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Hofstadter butterfly as quantum phase diagram
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The Hofstadter butterfly is viewed as a quantum phase diagram with infinitely
many phases, labeled by their~integer! Hall conductance, and a fractal structure.
We describe various properties of this phase diagram: We establish Gibbs phase
rules; count the number of components of each phase, and characterize the set of
multiple phase coexistence. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1412464#

I. INTRODUCTION

Azbel1 recognized that the spectral properties of two-dimensional, periodic, quantum sy
have sensitive dependence on the magnetic flux through a unit cell. A simple model concei
Peierls and put to the eponymous Harper as a thesis problem, gained popularity with D.
tadter’s Ph.D. thesis,2 where a wonderful diagram, reminiscent of a fractal butterfly, provide
source of inspiration and a tool for spectral analysis.3–9

The Hofstadter butterfly can also be viewed as the quantum~zero temperature! phase diagram
for the integer quantum Hall effect. It is a fractal phase diagram with infinitely many phase10,11

The diagram leads to certain natural questions: Count the number of components of a given
classify which phases coexist and where. It also leads to the general question: What form d
Gibbs phase rule12,13 take for quantum phase transitions.

Fractal phase diagrams and/or infinitely many phases appear in dynamical systems.14,15 In
classical lattice systems fractal phase diagrams12,16,17,13are commonly viewed as a pathology du
to either long range interactions, or, as is the case for spin glasses, loss of translation inva
The Hofstadter model, when viewed as a statistical mechanical model, is both short rang
translation invariant in a natural way. But, it is quantum and the translation group is nonco
tative. It suggests that the fractal phase diagram may be more common in quantum phase
tions than in classical phase transitions.

II. THE HOFSTADTER MODEL

The model conceived by Peierls has two versions. For the sake of concreteness we sha
here on the tight binding version. On the latticeZ2, define magnetic shifts

~Uc!~n,m!5c~n21,m!, ~V~F!c!~n,m!5e2p inFc~n,m21! n,mPZ. ~1!

2pF is the magnetic flux through a unit cell. The Hofstadter model is

H~F,a,b!5a~U1U* !1b~V~F!1V* ~F!!, ~2!

wherea,b.0 are ‘‘hopping’’ amplitudes.a5b is called the self-dual case18 and we shall focus on
that case in the following. We setH(F)5H(F,1,1).

U andV, and therefore alsoH(F), commute with the~dual! magnetic translationsU andV,

~Uc!~n,m!5c~n,m21! ~Vc!~n,m!5e2p iFmc~n21,m!. ~3!

a!Electronic mail: avron@physics.technion.ac.il
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This makesH(F) translation invariant in a natural way. The group of magnetic translations19 is
noncommutative:

U* V* UV5U V U* V* 5e22p iF. ~4!

The one-particle representation of the Hofstadter model, Eq.~2!, is natural for spectral studies. I
the context of statistical mechanics the second quantized representation of the model
instructive because it makes it clear that the model has short range, in fact, only on site and
neighbors, interactions. The fractal features of the phase diagram are, therefore, not a cons
of long range forces, as in some classical statistical mechanics models. The second quantiz
is

H~F,m!5( eig(nm;n8m8)anm
† an8m81m( anm

† anm , ~5!

where

eig(mn;m8n8)5H 1, n2n8561, m5m8

e62p inF, m2m8561, n5n8

0 otherwise.

~6!

m is the chemical potential anda†,a are the usual Fermionic operators.
Let us recall a few elementary features of the spectrum:

S~H~F!!52S~H~F!!52S~H~12F!!. ~7!

The first is a consequence ofZ2 being bipartite, and the second is a consequence of time reve
Together, they imply a fourfold symmetry, manifest in the Hofstadter butterfly.

The electronic density,r(F,m) ~5 integrated density of state!, is

r~F,m!5^0uu~m2H~F!!u0&, ~8!

whereu0& is Kroneker delta at the origin. 0<r(F,m)<1 is an increasing function ofm. u is the
usual step function.

The gaps in the spectrum are labeled by an integer,k, which is a solution of20,3

F k5r mod 1. ~9!

k is the Hall conductance. We picked the letterk because it is naturally associated with an integ
and it is also the first letter in von Klitzing’s name. By Eqs.~9! and ~7!,

k~m,F!52k~m,12F!52k~2m,F!, ~10!

which implies a fourfold~anti! symmetry of the butterfly.
We shall assume that the Ten Martini conjecture21 holds. Namely, that for all irrationalF’s, all

the gaps are open, so Eq.~9! hasr in an open gap for allkPZ.
Figure 1 shows the Hofstadter butterfly, color coded according to the Hall conductance

Hall conductance is left blank. The gross features of the diagram are associated with small in
where the color coding is faithful.

The colored picture emphasizes the gaps while the standard Hofstadter butterfly emph
the spectrum. The colored figure is prettier and displays the regular aspects of the diagram
are better behaved than spectra. The colored diagram is also more faithful to certain s
characteristics. For example, the spectrum is a small set~in fact, one of zero Lebesgue measur!,
something that is manifest in the colored diagram, but is less obvious from the usual Hofs
butterfly which plots the spectrum.
d 13 Dec 2001 to 132.68.1.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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We also broke with tradition in that the colored Hofstadter butterfly is rotated by 90°: In
1 the horizontal axis isF and the vertical axis is the energy, orS(H(F)). The reason we chose t
do so is that this way emphasizes the fact that phase boundaries are functions~of F!.

We denote byP(k) the kth phase. Formally,

P~k!5$F,muFk5r~F,m!mod 1,m¹S~H~F!!%. ~11!

P(k) is an open set in the~F,m! plane, with a finite number of components. For example,P(1) is
two of the four big wings of the butterfly. We callP(k) a pure phaseand denote its number o
componentsuP(k)u. The closure of the pure phase is denotedP̄(k) and the phase boundary
]P(k). We call øk]P(k) the total boundary.

III. COUNTING COMPONENTS

The kth pure phase is made of several components. Thek50 phase~blank! has two compo-
nents. ForkÞ0 the number of components is

uP~k!u5(
j 51

2uku

f~ j !512
k2

p2 1O~k logk!, ~12!

wheref( j ) is Euler~totient! function. Recall thatf( j ) counts the number of integers, up toj ~and
including 1!, that are prime toj : f(1)51,f(2)51,f(3)52 etc.

To prove Eq.~12! note first that from Eq.~9!

k~r,F!5k~r8,F!⇒r5r8. ~13!

Hence, a given color would appearat mostonce on any vertical line of fixedF.

FIG. 1. ~Color.! Hofstadter colored butterfly.
d 13 Dec 2001 to 132.68.1.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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WhenF5 p/q with gcd(p,q)51 @gcd(p,q) is the greatest common divisor ofp andq#, the
spectrum of the Hofstadter model hasq finite bands andq21 gaps which are all open interva
~except whenq is even the central gap is closed!. We then number the gaps by their natural ord
1, . . . ,q21. The semi-infinite interval below the spectrum is, formally, the 0th gap, and
semi-infinite interval above the spectrum as theqth gap. Equation~9!, for the j th gap, can be
written as

p k5 j modq. ~14!

Given p,q, and j the equation has a unique solution for each open gap such thatuku,q/2. In
particular, onceq has been fixed, the Hall conductance takes all~nonzero! integer values, from
2 b q/2 c to b q/2 c, and each value appears once. For evenq, the central gap is closed and formal
can be assigned a value of6q/2.

The number of components of thekth phase is the same as the number of flux values,F l ,
which accommodate the wing tips, minus one. Thekth wing tips are located at those values ofF
where thekth color is absent~the kth color is present in any small neighborhood of those valu
of F, because this neighborhood contains fractions with arbitrary largeq’s!. GivenkÞ0, it must
appear once on a horizontal interval withF5 p/q providedq/2.uku. The tips of a wing with a
given color must, therefore, be located at those values ofF which do not admitk as solution of
Eq. ~14! for any r. In other words, the wing tips lie at those values ofF whereq is too small to
accommodateuku. This is the finite set, a Farey sequence,

F2uku5H p

q U0<p<q,gcd~p,q!51,q<2ukuJ 5ø
q51

2uku H p

q U0,p<q,gcd~p,q!51Jø$0%. ~15!

Let uFu be the number of elements inF. Then from~15!,

uP~k!u5uF2ukuu215 (
q51

2uku

f~q! ~16!

essentially from the definition of the Euler function.
The asymptotic expansion for the sum in Eq.~12! is taken from Ref. 22.

IV. PURE PHASES AND PHASE BOUNDARIES

In thermodynamics and statistical mechanics, Gibbs phase rule is a statement about th
ture of pure phases and their boundaries. A weak form of the Gibbs phase rule says tha
phases are a set of full measure; two phases coexist, generically, on a set of Hausdo
dimension one, etc.12 This is the form that one gets if one considers general convex function
thermodynamic potentials. The number of coexisting phases is related to the dimension of t
planes, and the Gibbs phase rule is a consequence of theorems about convex functions. T
stronger form of the rule13 which posits, in addition, that the sets are~locally! manifolds. This
form is a consequence of additional regularity of the thermodynamic potentials.

Gibbs phase rule is a consequence of the convexity of thermodynamic potentials and
ultimately based on the second law of thermodynamics. It has nothing to say about th
temperature phase diagram of quantum phase transitions in general,23 and the Hofstadter model in
particular ~because the entropy vanishes identically!. A question that arises is then what for
might Gibbs phase rule take for quantum phase transition. The Hofstadter model restrict
could and what could not be true in general. As we shall see, the phase diagram of the Hof
model turns out to satisfy only a weak form of the Gibbs phase rules.

Figure 1 suggests that the set of unique phase is a set of full measure and that the
boundaries, though fractal, are not too wild. More precisely, we have the following.
d 13 Dec 2001 to 132.68.1.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Gibbs-like phase rule: The phase diagram of the self-dual Hofstadter model is such tha
phases, labeled by their Hall conductances, are full measure; phase boundaries ar
manifolds—they are nowhere differentiable—but they are almost so in the sense that their
dorff co-dimension is integral, in fact:

dimH~]P~k!!51. ~17!

Since the number of phases is countable the total phase boundaryøm(]P(m)) is a set of Haus-
dorff dimension one as well. Finally, infinitely many phases coexist on a countable set
therefore a set of Hausdorff dimension zero.

The first part of the Gibbs-like phase rule is an easy consequence of a result of Last,6 which
states thatuS(H(F))u50 for a set ofF of full measure. That phase boundaries are nowh
differentiable follows from results of Wilkinson,9 Rammal, and Helffer and Sjo¨strand,5 who
showed that the phase boundaries]P(k) possess distinct left and right tangent at every rationaF.
That the Hausdorff dimension of the boundary is one follows from results of Bellissard,24 who
showed that away from the wings tips,]P(k) can be represented by functions ofF that are
uniformlyLipshitz. By standard results,25 it then follows that the Hausdorff dimension is one. T
set of infinite phase coexistence is analyzed in the following.

V. COEXISTENCE

In Ref. 15 the term lakes of Wada was used to describe dynamical systems with the pr
that any point on the boundary of the one basin of attraction is also on the boundary of all
basins. We shall say that a system is almost Wada of orderm if every circle that contains two pure
phases containsm pure phases.

The Hofstadter butterfly is almost Wada of infinite order. This is seen from the figure, an
also be shown to follow from Eq.~9!.

We say that the two pure phases,P(m), P(n), coexist on

C~m,n!5]P~m!ù]P~n!. ~18!

No two phase coexists for any irrational flux. This is easily seen from Eq.~9!: For irrationalF the
electron densityr takes a dense set of values in the gaps. Therefore, any two phases,P(m) and
P(n), are separated by infinitely many other phases. It follows that the set of phase coexiste
a countable set, and so of zero Hausdorff dimension.

The following result gives a complete characterization of phase coexistence:
Proposition: Consider a point xP]P(k) with F(x)5 p/q with gcd(p,q)51. Then x

P]P(k1l q) for all l PZ. Moreover x¹]P(k8) if k8Þk1l q for eachl PZ
Proof: Since gcd(p,q)51 the equation

pa2qb51 ~19!

has a solution with integera and b ~wherea is nonunique modq!. Let pn /qn 5 (np2b)/(nq
2a) with nPZ. Then

pnq2qnp51. ~20!

From Eq.~14! it follows that each band atpn /qn carries Hall conductanceq (modqn).
Now consider a pointx on the right boundary ofP(k). We shall first show thatx is also on

the left boundary ofP(k1q). SinceP(k1q) has a finite set of wing tips, Eq.~15!, whenn is
large enough, the gap with label~5Hall conductance! k1q at flux pn /qn must be open, and mus
remain open for all largen. By a bound of Last and Wilkinson26 for the total width of the
spectrum atpn /qn , each band is small and hence
d 13 Dec 2001 to 132.68.1.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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dist~P~k!,P~k1q!!,
24

qn
. ~21!

Taking n→` we see thatxP]P(k1q) as claimed.
By considering the next band we shall now show thatx also lies on the boundary ofP(k

12q). Now, P(k12q) at pn /qn is separated fromP(k) by two bands and a gap. The bands a
small by the Last–Wilkinson bound. The gap is also small by the Ho¨lder continuity of the
spectrum:

ugapu,18Apn

qn
2

p

q
5

18

Aqqn

~22!

and from this

dist~P~k!,P~k12q!!,
24

qn
1

18

Aqqn

. ~23!

Taking the limitn→` yields the result. The argument can be repeated for anyP(k1l q) with l

finite and positive. Negative valuesP(k2l q) are obtained by lettingn→2` in the above-
mentioned argument.

For the left boundary point ofP(k), n→` will give P(k2l q) andn→2` will give P(k
1l q). This formula applies also to the phasek50, with its right boundary being the leftmos
point of the spectrum and vice-versa. The Hall conductance for the middle gap with evenq ~which
is closed! is formally 6q/2, so it is common to phasesP(6q/21l 8q) which is the same as
P(q/21l q) for l ,l 8PZ.

The second part of the proposition follows from the equality

ø
k<u

q
2u

ø
l PZ

P~k1l q!5ø
kPZ

P~k!

and the fact that for fixedF, each Hall conductancek can appear only once.
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