure states. The SLð2;CÞ
equivalence classes are represented by the vertical green line. Light-like vectors can be brought to this line only through infinite
boost. Points representing the SUð2Þ and SLð2;CÞ equivalence classes that lie on the same interval, t2 � x2 ¼ const, (cyan) have
identical entropies. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this paper.)

J.E. Avron, O. Kenneth / Annals of Physics 324 (2009) 470–496 479
HðqÞ ¼ �hðkÞ � hð1� kÞ; hðkÞ ¼ klog2k: ð5:9Þ
Since detq is preserved by SLð2;CÞ we see that LSL preserves the information on the entropy of the
state (provided it is not renormalized). GLð2;CÞ on the other hand, does not distinguish between
mixed states with different entropies.

5.2. Equivalence classes of two-qubit pure states

Two-qubit pure states are conveniently represented either in the computational basis or in the Bell
basis:
jwi ¼ Yabjai � jbi ¼ nljbli;
ffiffiffi
2
p

Y ¼ nlrl: ð5:10Þ
Summation over repeated indices is implied; a; b 2 f0;1g and l 2 f0;1;2;3g. The state is normalized
if Tr ðYYyÞ ¼ nln
l ¼ 1. This means that the pure states are described by the seven-sphere S7 [55,32].

Local transformations take jwi to
MA �MBjwi ¼ MAYMt
B

� �
abjai � jbi: ð5:11Þ
We see that detY is invariant under the action of MA;B 2 SLð2;CÞ. As we shall see in the next section,
jdet Yj is a measure of the entanglement. This makes the entanglement an LSL invariant.

5.3. Entanglement distillation of pure states

The entanglement of a pure bi-partite normalized state is defined as the von Neumann entropy of
either of its subsystems:
eðjwiÞ ¼ HðqAÞ ¼ HðqBÞ: ð5:12Þ
In the case at hand, where jwi is given by the matrix Y of Eq. (5.10)
qA ¼ YYy; qB ¼ Y yY : ð5:13Þ
It follows from Eq. (5.13) that
det qA ¼ det qB ¼ jdet Y j2: ð5:14Þ
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By Eq. (5.9) detqA determines the entropy of Alice’s qubit. It follows that the measure of entanglement
is uniquely determined by detY. Moreover, since detY is invariant under LSL by Eq. (5.11), we see that
LSL is a useful equivalence not just for describing the notion of entanglement, but also for describing its
measure.

One must distinguish between the (mathematical) fact that the information on the measure of
entanglement is preserved under LSL and the (physical) principle that local operations dissipate
entanglement [38]. The difference comes from the way both treat the issue of normalization. An an
example, consider
Fig. 5.
h. The e
jwhi ¼ cos hj00i þ sin hj11i; 0 6 h 6 p=4: ð5:15Þ
The LSL operation
M ¼
ffiffiffiffiffiffiffiffiffiffiffi
tan h
p

j0ih0j þ
ffiffiffiffiffiffiffiffiffiffiffi
cot h
p

j1ih1j
� �

� I ð5:16Þ
filters from it the fully entangled unnormalized Bell state
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sin h cos h
p

jb0i. The information on the ori-
ginal measure of entanglement sits in the normalization. At the same time the corresponding quan-
tum operation dissipates entanglement. By Eq. (5.5), the operation succeeds with probability
pðjwhiÞ ¼ 2 sin2 h: ð5:17Þ
Using the fact eðjb0iÞ ¼ 1 one ends up with less entanglement:
pðjwhiÞ ¼ pðjwhiÞeðjb0iÞ 6 eðjwhiÞ; ð5:18Þ
in accordance with the principle that local operations dissipate entanglement, see Fig. 5.

6. Duality of states and observables

6.1. Contragradient actions

States q and observables W naturally live in dual spaces since pairing the two, Tr ðqWÞ, gives a
number. It is both natural and convenient to define the operations so that they act on states and wit-
nesses in a way that respects their duality. Namely:
q#qM ¼ MyqM;

W#WM ¼ M�1WðM�1Þy:
ð6:1Þ
π
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The relative dissipation of the entanglement, ðe� pÞ=e, for filtering Bell states from the states in Eq. (5.15) as a function of
ntanglement is e and the probability of filtering a Bell state is p. The graph expresses the inequality in Eq. (5.18).
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If M is unitary, M�1 ¼ My, then states and observables transform the same way, but when M is only
invertible, they do not. With this choice qW undergoes a similarity transformation
6 The
qW#qMðWÞM ¼ My ðqWÞ ðMyÞ�1 ð6:2Þ
and TrðqWÞ is invariant.
When the local operations are taken from SLð2;CÞ, there is a map, the tilde map, that takes observ-

ables to states and vice versa. By this we mean that if A transforms as a state then eA transforms as an
observable, i.e.
gMyAM

� �
¼ M�1 eA ðM�1Þy: ð6:3Þ
For a single qubit the tilde map is given by
eA ¼ r3Atr3 ð6:4Þ
and for a pair of qubits by
eA ¼ ðr3 � r3Þ At ðr3 � r3Þ: ð6:5Þ
That the tilde map indeed satisfies Eq. (6.3) is a property of SLð2;CÞ. It follows from the identity
r3Mtr3 ¼ M�1; M 2 SLð2;CÞ: ð6:6Þ
The tilde operation acts on the Pauli spin matrices as ‘‘spin-flip”, reversing the spatial component6
~rl ¼ r3rt
lr3 ¼ rl: ð6:7Þ
(Indices are raised and lowered according to the Minkowsky metric tensor g). It follows that
Tr ðrl ~rmÞ ¼ 2glm: ð6:8Þ
If we represent single qubit states and observables by contravariant components of four-vectors
q ¼ rlrl; W ¼ wl ~rl; ð6:9Þ
the invariance of TrðqWÞ implies that rl and wl transform under the same Lorentz transformation:
TrðqWÞ ¼ 2rlwmglm: ð6:10Þ
This carries over to two qubits where states and witnesses are represented by contravariant tensors
q ¼ rlmrl � rm; W ¼Wlm ~rl � ~rm; ð6:11Þ
and now the Lorentz scalar is
TrðqWÞ ¼ 4rlmWlm: ð6:12Þ
6.2. Self-duals and anti-self-duals

We shall say that We is self-dual if
We ¼ fW e: ð6:13Þ
For a single qubit self-duality means that the state is fully mixed. For two qubits, it readily follows
from Eq. (6.7) that the matrix of Lorentz components of We has the form
We ¼

W00 0 0 0
0 W11 W12 W13

0 W21 W22 W23

0 W31 W32 W33

0
BBB@

1
CCCA: ð6:14Þ
notation used in high energy physics [37] is bar rather then tilde. We use tilde to be consistent with Wootters [51].
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The space of self-duals is then evidently 10 dimensional. Self-dual states are states having fully mixed
subsystems. Self-dual observables are time-reversal invariant.

Since SU(2) act on the (spatial) of the Pauli matrices like a rotation, the singular value decomposi-
tion implies that

Proposition 6.1. Every self-dual We can be brought to a canonical form
7 Sing
We ! wlr�2
l ¼ xlPl ð6:15Þ
by a pair of SU(2) transformation, where w0 ¼W00 and the spatial components, wj are the singular values of
the 3 � 3 sub-matrix of We (up to sign7). The xl and wl are related by the linear transformation of Eq. (2.6)
x0

x1

x2

x3

0
BBB@

1
CCCA ¼

1 1 1 �1
1 1 �1 1
1 �1 1 1
1 �1 �1 �1

0
BBB@

1
CCCA

w0

w1

w2

w3

0
BBB@

1
CCCA: ð6:16Þ
In particular, the xl are all real.

The space of (not necessarily hermitian) anti-self-dual operators may be identified with the Lie
algebra of SLð2;CÞ � SLð2;CÞ. Indeed by Eq. (6.6)
eM ¼ M�1; 8M 2 SLð2;CÞ � SLð2;CÞ ð6:17Þ
from which follows
d eM ¼ �M�1 ðdMÞ M�1: ð6:18Þ
The Lie algebra is the variation at the identity where d eM ¼ �dM, i.e. the Lie algebra is anti-self-dual.
Since the linear space of anti-self-dual operators is 6-complex-dimensional (spanned by
ri � 1; 1� ri; i ¼ 1;2;3) it must coincide with the whole Lie algebra.

6.3. LSL invariants

Since eA transform contragradiently to A, the product eAA undergoes a similarity transformation by
Eq. (6.2). This allows us to associate spectral invariants with the LSL action:

Lemma 6.2. For any (n-qubit) observable, the spectrum of eAA and det A are LSL invariants.

To get a feeling for the invariants consider first the case of a single qubit state q ¼ rlrl. In this case
there is just a single invariant
~qq ¼ ðrlrlÞI ¼ ðdet qÞI: ð6:19Þ
By Eq. (5.9) the determinant encodes the information on the entropy of the (normalized) state and
vanishes for pure states.

Multi-qubits observables of the form q ¼ qA � qB then have as invariant detðqAÞdetðqBÞ. In partic-
ular, it follows that
~qq ¼ 0; ð6:20Þ
whenever either qA or qB is a pure state.
In the case of two qubits, specðeAAÞ gives four LSL-invariants. The invariant detA is closely related to

them, since
det eAA
� �

¼ ðdet AÞ det eA� �
¼ ðdet AÞ2: ð6:21Þ
Thus the only additional information supplied by detA is its sign.
ular value decomposition requires O(3) while we use only SO(3).
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In the particular case where A is a state we trivially have det A P 0. As ~qq is readily seen to be sim-
ilar to the positive operator
ffiffiffiffi

q
p

~q
ffiffiffiffi
q
p

; ð6:22Þ
one evidently has in this case

Lemma 6.3 (Wootters [51]). When q > 0 the eigenvalues of ~qq are all positive.

We define the LSL invariant spectrum of state q as the positive roots of the eigenvalues of ~qq.
Since a witness W is, in general, not positive, it is not a priori clear that eigenvalues of fW W are po-

sitive. In fact, for a general observable A, the spectrum of eAA need not even be real. We shall see, in the
next section, that for witnesses the eigenvalues of fW W are still positive. Moreover, as we shall see,
there is a natural way to choose signs for the roots of these eigenvalues in a way that is consistent with
the invariance of detW. This will allow defining the LSL invariant spectrum of W in a way that amal-
gamate the two invariants of Lemma 6.2.
7. Canonical forms as optimizers

We want to extend the notion of LSL invariant spectrum to witnesses. Since witnesses are, in gen-
eral, not positive, the argument leading to Lemma 6.3 does not apply. However, as we shall see, the LSL
invariant spectrum {xl} is still well defined and real. In fact the following key result holds:

Theorem 7.1. Any observable W in the interior of the cone of potential witnesses is LSL equivalent to a
witness of canonical form
W#xlPl; ð7:1Þ
where Pl are the Bell projections, xl 2 R, and x2
l are the eigenvalues of fW W. The representation (7.1) is

unique, up to permutations of the xl’s. This generate the tetrahedral group manifest in Fig. 1. A unique rep-
resentation is obtained by imposing the canonical order
x0 P x1 P x2 P jx3j: ð7:2Þ
In particular, at most one LSL-eigenvalue, the one with smallest magnitude, is negative.

The upshot of this theorem is that the LSL equivalence classes of the 16-dimensional cone of poten-
tial witnesses, and therefore also the cone of (un-normalized) states, can be represented by points in
R4.

The proof of this theorem depends on a variational principle. Specifically on finding a witness that
maximizes the entanglement evidence, in the sense of Definition 4.1. This point of view leads to our
second key result:

Theorem 7.2. Let W and q be in the interior of the cone of potential witnesses, and let
We ¼ xlPl and qe ¼ qlPl be their associated canonical forms. Then
min
M

TrðWMqÞ
n o

¼ TrðWeqeÞ ¼
X
l

qlxl; ð7:3Þ
where ql are chosen in canonical order, Eq. (7.2), while xl are chosen with the anti-canonical order
x0 6 x1 6 x2 6 x3: ð7:4Þ
In particular, taking q = 1, we see that the LSL map W#xlPl is trace decreasing.

Corollary 7.3. It follows that to test whether a state is entangled it is enough to test its canonical repre-
senter against canonical witnesses.

The proofs of both theorems are given in the following subsections.
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7.1. Existence of the optimizer

Consider the stationary points of the function M#TrðqWMÞ where M ¼ MA �MB. For MA;B 2 SUð2Þ,
this function must have (finite) maximum and minimum8 since SU(2) is compact. However, in the case
that MA;B 2 SLð2;CÞ, which is not compact, there may be no stationary point for any finite M. The exis-
tence of a minimum is guaranteed by the following lemma.

Lemma 7.4. Suppose q and W both lie in the interior of the cone of potential witnesses, i.e. satisfying a
strict inequality in (4.1). Then, the function TrðqWMÞ, diverges to +1 as either
MA 2 SLð2;CÞ or MB 2 SLð2;CÞ go to infinity. In particular, it has a finite minimizer.

The lemma may be written in a more symmetric form (under q M W) by noting
8 In f
TrðqMWNÞ ¼ Tr qW ðM�1ÞyN
� �

: ð7:5Þ
Sketch of the proof. The spectrum of any MA 2 SLð2;CÞ is of the form {k,1/k}. The element is large
when jkj is large. It can then be approximated by a rank one operator (corresponding to the large
eigenvalue) MA ’ kP, with P a one-dimensional projection. Thus M ¼ MA �MB ’ kP �MB is essentially
supported on a 1 � 2-dimensional subspace of the full 2 � 2 space. As a 1 � 2 space cannot support
any entanglement, the corresponding expectation TrðqWMÞ ’ jkj2TrðqWP�MB Þmust be positive. As it is
multiplied by jkj2 it actually diverge to +1 with k. h

An alternative proof of Lemma 7.4 and a generalization of it which applies to witnesses on the
boundary are described in Appendix A.

7.2. Characterization of the optimizer

In the previous section, we have seen that TrðqWMÞ has a minimizer. Once its existence is guaran-
teed, one may use standard variational procedure to characterize it. As we shall show whenever q is of
the canonical form the minimizer – the optimal witness, is also of the form xlPl.

Note that the Bell projections are self-dual, Pl ¼ ePl. We start by showing that the stationary points
of TrðqWMÞ are self-dual.

Lemma 7.5. The stationary points of the function TrðqWMÞ, where M ¼ MA �MB with MA;B 2 SLð2;CÞ are
the self-dual points, i.e.
gqWM ¼ qWM : ð7:6Þ
Proof. Suppose TrðqWMÞ is stationary at the identity M = I then for any small LSL-variation M ¼ I þ dM
we must have
0 ¼ dTrðqWMÞ ¼ dTr qM�1WM�1y
� �

¼ Tr qð�dMÞW þ qWð�dMyÞ
� �

¼ �TrðWqdMÞ � TrðWqdMÞ
 ¼ �2Re TrðWqdMÞ; ð7:7Þ
where we used the fact that q, W are hermitian. Recall that by Eq. (6.17) the Lie algebra of LSL consists
of complex matrices satisfying gdM ¼ �dM. Stationarity requires Wq to be in the space orthogonal to
these which is the space of self-duals Wq ¼ gWq . Formally this follows by using the identity
TrðeAeBÞ ¼ TrðABÞ to write
0 ¼ dTrðqWMÞ ¼ �Re Tr dM Wq�gWq
� �� �

: ð7:8Þ
act by Morse theory it must have at least one maximum, one minimum and two saddles.
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As both dM and Wq�gWq are anti-self-dual, the trace of their product vanishes for arbitrary (com-
plex) anti self-dual dM if and only if Wq ¼ gWq . A stationary point at arbitrary M similarly lead to
(7.6). h

It follows that any strict potential witness W is LSL-equivalent to a self-dual one. To see this take
q = 1. Lemma 7.4 then guarantees that TrðWMÞ has a minimum, and Lemma 7.5 tells us that the min-
imizer WM is self-dual. Moreover, by applying Proposition 6.1 it follows that W can be brought to a
canonical form, Eq. (7.1). The lemma below gives a direct proof of this fact without relying on the sin-
gular value decomposition used in Proposition 6.1.

Lemma 7.6. Suppose the state q is self-dual, then TrðqWMÞ has its stationary points where ½q2;WM	 ¼ 0.
In particular if q is in canonical form Eq. (7.1), then (at least in the generic non-degenerate case) so is the
minimizer WM. In the case of degenerate q2 the minimizer WM is not unique but may still be chosen as
canonical.

Proof. Combining q ¼ ~q with the minimizer condition (7.6) gives
ðqWMÞ ¼ gðqWMÞ ¼ g
WM
� �

~q ¼ gðWMÞq; ð7:9Þ
and similarly
ðWMqÞ ¼ gðWMqÞ ¼ ~q gðWMÞ ¼ q gðWMÞ: ð7:10Þ
Combining the two gives q2WM ¼WMq2. Thus the Bell basis which diagonalize q must do the same for
WM, unless q2 happens to be degenerate. In the special case of degenerate q2 one may find a Bell-diag-
onalized minimizer WM by considering first a small degeneracy breaking perturbation of q. h
7.3. Proofs of the two theorems

Proof of Theorem 7.1. Choosing some generic q of the canonical form (7.1) and arbitrary W, we are
guaranteed by Lemma 7.4 that TrðqWMÞ has a minimum. Lemma 7.6 then tells us that the minimizer
WM is also of the canonical form xlPl. The four eigenvalues xl can be permuted arbitrarily by
Proposition 2.2.

The LSL invariance of
Spec fW W
� �

¼ x2
l

n o
ð7:11Þ
determines xl up to sign. To determine the signs we shall show that at most one LSL-eigenvalue is
negative. To this end, note first that from any pair of the Bell states, one may construct a separable
state jbli þ eiujbmi (actually eiu ¼ 1 or i). For example
jb0i þ jb1i ¼
ffiffiffi
2
p
j00i; jb2i þ ijb3i ¼

ffiffiffi
2
p
j01i; etc: ð7:12Þ
(Since local unitaries can permute Bell states, similar relations must hold for all other Bell pairs.) With
W in canonical form we then have by Eq. (4.1) that
0 6 bl þ eiubmjWMjbl þ eiubm

D E
¼ ðxl þxmÞ; l–m: ð7:13Þ
This implies that at most one of the eigenvalues is negative, and moreover, it must be the one of small-
est absolute value. The LSL-invariance of detðWÞ then fixes the signs of all the xl uniquely. The proof
is complete. h

Proof of Theorem 7.2. Given W and q Theorem 7.1 tells us that that qN ¼ qe ¼ qlPl for some
N 2 SLð2;CÞ � SLð2;CÞ. We therefore have
TrðqWÞ ¼ TrðqN�1

e WÞ ¼ Tr qeWN
� �

P min
M

TrðqeWMÞ
n o

: ð7:14Þ
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By Lemma 7.6 we know that TrðqeWMÞ is stationary whenever WM ¼ xlPl. The minimum clearly cor-
responds to requiring Eqs. (7.2) and (7.4). h
7.4. The boundary of the cone of witnesses

Theorem 7.1 applies only to observables W in the interior of the cone of potential witnesses. It can
be extended to to the boundary, provided the notion of LSL-transformations is appropriately modified.
We shall say that observable B is obtained by a generalized LSL-transformation from observable A iff it
is in the closure of the equivalence class of A,9 i.e. iff there exist a series fMig1i¼1 � SLð2;CÞ � SLð2;CÞ
such that AMi ! B. Theorems 7.1 and 7.2 then hold in this generalized sense for any potential witness
(with minM replaced by infM). The proof follows very similar lines to the proofs given above. The only
major change is replacing Lemma 7.4 by a generalization of it described in Appendix A.

8. Classification: a Lorentzian picture

8.1. Geometric characterization of witnesses

The matrix of Lorentz components Wlm of a potential witness W, Eq. (6.11), allows for a simple geo-
metric characterization of potential witnesses. By definition, a potential witness has positive expecta-
tion for product states:
9 Thi
10 The

section.
0 6 Tr ðWqA � qBÞ ¼ 4Wlm ðqAÞ
lðqBÞ

m
: ð8:1Þ
Since the four-vectors ðqA;BÞl can lie anywhere in the forward light cone (by Lemma 5.1), we learn that
the matrix W maps the forward light cone into itself. Points that lie in the interior of the cone of po-
tential witnesses satisfy a strict inequality in Eq. (8.1). The map W then sends the forward light cone
into its (timelike) interior.

8.2. Lorentz singular values

By Eq. (5.8) LSL acts on the Lorentz components of a two-qubit observable W by a pair of Lorentz
transformations
WA�B ¼ KA W Kt
B; ð8:2Þ
where KA;B 2 SOþð1;3Þ are two 4 � 4 Lorentz transformation matrices.
From Eq. (2.6) it follows that if W is in canonical form then
W ¼ xlPl ¼ wlr�2
l ; ð8:3Þ
so that the Lorentz matrix W is diagonal. We shall refer to wl as the canonical coordinates of W, and
to xl as the spectral coordinates. The xl and wl coordinates are related by Eq. (6.16).

Thus when viewed in terms of Lorentzian components, bringing W to its canonical form consists of
diagonalizing the associated tensor Wlm by a pair of Lorentz transformations. This is reminiscent of the
notion of the singular decomposition of a matrix (which is defined in the same way with the Lorentz
transformation replaced by orthogonal matrices).

For a matrix M its singular values are the (positive) roots of the matrix M�M. The Lorentzian analog
of M�M turns out to be the matrix WklWkm. It is convenient to write it as WHW where the ‘Lorentz con-
jugated matrix’ is defined by10
WH ¼ gWtg: ð8:4Þ
One readily verifies that componentwise
s is not an equivalence relation as generalized transformations need not be invertible.
w duality, conforms with the Lorentz scalar product, v � ðWuÞ ¼ ðWHvÞ � u. It is distinct from the � duality of the previous
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ðWHÞlm ¼Wml: ð8:5Þ
Since Lorentz transformations leave the Minkowsky metric invariant, KtgK ¼ g, one has
KH ¼ K�1: ð8:6Þ
It then follows that under (8.2) WHW undergoes a similarity transformation
WHW! KMWKt
N

� �H

KMWKt
N

� �
¼ ðKt

NÞ
�1 WHW
� �

Kt
N ; ð8:7Þ
and similarly for WWH. The spectra of WHW and WWH are therefore LSL invariant.
The LSL invariance of the spectrum of WWH does not depend on W being a witness. In general, this

spectrum is complex. For matrices that lie in the cone of witnesses one has, by Eq. (8.3), that the eigen-
values of WWH are w2

l and are positive (or zero). In this case, in analogy with the notion of singular
values, one may define the Lorentz singular values as jwlj.

Remark 8.1. Diagonal Lorentz transformations in O(1,3) with ±1 on the diagonal, bring any diagonal
W to a positive diagonal form. However, we are allowed only proper orthochronos Lorentz
transformations, SOþð1;3Þ. Thus the canonical coordinates wl defined via Eq. (8.3) may differ in signs
from the (positive) Lorentz singular values.
8.3. Tetrahedral symmetry and fundamental domains

The tetrahedral group acts on the coordinates xl as permutations. In terms of the coordinates wl
this group acts as permutations and sign flips of the three ‘spatial’ coordinates wj which leave
sgnðw1w2w3Þ invariant. To see this note first that the relation 4w0 ¼ x0 þx1 þx2 þx3 > 0 shows that
w0 is independent of the ordering of xl. Hence, the tetrahedral group acts only on the spatial compo-
nents wj. For proper Lorentz transformations detðWÞ ¼ w0w1w2w3 cannot change sign. In cases when
detðWÞ > 0 the canonical coordinates may be taken as equal to the Lorentz singular values. If
detðWÞ < 0 then at least one of the canonical coordinates (which we will usually take to be the one
having least absolute value) must be chosen as negative. The tetrahedral symmetry allows one to im-
pose wl to be in the fundamental domain
w1 P w2 P jw3j; ð8:8Þ
which is equivalent to Eq. (7.2). The antipodal fundamental domain
�w1 P �w2 P jw3j ð8:9Þ
is equivalent to the anti-canonical ordering of Eq. (7.4).

8.4. Classification of potential witnesses

Symmetric matrices that map the forward light-cone into itself may be interpreted in general rel-
ativity as energy–momentum tensors that satisfy the ‘‘dominant energy condition”. Their classifica-
tion11 is given in pp. 89–90 in [17]. We need a generalization of this classification to non-symmetric
matrices12 where we are allowed to use a pair of Lorentz transformations as in Eq. (8.2). The classification
is given in [48] and is based on [15]:

Theorem 8.2. Let W be a 4 � 4 matrix that maps the forward light-cone into itself. Fix arbitrary j > 0. Then
there is a pair of Lorentz transformations KA;KB such that KAWKB is of one of the four canonical forms,
unique subject to Eq. (8.8):

� The ordinary diagonal form
dau and Lifshitz, p. 274 in [27], gives a partial classification.
(8.4) WH ¼W means Wg is symmetric.
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w0 0 0 0
0 w1 0 0
0 0 w2 0
0 0 0 w3

0
BBB@

1
CCCA; ð8:10Þ
associated with the cone in four dimensions with a cross-section that is a three-dimensional cube:
w0 P jwjj: ð8:11Þ
� The first extraordinary form
w0 þ j �j 0 0
j w1 � j 0 0
0 0 w2 0
0 0 0 w3

0
BBB@

1
CCCA; ð8:12Þ
associated with the boundary of the cone
w0 ¼ w1 P jw2;3j: ð8:13Þ
� The second extraordinary form
j j 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCA ð8:14Þ
associated with the apex of the cone wl ¼ 0.
� The third extraordinary form
j 0 0 0
j 0 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCA; ð8:15Þ
also associated with the apex of the cone wl ¼ 0.

wl, the ‘‘Lorentz singular values”, are roots of the eigenvalues of WHW.

The proof of this theorem is given in Appendix B.

9. The geometry of witnesses and states

We have seen that the LSL equivalence classes of witnesses, states and separable states are repre-
sented by nested cones in four dimensions. In this section we give a geometric description of these
cones.

9.1. The geometry of ordinary witnesses

The Lorentz tensor associated with the witness
We ¼ wlr�2
l ð9:1Þ
maps the light cone into itself iff w0 P jwjj. The LSL equivalence classes of the (ordinary) potential wit-
nesses are therefore characterized geometrically by the cone in four dimensions:
w0 P jw1j; jw2j; jw3j; ð9:2Þ
whose cross-section is the cube.
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By Theorem 7.2 the canonical representative of a witness also minimizes TrðWMÞ. Thus the rep-
resentatives of normalized witnesses have w0 6

1
4 giving a capped cone. All points in the capped cone

are relevant since given We–0 with Tr We < 1 one easily finds M which makes TrðWM
e Þ as large as

one wants.
Four corners of the cube at the cap of the cone, making the vertices of a tetrahedron, represent the

four Bell states Pl. The four remaining corners, also making a tetrahedron, describe bona-fide Bell wit-
nesses, all equivalent to the swap S ¼ 1

2

P
r�2

l .

9.2. The geometry of the ordinary separable states

The duality between separable states and potential witnesses in 16 dimensions translates to a dual-
ity between the cones of the corresponding equivalence classes in four dimensions. This follows from
Corollary 7.3 which says that the corresponding cones in R4, defined by qlxl P 0 are also dual cones.
The identity qlxl ¼ 4rlwl allows writing this in terms of canonical coordinates as rlwl P 0. Since the
dual of the cube is the octahedron, the LSL equivalence classes of the separable states are represented
by a cone whose cross-section is an octahedron.

Algebraically, the separable states are described by the eight extremal inequalities
1
4

P r0 P w1r1 þ w2r2 þ w3r3; wi ¼ �1 ð9:3Þ
associated with the eight witnesses at the corners of the cube, making up an octahedral cone.
A different way [28] to see that the separable states are represented by the octahedron relies on

considering explicitly the six operators corresponding to the vertices of the octahedron:
8Sj� ¼ ðr0 þ rjÞ � ðr0 � rjÞ þ ðr0 � rjÞ � ðr0 
 rjÞ ¼ 2 r�2
0 � r�2

j

� �
ð9:4Þ
and j = 1,2,3. The middle expression shows that all six vertices are separable states. The right-hand
side shows that they all are equal mixtures of any two Bell states.

9.3. The geometry of all ordinary states

Let qe be a canonical representer corresponding to the state q, i.e.
qe ¼ rlr�2
l ¼ qlPl: ð9:5Þ
Since q P 0, the LSL equivalence classes are represented by the positive quadrant, ql P 0, in four
dimensions. This is evidently a cone whose cross-section is the tetrahedron.

In terms of the r coordinates the cone of all states is described by four out of the eight inequalities
equation (9.3), specifically those corresponding to w1w2w3 ¼ �1.

The LSL equivalence classes corresponding to normalized states form a four-dimensional capped
cone with
X

ql 6 1: ð9:6Þ
The cap of the cone is the three-dimensional tetrahedron, and represents the SU(2) equivalence classes
of states with fully mixed subsystems.

The four vertices of the tetrahedron at the cap of the cone are identified with the four Bell states Pl
of Eq. (2.6) and represent a single equivalence class as the tetrahedral symmetry can interchange any
of them, by Proposition 2.2. The ql coordinate lines represent the (equivalence classes) of entangled
pure states discussed in Section 5.2.

The apex of the cone at the origin formally corresponds to the states where ~qq ¼ 0 which, by Eq.
(6.20), occurs when at least one of the subsystems is pure, as in Eq. (1.1).



Fig. 6. The figure represents the extraordinary canonical forms associated with the boundary of the cube, Eq. (9.8) with j – 0.
The extraordinary separable states are represented by the red dot and the extraordinary entangled states by the cyan diagonal.
The square represents extraordinary witnesses. The extraordinary canonical forms are inequivalent to the ordinary ones
(corresponding to j = 0) cohabiting the same set of points. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this paper.)
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Any point in the cone of states can be expressed as a (sub) convex combination of its vertices rep-
resenting the four Bell states.13

Corollary 9.1. Any mixed two qubit state can be expressed as a convex combination of four pure states,
each equivalent to a Bell state by the same LSL-transformation.

The fundamental domain of normalized states is most simply described in terms of its spectral
coordinates ql as
13 Usi
q0 P q1 P q2 P q3 P 0;
X

ql 6 1
or, equivalently, by

1
4

P r0 P r1 þ r2 þ r3; r1 P r2 P jr3j: ð9:7Þ
9.4. The geometry of the boundary

The boundary of the cone of potential witnesses is subtle. Observables inside the cone are guaran-
teed to have a finite LSL transformation that brings them to canonical form. However, as one ap-
proaches the boundary, it may happen that the required LSL transformation may or may not have a
limit. If it does, the state/witness belongs to an ordinary class, if it does not, it belongs to an extraor-
dinary LSL equivalence class. Both classes, though LSL inequivalent, have identical invariant spectra
and Lorentz singular values and therefore are represented by the same point in four dimensions. This
makes the set of LSL equivalence classes’ non-Hausdorff.

The first extraordinary family, Eq. (8.12) of Theorem 8.2, with w1 ¼ w0 and w2 þ w3–0 describes
observables with a negative eigenvalue which therefore are witnesses rather than states. When
w2 ¼ �w3 it describes the extraordinary family of a mixture of two Bell states and a pure product state
p0P0 þ p1P1ð Þ þ jðr0 þ r1Þ � ðr0 � r1Þ ð9:8Þ
p0; p1 probabilities: p0 þ p1 6 1 and p0; p1 P 0. For definiteness one may fix, e.g. j = 1. The Lorentz sin-
gular values are seen to be
1
4

p0 þ p1;p0 þ p1; p0 � p1;p1 � p0f g: ð9:9Þ
Geometrically, this family shown in Fig. 6 may be thought of as a phantom image of the edges of the
tetrahedron.

The second and third extraordinary forms describe the family (pure) � (mixed) and (mix-
ed) � (pure), both of which are represented by the apex of the cone.
ng Eq. (9.8) one may demonstrate the correctness of the corollary also for extraordinary states.
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10. Measure and distillation of entanglement

The four-dimensional description of the LSL equivalence classes of two qubits is faithful to the mea-
sure of entanglement. (This is not true for the three-dimensional description in [28].) This allows us to
give a geometric interpretation of the notion of concurrence and optimize distillation.

10.1. Concurrence as the best evidence

A natural way to quantify entanglement is to measure the expected values of entanglement wit-
nesses [29]. Given an entangled state q, the entanglement evidence given by the expectation of the
optimal witness is
Fig. 7.
toward
green li
entang
paper.)
CðqÞ ¼ � inf
W

2TrðWqÞ ¼ �8 inf
w

wlrl ¼ 2ð�r0 þ jr1j þ jr2j þ jr3jÞ: ð10:1Þ
The set W in this definition is the set of witnesses with a normalized representer. For a separable state
the r.h.s. of Eq. (10.1) is clearly negative and one simply defines CðqÞ ¼ 0. It is clear from its definition
that CðqÞ is a positive quantity if and only if the state q is entangled. It can be interpreted geometri-
cally as the distance from the octahedral cone of separable state and it vanishes, of course, on its faces.
It is clearly an LSL invariant. This is illustrated in Fig. 7.

Choosing the representative of the state r in the fundamental domain, Eq. (9.7), we have
CðqÞ ¼ 2ð�r0 þ r1 þ r2 þ jr3jÞþ ¼ 2ð�r0 þ r1 þ r2 � r3Þþ ¼ ðq0 � q1 � q2 � q3Þþ; ð10:2Þ
where we use the notation
ðxÞþ ¼
x; x > 0;

0; otherwise:



ð10:3Þ
In the second equality of (10.2) we have used the fact that for any state ðr0 � r1 � r2 � r3Þ ¼ q3 > 0. The
r.h.s. is the standard definition of concurrence [51].

10.2. Entanglement distillation

Entanglement is easy to destroy (by mixing) and impossible to increase by local operations. How-
ever, one can sometimes distill entanglement by local operations at the price of loosing some of the
qubits [48]. We have seen in Section 5.2 that one can distill Bell states from a pure mixed state with
finite success probability. Here we shall establish a bound on the maximal entanglement one can dis-
till from a single mixed state with finite probability. This should be distinguished from the more com-
mon distillation protocols, say [6], which rely on operations on multiple identical copies of the state.
The pink triangle is the cone of separable states. The green line is a line of constant concurrence. Concurrence increases
s the right. The enclosing blue triangle illustrates the cone of states. States represented by the intersection of the red and
nes can be filtered along the red line. All states can be filtered to have zero entanglement, but in general not to maximal

lement. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
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Single copy distillation actually appears as a preliminary step in more general multi-copy protocols
[21].

Geometrically, the results are summarized in Fig. 7. More precisely

Theorem 10.1. Let CðqÞ > 0 be the concurrence of the state q and let M be the LSL transformation that
takes it into its canonical diagonal form. The optimally distilled state is
qf ¼
MqMy

TrðMqMyÞ
: ð10:4Þ
Its concurrence is
Cðqf Þ ¼
CðqÞ

4r0ðqÞ
¼
ðq0 � q1 � q2 � q3Þþ
q0 þ q1 þ q2 þ q3

P CðqÞ; ð10:5Þ
and the distillation succeeds with probability p(q)
pðqÞCðqf Þ ¼
CðqÞ
kMk2 6 CðqÞ: ð10:6Þ
Proof. By the LSL invariance of the concurrence CðqMÞ ¼ CðqÞ. It is then clear from Eq. (10.4) that the
concurrence of the renormalized filtered state qf is maximal exactly when TrðMqMyÞ takes its minimal
value 4r0ðqÞ, which occurs precisely when qf is self-dual, by Theorem 7.2. This establishes the optimal
concurrence. The probability that distillation succeeds is computed as in Eq. (5.5). h

Since 0 < 4r0 6 1 the entanglement always increases, except for the states with 4r0 ¼ 1. These are
the states represented by the cap of the cone, i.e. entanglement cannot be distilled when the subsys-
tems are fully mixed. On the other hand, pure states have qj ¼ 0 and thus can be filtered to be max-
imally entangled.

11. The Peres–Horodecki separability test

The geometric description of the world of two qubits allows for a simple proof, essentially
by inspection, of the ‘‘if” part of Theorem 3.2. A similar elementary geometric proof is given in
[28].

By Eq. (3.6), partial transposition acts on operators in canonical form as the reflection about the r�2
3

axis. States satisfying the Peres test are then those belonging to the intersection of the tetrahedron
with its reflection which is precisely the octahedron of separable states. This shows that a state that
satisfies the Peres test must be separable.

The original proof of this fact [23] is algebraic in character, more powerful, and not completely ele-
mentary. An elegant version of it also follows from the Choi–Jamiolwosky isomorphism [12] and an
alternate simple proof is given in [48].
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Appendix A. The existence of a minimizer

To extend Theorem 7.1 to the boundary one needs a stronger version of Lemma 7.4:
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Lemma A.1.

� Suppose q and W both lie in the interior of the cone of potential witnesses, i.e. satisfying a strict inequal-
ity in (8.1). Then, the function TrðqWMÞ diverges to +1 as either MA 2 SLð2;CÞ or MB 2 SLð2;CÞ go to
infinity. In particular, it has a finite minimizer.

� For any q and W in the cone of potential witnesses (boundary included), the function TrðqWMÞ has a
finite lower bound.

� Suppose q satisfies a strict inequality (8.1) while W satisfies only a weak one. In this case the infimum
may be reached for infinite M. However, the corresponding WM is still guaranteed to have a finite limit.
Proof. Writing the potential witnesses A, B in terms of their associated Lorentz tensors one has
1
4 TrðABM1�M2 Þ ¼ ðAÞlmðK1BK2Þlm. We would like to consider the behavior of this expression when the
Lorentz transformations K1;K2 2 SOþð1;3Þ involve large boosts.

Any Lorentz transformation K may be written as a combination of a boost of some rapidity t and a
rotation. It is then always possible to express K as
KðtÞ ¼ etKþ þ e�tK� þK0:
Moreover, one may write Kþ ¼ vþ � uþ;K� ¼ v� � u�;K0 ¼ v0;½1	 � u0;½1	 þ v0;½2	 � u0;½2	 where
fuþ;u�;u0;½1	;u0;½2	g; fvþ; v�; v0;½1	; v0;½2	g are two ‘‘light cone” bases of space–time. In the following it will
be convenient not to bother with the distinction between the two spatial vectors u0;½1	;u0;½2	 (or
v0;½1	; v0;½2	) and we will usually refer to both of them as u0 (or v0) with the extra index implicit.

Expressing the two Lorentz transformations as above one may write
ðAÞlmðK1BK2Þlm ¼
X
a;b

eat1 ebt2 uð2Þb � Avð1Þa

� �
uð1Þa � Bvð2Þb

� �
;

where a, b run over the three values +, �, 0. Using obvious notations this may be written more shortly
as
P

a;b eat1 ebt2 AbaBab.
Consider the case where both t1; t2 !1. It is clear that in this limit our function is dominated by

the ða; bÞ ¼ ðþ;þÞ term: f ’ et1þt2 AþþBþþ. Relation (8.1) tells us that Aþþ;Bþþ P 0. In particular if A, B
are strictly in the interior of the cone then they satisfy strict inequality and hence f ? +1 proving Part
1 of the lemma.

The second part of the lemma concerns the case where the leading asymptotic term AþþBþþ
vanishes. Suppose this is due to Bþþ ¼ 0, this means Bvð2Þþ ? uð1Þþ . But we know that Bvð2Þþ must be in the
forward lightcone. This is consistent with Bvð2Þþ ? uð1Þþ only if Bvð2Þþ / uð1Þþ , which in turn implies
uð1Þ0 � Bvð2Þþ ¼ 0, i.e. B0þ ¼ 0. Similarly, one also has Bþ0 ¼ 0. We conclude that contributions of the three
terms ða; bÞ ¼ ðþ;þÞ; ðþ;0Þ; ð0;þÞ vanish. Since the ða; bÞ ¼ ðþ;�Þ; ð�;þÞ terms are non-negative while
ða; bÞ ¼ ð0;0Þ; ð0;�Þ; ð�;0Þ; ð�;�Þ are bounded, one concludes that f has a lower bound proving Part 2
of the lemma.

To check how K1BK2 corresponding to BM behave as t1; t2 !1, it is enough to consider its
components with respect to the (t-independent!) {u}, {v} bases, which are just eat1 ebt2 Bab. We already
saw that for the infimum to occur at infinite t one must have Bþþ ¼ Bþ0 ¼ B0þ ¼ 0. Thus the only terms
with the potential to diverge are Bþ�;B�þ. These, however, are strictly non-negative terms and so their
divergence would imply TrðABMÞ ! þ1 (assuming Aþ�;A�þ–0 for a strict witness A). This phenom-
enon clearly cannot occours at an infimum of TrðABMÞ and thus we conclude that all components of BM

must have a finite limit proving Part 3 of the lemma.
For completeness one should also remark on the case where only one of the ti’s diverges, say

t2 !1. This may be dealt with similarly to the above by considering the function K#TrðCKÞ with
C � AK1B constant. h
Appendix B. Proof of classification Theorem 8.2

Since the matrix of Lorentz components W maps the forward light-cone into itself, so do
WH and WHW. The projective space associated with the forward lightcone (i.e. causal four-vectors
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modulo normalization) is geometrically a closed three-dimensional ball. Since the closed unit ball is a
fixed point domain, [44], the map WHW must have a fixed point. Let u0 be the associated direction, and
v0 the corresponding direction for WWH, i.e.
14 Thi
conditio
WHW u0 ¼ k u0 WWH v0 ¼ k0 v0: ðB:1Þ

In fact Wu0 can be taken as a multiple of v0. It then follows k0 ¼ k and Wv0 is a multiple of u0
W u0 ¼
ffiffiffi
k
p

v0 WH v0 ¼
ffiffiffi
k
p

u0: ðB:2Þ
There are now four cases. The ordinary case is when u0 and v0 are time-like. The three extraordinary
cases correspond to the situations when either u0 or v0, or both are light-like.

B.1. The ordinary case

The ordinary case distinguishes two Lorentz frames, one whose time axis coincides with u0 and an-
other whose time axis coincides with v0. Since both vectors are time-like they can be normalized
u0 � u0 ¼ v0 � v0 ¼ 1. Let uj and vj span the space-like directions corresponding to u0 and v0, respectively.
Since
vj �W u0 ¼
ffiffiffi
k
p

vj � v0 ¼ 0; v0 �W uj ¼
ffiffiffi
k
p

u0 � uj ¼ 0; ðB:3Þ
the pair of Lorentz frames bring W to a form where W0j ¼Wj0 ¼ 0. The remaining 3 � 3 spatial block
can be diagonalized as in Proposition 6.1, by a pair of spatial rotations, leading to the form (8.10). The
condition w0 P jwjj follows from the requirement that W maps the forward light-cone into itself.

B.2. The second and third extraordinary case

Consider the case where one of causal eigenvectors u0; v0 is null.
Suppose u2

0 ¼ 1 but v2
0 ¼ 0. The assumption that WWH does not have time-like eigenvectors then

implies that Wu0 must be null (or zero). This in turn implies 0 ¼ ðWu0Þ2 ¼ u0 �WHWu0 ¼ ku2
0 ¼ k. Sim-

ilarly u2
0 ¼ 0; v2

0 ¼ 1 also implies k ¼ 0.
Assume now that k ¼ 0 for whatever reason. WHWu0 ¼ 0 then implies either

Wu0 ¼ 0 or Wu0 / v0; WHv0 ¼ 0. Let us concentrate on one of these possibilities, say WHv0 ¼ 0. It then
follows u �WHv0 ¼ 0 8u, i.e. v0 �Wu ¼ 0 8u. This relation should hold in particular for any causal vector
u, in which case we know that Wu is also causal. However, it is well known that two nonzero vectors
both inside the light cone can be orthogonal only if they are a pair of parallel null vectors. We conclude
thus that Wu / v0. This must hold for any causal u and hence by linearity for all u’s. It follows W is a
rank one matrix of the form v0 � u for some u which is easily identified with u0. This means that W is of
the form (8.15). The case Wu0 ¼ 0 similarly leads to Eq. (8.14).

B.3. The first extraordinary case

The case of u2
0 ¼ v2

0 ¼ 0 (and k – 0) is the hardest one to analyze.
Consider first the case of a self-dual witness A, 14(e.g. A ¼WHW) having null eigenvector u0. One then

has a Jordan block spanned by fu0;u1; . . . ukg such that Aui ¼ kui þ ui�1 (here u�1 � 0). It should be noted
that there is always some freedom in the choice of the ui’s. Specifically we may add to ui any multiple of
uj; j < i. Smart choices may help simplifications. We shall make use of the identity ui � uj ¼ uiþ1 � uj�1

which follows from the relation ui � Auj ¼ uj � Aui.

� If k = 1 then we must have u1 � u0–0, for otherwise it cannot span anything outside u?0 . (Other eigen-
spaces must of course be orthogonal to u0.) Taking advantage of our freedom to add to u1 any multi-
ple of u0 we may then assume u2

1 ¼ 0. Identifying u0;u1 with standard light like vectors ð1;�1;0; 0Þ
we then find A takes the form (8.12) with w0 ¼ k;j ¼ 1

2 , which is equivalent to ‘‘type II” of [17].
s is the case treated in general relativity. Of the four types listed in [17] only the first two satisfy the dominant energy
n.
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� If k = 2 then u1 � u0 ¼ u2 � u�1 ¼ 0 imply that u1 is space-like: u2
1 < 0. We then also have

u2 � u0 ¼ u2
1–0 from which it follows that by adding to u1;u2 appropriate multiples of u0 we may

assume them to satisfy u2
2 ¼ u2 � u1 ¼ 0. It then follows that Au2 ¼ ku2 þ u1 maps a light-like vector

to a spacelike one. This case is therefore not of our interest.
� The k = 3 case may be disqualified on the same basis as k = 2. However, stronger arguments exist.

Note that u2
1 ¼ u3 � u�1 ¼ 0 contradicts u1 � u0 ¼ u2 � u�1 ¼ 0 (unless u1 / u0). Thus this case cannot

arise even if one does not demand A to be a potential witness.

We conclude that only the case k = 1 is relevant. Given a non-self-dual W one may then define
u0;u1 and v0; v1 as above corresponding to the self-dual operators A ¼WHW and WWH. Unless k = 0
one may pair u0; v0 as in Eq. (B.2). Calculation then shows that Wu1 �

ffiffiffi
k
p

v1 is an eigenvector of
WWH and hence proportional to v0. One may then write:
Wu0 ¼
ffiffiffi
k
p

v0; Wu1 ¼
ffiffiffi
k
p

v1 þ jv0:
Knowing how W acts on u0 and u1 essentially solves the classification problem and allows presenting
it as in Eq. (8.12).
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