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Abstract

The Longuet-Higgins–Berry’s phase has remarkable consequences for charge transport in molecular rings. For generic
Ž .conical crossing, where the phase is p, a vanishing cause can lead to a diverging response in the amount of charge
transport. Away from level crossings, when the phase is 0, a vanishing cause leads to a vanishing response. The divergence
of the response near crossing is related to, but distinct from, the divergence that occurs in the generalized susceptibility. We
illustrate this behavior for quantum models of molecular rings driven by a running wave of small amplitude at zero and finite
temperatures. q 1998 Elsevier Science B.V. All rights reserved.

Consider a molecular ring, such as a benzene or a
triangular molecule X , such as Na . In the Born–3 3

Oppenheimer limit of heavy nuclei one can consider
a cycle of deformations where each nucleus is dis-
placed only slightly from its initial position and
eventually returns to it. The question that we want to
focus on is: What is the electronic charge transported
around the molecular ring in one such cycle? As we
shall explain below, there are two cases: If the cycle
of atomic deformations can be shrunk to zero with-

Žout trapping a point of level crossing of the elec-
.tronic energy levels then one gets normal behavior

in the sense that the weaker the deformation, the less
the charge transported in one cycle. If, however, the
cycle of atomic deformations pinches a point of level
crossing, then the smaller the cycle, the larger the
transported charge. We dub such anomalous behav-
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ior, where the weaker the cause the larger the effect,
homeopathic. We shall illustrate this for Huckel¨
Ž .tight binding models of molecular rings at zero
temperature.

Homeopathic charge transport is intimately re-
w xlated to the Longuet-Higgins 1 and Berry’s phase

w x2,3 : For time reversal invariant Hamiltonians level
crossing is reflected in the sign of the electronic
wave function undergoing a cycle of deformation.

Ž .This sign is y1 if the cycle pinches a generic
crossing and 1 if it does not. The Longuet-Higgins

Ž .phase has important consequences for molecular
rovibronic spectra in Born–Oppenheimer and Jahn–

w xTeller theory 4,5 and plays a role in molecular
w xdynamics 6 . The theory of adiabatic transport adds

the observation that Longuet-Higgins phase has di-
rect consequences also for electronic properties, and
not only to molecular properties. In particular, a
phase y1 implies homeopathic charge transport.
There is both theoretical and experimental evidence

w xthat molecular trimers such as Na 7 and sym-tri-3
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w xazine 8 as well as other trimers and systems have
y1 Longuet-Higgins phase.

Adiabatic charge transport near gap closures for
w xinfinite chains has been studied in 9 . For these there

is no homeopathic divergence. Instead, a vanishing
cause can lead to a finite and quantized charge
transport when the Longuet-Higgins phase is y1.
The charge transport in finite molecular rings is,
therefore, more singular than that in infinite chains.

ŽThe homeopathic behavior that occurs for out of
.equilibrium charge transport is related to, but dis-

tinct from, the divergences that can occur in thermo-
dynamic equilibrium of generalized susceptibilities
at Ts0. A necessary condition for either, at least
for the simple model systems we consider below, is
that quantum energy levels cross. But, while thermo-
dynamic susceptibilities probe the singularity of the
energy surface near crossing, non-equilibrium adia-
batic transport probes the singularity of the surface
of eigenstates near crossings. It is possible for one of
these surfaces to be singular without the other being
singular. We shall return to this issue below.

As we shall see, finite temperature introduces a
cutoff of the homeopathic divergence. In some cases,
a Jahn–Teller instability can censor the homeopathic
divergence even at Ts0.

ŽConsider, for simplicity, the Huckel tight-bind-¨
.ing model Hamiltonian for non-interacting electrons

in a general triangular molecule of three identical
atoms. Although the example of a molecular trimer
is special, it turns out that it describes the generic
situation near level crossing. The Hamiltonian is the
3=3 Hermitian matrix

0 a j c
H a, b , c, f sE , 1Ž . Ž .a 0 b0 � 0j c b 0

where E fixes the energy scale and a, b, c are0
Ž .dimensionless, real hopping amplitudes associated

Žto the three bonds of the triangle. The triangle is not
.necessarily equilateral. We assume that a, b, c are

all positive. We can, and shall, use a, b, and c as
Ž .local coordinates in the space of internal configura-

tions of a trimer. a, b, and c are actually not good
coordinates globally. For good global coordinates see
w x4 . However, global subtleties need not concern us
here since we consider only small deformations.

Fig. 1. A cycle of deformation for a molecule with three atoms.

jsexp if, with f an auxiliary phase variable
associated with a fictitious Aharonov–Bohm flux
tube which carries flux f and threads the molecule.

Ž .The explicit form of Eq. 1 involves a choice of
Žgauge for the flux tube. We shall consider observ-

.ables that are independent of this choice. The role of
f will become clear below. Deformations of the
molecule change the hopping amplitudes, and a
closed cycle of deformations is a closed path in the
three-dimensional space whose points are the hop-

Ž . 3ping amplitudes a, b, c g RR . Such a closed pathq
is shown in Fig. 1. For notational convenience we

Ž .denote by X the triplet a, b, c .
The reason for introducing the fictitious flux tube

f is to define the current operator which circulates
in such a ring. For the choice of gauge we have
made for the Aharonov–Bohm flux, the current is
associated with a single bond, the c bond, and is

0 0 yij

E H X , f scE . 2Ž . Ž .Ž . 0 0 0f 0 � 0ij 0 0

This is the sole role of f and in all our calculations
we shall eventually set fs0, which is the case with

Ž .no flux at all. In this case the Hamiltonian H X, 0
is real and therefore time reversal invariant. The
observable associated to the circulating current, Eq.
Ž .2 , is pure imaginary when fs0 and so odd under
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time reversal. Because the model for fs0 is time
Žreversal invariant, there are no diamagnetic per-

. Ž .sistent currents in any eigenstate. Let P X, f be a
Ž .sp ec tra l p ro jec tio n fo r H X , f , i.e .

Ž . Ž . Ž . Ž . Ž .H X, f P X, f sE X, f P X, f with E X, f

g RR an eigenvalue. The vanishing of the persistent
Ž . <currents is the statement Tr PE H s0 for allfs0f

X.
We are interested in the current that flows around

the molecule when it is slowly driven so that X
traces a closed path in parameter space, as e.g. in
Fig. 1. In the theory of adiabatic transport this
current is related to the adiabatic curvature. The
basic equation for the expectation value of the cur-

w xrent at time t and zero flux, reads 10–19 :

˙ 2Tr P E H sTr V P PXqO 1rt . 3Ž . Ž .Ž .Ž . Ž .t f f x

X stands for the triplet a, b and c and the dot
denotes time derivative. P is a solution of thet

Ž .quantum evolution equation, with the adiabatic
Ž .time-dependent Hamiltonian H X, f and with ini-

Ž .tial condition that P is an eigenstate. P X, f ists0

an instantaneous spectral projection for the instanta-
Ž . Ž . w xneous H X, f . V P syi P E P, E P P is thef X f X

w xf X component of the adiabatic curvature 2,3 . t is
the time scale so that the adiabatic limit is t™`.
The charge transported around the ring in one cycle,
in the adiabatic limit, is

t

Qs d t Tr P E H sETr V P d X . 4Ž . Ž .Ž . Ž .H t f f x
0

Ž .Analysis of the characteristic equation of Eq. 1
shows that level crossing can occur only if asbsc
and js"1. For js1, the case we consider here,

Žthe simple eigenvalue is 2 aE the top state if E is0 0
. < : Žpositive and the corresponding eigenvector is 0 s

y1' . Ž .3 1, 1, 1 . The twofold degenerate eigenvalue is
< :² <yaE and the projection to its subspace is 1y 0 0 .0

For fs0, level crossings occur on a ray in X
space.

The essence of homeopathic behavior is the fol-
lowing. Suppose first that the cycle of deformation

Ždoes not pinch level crossing. For the top state this
.holds for any closed cycle in the positive quadrant.

The adiabatic curvature is smooth and bounded along
Ž .the path and the right-hand side of Eq. 4 is of the

Žorder of the area of the cycle of deformations by
.Stokes formula . Q goes to zero when the cycle

shrinks to zero. Now suppose that the cycle of
deformation pinches the ray of level crossing, e.g.

a x s1qv xqv x ; 5aŽ . Ž .
b x s1qxqx ; 5bŽ . Ž .
c x s1qv xqv x , 5cŽ . Ž .

Ž .where v is here a complex cube root of unity and
x g CC runs on a small circle in the complex plane
surrounding the origin, see Fig. 1. As the cycle

Ž .shrinks, the adiabatic curvature in Eq. 4 diverges
w xquadratically, like a monopole 2,3,20 , while the

length of the cycle shrinks only linearly. It follows
that now Q diverges as the cycle shrinks to zero, i.e.

< <y1QsO x .Ž .
In the simple case at hand the leading divergence

characterizing homeopathic behavior can be calcu-
lated explicitly. The degeneracy splits in first order
of perturbation theory, both in f and in x, and the
local behavior near crossing of the two bottom states
is given by the 2=2 matrix

'E y 3 f 6v x0
. 6Ž .ž /'3 6v x 3 f

This matrix has the form of a Berry spin 1r2 model
and the adiabatic curvature of its two states is explic-
itly computable. So, to leading order, the equation

Ž .for the charge Q, Eq. 4 , reduces to

'3 1
Qs" E d Angle , 7Ž .

< <12 x

where Angle is the angle swept by x as it moves
around the origin in the complex plane. The " signs
refer to the ground and first state respectively. A

< <simple formula is obtained for a circular orbit, x s
y1' Ž < <.const., where Q s 3 p 6 x . Evidently, the

smaller the cycle that pinches the degeneracy, the
< <more charge it transports and Q™"` as x ™0.

It may be worthwhile to explain which aspects of
Ž .Eq. 7 are general and hold for any generic two-level

crossing and what is special for the explicit model
'we consider. The overall constant 3 r12 is special

for the model. What is general is that the divergence
scales like an inverse power of the distance from
crossing. This can be seen be noting that for any
Ž .generic two-level crossing the adiabatic curvature

< <y2diverges like the field of a monopole, i.e. like x ,
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and therefore a line integral on a loop of length
Ž < <.O x will scale like the potential of a monopole.
It should be stressed that this result does not

Ž .imply that the current is large. In Eq. 3 only the
ratio of the current to the rate of driving is large. The
current is not large because, as the circle is shrunk,
the rate of driving must also decrease in order for the
adiabatic theory to apply.

It may be worthwhile to point out that the charge
Ž .Q in Eq. 7 even though a geometric, is not a

ŽBerry’s phase being a line integral, rather than a
.surface integral, of the curvature .

We now return to the question of how is homeo-
pathic behavior of transport related to the divergence
of the susceptibility near level crossing. At Ts0 the
generalized susceptibility matrix x of a family of

Ž .Hamiltonians, H X, f , that depend parametrically
on X and f is the symmetric matrix of second
derivatives:

EE
x X , f s X , f ;Ž . Ž .X X

Ex Exi j

EE
x X , f s X , f ,Ž . Ž .Xf

Ex Efi

Ž . Ž .where E X, f is the ground state of H X, f . x is
Ž .a thermodynamic equilibrium property and as such

Ž .it depends only on the energy surface E X, f . The
adiabatic curvature is associated with an anti-sym-
metric matrix whose components are

TrV X , f syiTr P E P , E P ; 8aŽ . Ž .ž /X X x xi j

TrV X , f syiTr P E P , E P . 8bŽ . Ž .Ž .Xf x fi

It describes transport coefficients which cannot be
Ž .determined from the ground state energy at Ts0

Ž .or a thermodynamic potential for T)0 . This is
evident from the formula for the adiabatic curvature,

Ž .which is determined by the projection P X, f on
Ž .the ground state and not on its energy E X, f .

Eigenenergies and eigenstates are, of course, re-
lated. Away from level crossings, both E and P are
smooth functions of the parameters. However, be-
sides that, the susceptibility and the curvature are
essentially independent quantities. For example, from

Ž .Eq. 6 the energy surface of the ground state is
22Ž . Ž < < .(E f, x s yE 1 q f r3q4 x .. So, while0

Ž .V X, fs0 diverges at the crossing, the corre-X , f

Žsponding component of the susceptibility, x X, fX , f

.s0 vanishes identically and, while x diverges atff

crossing, the corresponding curvature V vanishesff

identically.
Finite temperature provides a cutoff to the homeo-

pathic divergence. Two nearly crossing states, which
are at distance e apart in energy, transport opposite

Ž .charges Qs"O 1re . At finite temperature T the
two nearly crossing states will be nearly equally

Ž .populated with a bias of O erT towards the lower
state. For the triangular molecule undergoing a cycle
of deformations, the leading behavior of the charge
transport at low temperature is:

pE0
Q T s ,Ž . '3 k TB

where k is Boltzmann’s constant. The constants inB

this formula are special for the model. In general, for
generic two level crossings, one can conclude that
the total charge transport will approach a finite limit
as one approaches the crossing so that:

Q T sO 1rT . 9Ž . Ž . Ž .
The 1rT law is reminiscent of Curie’s law.

Similar analysis can be made for a necklace of p
equivalent atoms with p an arbitrary integer larger

Ž .than 2. For benzene ps6. The tight binding
Hamiltonian is a p=p Hermitian matrix with near-
est neighbors hopping only. Now suppose that such a
ring is deformed by means of a running sinusoidal
wave of commensurate wavelength, i.e. the hopping

Ž .amplitude between the k th and kq1 th atom is
w Žtime dependent and is given by 1q2k cos 2p jkrp

.x Ž .y trt , where k which is held fixed stands for
the amplitude of the distortion and j is a natural

Žnumber smaller than p. This is an analog of Eqs.
Ž . Ž . Ž . .5a , 5b and 5c . When fsks0, there are

Ž .twofold degeneracies at energies 2 cos 2mprp for
w xms"1, . . . , " pr2 . The new feature of this

model is that the order of perturbation theory that
< <splits the degeneracies depends on m , p and j, and

can be large if p is large. As a consequence, the
singularity of the adiabatic curvature near crossing

Žcan be quite strong without the susceptibilities being
.singular . The charge transported can be calculated

here as well, but the details will be described else-
where. The result is that the charge transported in the
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pair of nearly crossing states near energy
Ž .2 cos 2mprp is:

p q sin mu
Qs" qpk cos my jr2 uŽ .

=

qy1 cos my jk uycos muŽ .
. 10Ž .Łž /cos mq jr2ykj uŽ .ks1

qG1 is the order of perturbation theory that splits
the degeneracy. q is the smallest natural number

< < < <such that qj mod p equals either 2 m or py2 m .
< < Ž .In the first case ms m in Eq. 10 and, in the

< <second case, msy m . The numerator and the de-
nominator never vanish under the conditions that
lead to this equation. u is shorthand for 2prp. We
see that the amplitude of the perturbation k enters
this expression with a negative exponent: this is the
homeopathic effect. The sign of Q reflects the fact
that each member of the pair of nearly crossing
states transports charge in opposite sense. Under a
complete cycle t™ tqt the electronic eigenstate

Ž .q Ž .acquires a phase factor y1 . Eq. 9 is still obeyed.
The molecular models discussed so far are proto-

type models of finite quantum systems. It is natural
to inquire what, if any, of the homeopathic behavior
survives for infinite, macroscopic systems. A proto-
type of such a system is the infinite one-dimensional
chain with finite electron density. When the Fermi
energy lies in a gap such a chain is nominally an
insulator and the theory of adiabatic transport ap-
plies. For non-interacting electrons and a periodic
chain, the transport behavior can be analyzed using
standard, single-electron techniques. It turns out that
there is no homeopathic divergence of transport.
What survives of the homeopathic behavior is that an
arbitrarily small cycle of deformation can lead to a

Ž .finite nonzero and quantized charge transport. This
requires that the deformation pinches a gap closure.

Ž .The quantization of transport at Ts0 comes as it
w xdoes in charge pumps 15,17 and the Hall effect

w x10 . The theoretical framework presented above
w xsheds light on the numerical findings of 9 who

found divergence of the transport coefficients in
Hubbard models of perovskite chains.

Until now we have only considered the electronic
part of the Born–Oppenheimer theory. The inclusion
of the rovibronic part is, in general, a formidable
problem even for a molecular trimer where the intri-

cacies of the three-body problem come into play. We
w xrefer to 4 for what is known in general and to

w x6,21–24 , for models. We shall content ourselves
here with the classical limit for the nuclear dynam-
ics.

If the ground state of the undeformed molecule is
degenerate, the total energy may be decreased by
deforming the molecule. This is the classical Jahn–

w xTeller 23,24 instability. This is the case if the
elastic energy is proportional to the square of the

Ž .amplitude of the deformation i.e., is harmonic and
if the degeneracy lifts to first order in the deforma-
tion. If the Jahn–Teller energy functional has a
unique minimizer which breaks the degeneracy, then
a sufficiently small cycle of deformations around the
ground state will not encircle also the point of level

Žcrossings. In this case the homeopathic behavior at
.Ts0 is censored at the ground state by the Jahn–

Teller instability and there is no divergence of the
charge transport in the limit of an infinitesimal cycle
of deformation.
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