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Hofstadter butterfly as quantum phase diagram
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The Hofstadter butterfly is viewed as a quantum phase diagram with infinitely
many phases, labeled by théintegey Hall conductance, and a fractal structure.

We describe various properties of this phase diagram: We establish Gibbs phase
rules; count the number of components of each phase, and characterize the set of
multiple phase coexistence. @001 American Institute of Physics.
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[. INTRODUCTION

Azbel' recognized that the spectral properties of two-dimensional, periodic, quantum systems
have sensitive dependence on the magnetic flux through a unit cell. A simple model conceived by
Peierls and put to the eponymous Harper as a thesis problem, gained popularity with D. Hofs-
tadter's Ph.D. thesiswhere a wonderful diagram, reminiscent of a fractal butterfly, provided a
source of inspiration and a tool for spectral analysfs.

The Hofstadter butterfly can also be viewed as the quariaem temperatujgohase diagram
for the integer quantum Hall effect. It is a fractal phase diagram with infinitely many piaSes.

The diagram leads to certain natural questions: Count the number of components of a given phase;
classify which phases coexist and where. It also leads to the general question: What form does the
Gibbs phase rufé*take for quantum phase transitions.

Fractal phase diagrams and/or infinitely many phases appear in dynamical systeins.
classical lattice systems fractal phase diagranfs'**are commonly viewed as a pathology due
to either long range interactions, or, as is the case for spin glasses, loss of translation invariance.
The Hofstadter model, when viewed as a statistical mechanical model, is both short range and
translation invariant in a natural way. But, it is quantum and the translation group is noncommu-
tative. It suggests that the fractal phase diagram may be more common in quantum phase transi-
tions than in classical phase transitions.

II. THE HOFSTADTER MODEL

The model conceived by Peierls has two versions. For the sake of concreteness we shall focus
here on the tight binding version. On the lattié® define magnetic shifts

(Ugp)(nm=¢(n—1m), (V(®)y)(n,m=e>"""y(nm-1) nmeZ. D
27®d is the magnetic flux through a unit cell. The Hofstadter model is
H(®,a,b)=a(U+U*)+b(V(D)+V* (D)), (2

wherea,b>0 are “hopping” amplitudesa=b is called the self-dual ca¥&and we shall focus on
that case in the following. We sét(®)=H($,1,1).
U andV, and therefore alsbl(®), commute with thédual) magnetic translation& andV,

(Up)(n,m)=g(n,m—1) (V)(n,m)=e>"*My(n—1,m). )
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This makesH (@) translation invariant in a natural way. The group of magnetic transldfidms
noncommutative:

U*VXUV=UVU V=e 2TP, (4)

The one-patrticle representation of the Hofstadter model(Bgqis natural for spectral studies. In

the context of statistical mechanics the second quantized representation of the model is also
instructive because it makes it clear that the model has short range, in fact, only on site and nearest
neighbors, interactions. The fractal features of the phase diagram are, therefore, not a consequence
of long range forces, as in some classical statistical mechanics models. The second quantized form
is

H((P,M)ZZ ghv(nmn'm )agman'm’—i_/u*E a:;manmv 5
where

1, n—n'==1, m=m’
ei'y(mn;m’n'): er2rin<1>' m_m/:il' n=n’ (6)

0 otherwise.

w is the chemical potential araf’,a are the usual Fermionic operators.
Let us recall a few elementary features of the spectrum:

S(H(®))=—S(H(P))=—S(H(1-D)). @)

The first is a consequence 8f being bipartite, and the second is a consequence of time reversal.
Together, they imply a fourfold symmetry, manifest in the Hofstadter butterfly.
The electronic densityy(®,x) (=integrated density of stateis

p(®,)=(0] 6(n—H(®))|0), ®

where|0) is Kroneker delta at the origin.9p(®,u)<1 is an increasing function gf. 0 is the
usual step function.
The gaps in the spectrum are labeled by an intdgewhich is a solution ¢

® k=pmod1. 9

k is the Hall conductance. We picked the lettdvecause it is naturally associated with an integer,
and it is also the first letter in von Klitzing’'s name. By E@8) and (7),

k(p,®)=—k(p,1-®)=—k(—u,®), (10

which implies a fourfold(ant) symmetry of the butterfly.

We shall assume that the Ten Martini conjectitelds. Namely, that for all irrationab’s, all
the gaps are open, so E®) hasp in an open gap for ak e Z.

Figure 1 shows the Hofstadter butterfly, color coded according to the Hall conductance. Zero
Hall conductance is left blank. The gross features of the diagram are associated with small integers
where the color coding is faithful.

The colored picture emphasizes the gaps while the standard Hofstadter butterfly emphasizes
the spectrum. The colored figure is prettier and displays the regular aspects of the diagram: Gaps
are better behaved than spectra. The colored diagram is also more faithful to certain spectral
characteristics. For example, the spectrum is a smalliséact, one of zero Lebesgue measure
something that is manifest in the colored diagram, but is less obvious from the usual Hofstadter
butterfly which plots the spectrum.
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FIG. 1. (Color,) Hofstadter colored butterfly.

We also broke with tradition in that the colored Hofstadter butterfly is rotated by 90°: In Fig.
1 the horizontal axis i$ and the vertical axis is the energy, 8fH (®)). The reason we chose to
do so is that this way emphasizes the fact that phase boundaries are fufatidns

We denote byP(k) the kth phase. Formally,

P(K)={®,u|Pk=p(®,u)mod Lu & S(H(P))}. (11)

P(k) is an open set in th@b,u) plane, with a finite number of components. For examplg,) is
two of the four big wings of the butterfly. We caf(k) a pure phaseand denote its number of

componentgP(k)|. The closure of the pure phase is denoTIE(dk) and the phase boundary is
dP(k). We callu,dP(k) the total boundary.

[II. COUNTING COMPONENTS

Thekth pure phase is made of several components.KFh8 phaseblank) has two compo-
nents. Foik# 0 the number of components is

2|k] 2

[P(0|=2, ¢(1)=12_5+O(Klogk). (12

whereg(]) is Euler(totieny function. Recall thatp(j) counts the number of integers, upjtéand
including 1), that are prime tQ: ¢(1)=1,#(2)=1,¢(3)=2 etc.
To prove Eq.(12) note first that from Eq(9)
k(p,®)=k(p", ®)=p=p’. (13

Hence, a given color would appeat mostonce on any vertical line of fixed.
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When® = p/q with gcd(p,q) =1 [gcd(p,q) is the greatest common divisor pfandq], the
spectrum of the Hofstadter model hadinite bands andj—1 gaps which are all open intervals
(except wherg is even the central gap is clogetiVe then number the gaps by their natural order
1,...0—1. The semi-infinite interval below the spectrum is, formally, the Oth gap, and the
semi-infinite interval above the spectrum as tfte gap. Equation(9), for the jth gap, can be
written as

p k=] modq. (14)

Given p,q, andj the equation has a unique solution for each open gap suchkirag/2. In
particular, onceg has been fixed, the Hall conductance takeqradinzerg integer values, from
-] q/2] to]| g/2], and each value appears once. For eyethe central gap is closed and formally
can be assigned a value afg/2.

The number of components of tlk¢h phase is the same as the number of flux valdes,
which accommodate the wing tips, minus one. ki@ wing tips are located at those valuesdof
where thekth color is absentthe kth coloris present in any small neighborhood of those values
of @, because this neighborhood contains fractions with arbitrary Igrgle Givenk= 0, it must
appear once on a horizontal interval with= p/q providedq/2>|k|. The tips of a wing with a
given color must, therefore, be located at those valueb wthich do not admik as solution of
Eqg. (14) for any p. In other words, the wing tips lie at those valuesdofvhereq is too small to
accommodaték|. This is the finite set, a Farey sequence,

0<p=gq,gedp,q)=1{U{0}. (15

p 2 (p
Fz|k|=H0$D<q,gc0tp,q)=1,q<2lk|] = d{ﬁ

q=1

Let |F| be the number of elements F Then from(15),

2[K]

|P(k>|=|F2|k||—1=q§1 $(q) (16)

essentially from the definition of the Euler function.
The asymptotic expansion for the sum in Efj2) is taken from Ref. 22.

IV. PURE PHASES AND PHASE BOUNDARIES

In thermodynamics and statistical mechanics, Gibbs phase rule is a statement about the struc-
ture of pure phases and their boundaries. A weak form of the Gibbs phase rule says that pure
phases are a set of full measure; two phases coexist, generically, on a set of Hausdorff co-
dimension one, ett? This is the form that one gets if one considers general convex functions for
thermodynamic potentials. The number of coexisting phases is related to the dimension of tangent
planes, and the Gibbs phase rule is a consequence of theorems about convex functions. There is a
stronger form of the rufé which posits, in addition, that the sets dtecally) manifolds. This
form is a consequence of additional regularity of the thermodynamic potentials.

Gibbs phase rule is a consequence of the convexity of thermodynamic potentials and so is
ultimately based on the second law of thermodynamics. It has nothing to say about the zero
temperature phase diagram of quantum phase transitions in g&henal the Hofstadter model in
particular (because the entropy vanishes identigaly question that arises is then what form
might Gibbs phase rule take for quantum phase transition. The Hofstadter model restricts what
could and what could not be true in general. As we shall see, the phase diagram of the Hofstadter
model turns out to satisfy only a weak form of the Gibbs phase rules.

Figure 1 suggests that the set of unique phase is a set of full measure and that the phase
boundaries, though fractal, are not too wild. More precisely, we have the following.
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Gibbs-like phase rule: The phase diagram of the self-dual Hofstadter model is such that pure
phases, labeled by their Hall conductances, are full measure; phase boundaries are not
manifolds—they are nowhere differentiable—but they are almost so in the sense that their Haus-
dorff co-dimension is integral, in fact

dimy(aP(k))=1. (17)

Since the number of phases is countable the total phase boundafyP(m)) is a set of Haus-
dorff dimension one as well. Finally, infinitely many phases coexist on a countable set, and
therefore a set of Hausdorff dimension zero

The first part of the Gibbs-like phase rule is an easy consequence of a result bftish
states thaiS(H(®))|=0 for a set of® of full measure. That phase boundaries are nowhere
differentiable follows from results of Wilkinsoh,Rammal, and Helffer and &trand® who
showed that the phase boundaré@X k) possess distinct left and right tangent at every ratidnal
That the Hausdorff dimension of the boundary is one follows from results of Bellié&avtp
showed that away from the wings tip8P(k) can be represented by functions ®f that are
uniformly Lipshitz. By standard resulfs,it then follows that the Hausdorff dimension is one. The
set of infinite phase coexistence is analyzed in the following.

V. COEXISTENCE

In Ref. 15 the term lakes of Wada was used to describe dynamical systems with the property
that any point on the boundary of the one basin of attraction is also on the boundary of all other
basins. We shall say that a system is almost Wada of andéevery circle that contains two pure
phases contains pure phases.

The Hofstadter butterfly is almost Wada of infinite order. This is seen from the figure, and can
also be shown to follow from Eq9).

We say that the two pure phasé&y,m), P(n), coexist on

C(m,n)=gP(m)NaJP(n). (18

No two phase coexists for any irrational flux. This is easily seen from(®gFor irrational® the
electron density takes a dense set of values in the gaps. Therefore, any two pR{sesand
P(n), are separated by infinitely many other phases. It follows that the set of phase coexistence is
a countable set, and so of zero Hausdorff dimension.

The following result gives a complete characterization of phase coexistence:

Proposition: Consider a point ® gP(k) with ®(x)= p/q with gcd(p,q)=1. Then x
e dP(k+/q) for all /' €Z. Moreover x¢& dP(k') if k' #k+/q for each/ 7

Proof: Since gcdp,q)=1 the equation

pa—gb=1 (19

has a solution with integest andb (wherea is nonunique mody). Let p,/q,= (np—b)/(nq
—a) with neZ. Then

Pnd—anp=1. (20

From Eq.(14) it follows that each band ai,/q, carries Hall conductancg (modqy,).

Now consider a poink on the right boundary oP(k). We shall first show that is also on
the left boundary ofP(k+q). SinceP(k+q) has a finite set of wing tips, Eq415), whenn is
large enough, the gap with labetHall conductancek+q at flux p, /g, must be open, and must
remain open for all largen. By a bound of Last and Wilkinséh for the total width of the
spectrum ap,/q,, each band is small and hence
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24
dist P(k),P(k+ q))<q—. (21)

Takingn—o we see thak e JP(k+q) as claimed.

By considering the next band we shall now show tkatlso lies on the boundary d?(k
+2q). Now, P(k+2q) atp,/q, is separated fronP(k) by two bands and a gap. The bands are
small by the Last—Wilkinson bound. The gap is also small by thédétocontinuity of the

spectrum:
Pn p 18
lgad<18y\/ —— == (22
dhn 9 vaa,

and from this

18

Vag,

Taking the limitn—cc yields the result. The argument can be repeated forR{hyt- ~q) with /
finite and positive. Negative valugd(k—/'q) are obtained by lettingr— —cc in the above-
mentioned argument.

For the left boundary point oP(k), n—o will give P(k—/q) andn— —co will give P(k
+/7q). This formula applies also to the phake 0, with its right boundary being the leftmost
point of the spectrum and vice-versa. The Hall conductance for the middle gap witly éwiich
is closed is formally +q/2, so it is common to phasd3(=q/2+/"'q) which is the same as
P(q/2+/q) for /,/" €.

The second part of the proposition follows from the equality

U U pk+rg=U Pk

k<|9] *

dist(P(k),P(k+2q))<?+ (23

and the fact that for fixed, each Hall conductande can appear only once.
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