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Tosio Kato—in memoriam

Abstract. Adiabatic evolutionswith a gap condition have, under a range of circumstances,
exponentially small tails that describe the leaking out of the spectral subspace. In general, adiabatic
evolutionswithout a gap condition do not seem to have this feature. This is a known fact for
eigenvalue crossing. We show that this is also the case for eigenvalues at the threshold of the
continuous spectrum by considering the Friedrichs model.

1. Introduction

Adiabatic theorems describe the solutions of initial-value problems where the Hamiltonian
generating the evolution depends slowly on time. In qguantum mechanics the description is
in terms of spectral information of the instantaneous Hamiltonian. A few basic references on
various types of adiabatic theorems are [4,7,10,12,15, 16].

To formulate the problem more precisely it is convenient to replace the physical iyne
the scaled time = 7/7. One is then concerned with the solution of the initial value problem

iV (s) = TH(s) Y () 1)

with initial datay, (0) € RangeP(0). P(s) is a spectral projection foH (s), a self-adjoint
Hamiltonian which depends sufficiently smoothly anv, is a vector-valued function and
the adiabatic limit is the limit of large. Suppose, for the sake of concreteness, ih@ is
compactly supported on[Q@]. Ass runs on the interval [O1], H (s) evolves slowly iphysical
time for alonginterval of time. The total variation df (s) is finite and not necessarily small.

Adiabatic theorems fall into two baskets: those that describe the solutioaf fones,
including timess € [0, 1], and those that characterize the solutions at large timse&, where
the Hamiltonian is time independent again. Interestingly, they give more precision for long
times. We call the first basket, the one that applies to all time$orm, the second is called
thelong-timebasket.

Adiabatic theorems can also be put in two other baskets: those that satisfy gap conditions
and those that do not. By a gap condition we mean a spectral condition on the Hamiltonian
H (s) so that a finite gap separates the spectral subspace of the initiakd&ar(geP (s)),
from the rest of the spectrum for all times

Arepresentative result from the uniform basketis [1,4] presented in the following theorem.
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Theorem 1. Suppose thak (s) is smooth finite-rank spectral projection, for abounded, smooth
Hamiltonian H (s). Then, the evolution of the initial statle. (0) € RangeP (0), is such that

dist(y- (s), RangeP (s)) < o(1) 2
forall s > 0. If, in addition, P (s) satisfies a gap condition then
dist(y (s), RangeP (s)) < O(1/7) 3)

forall s > 0.
Remark 1. By o(1) we mean a term that vanishesras> co.

Remark 2. Schiddinger operators constitute a class of application not covered by the theorem
because of the assumption thdts) is bounded. This restriction can be lifted by standard
machinery, see e.g. [1,4]. We chose not to enter into this because the essence of the adiabatic
evolution is an infrared problem which is largely divorced from the issue of unboundedness of
the generator (an ultraviolet problem).

A characteristic result which lies both in the long-time basket and in the gap condition
basket is [3,6,9,11,13,14,17] presented in the following theorem.

Theorem 2. Suppose that (s) is a smooth, bounded, and self-adjoint WHH(s) supported
on [0, 1]. And suppose thaP(s) is separated by a finite gap from the rest of the spectrum.
Then, the evolution of the initial stati, (0) € RangeP (0), is such that for any > 1,

dist (v (s), RangeP (s)) = o( 1 ) 4)

n

foralln > 0.

Remarks.

(i) There is, in general, no uniformity in; the term on the right-hand side is of order,
wherec, are allowed to grow rapidly with.
(i) Inthe case wherél (s) is an analytic family which decays at infinity, the leaking at co
is exponentially small.
(i) In the case of a gap, the distinction between the uniform and the long-time basket has an
analogue in integrals. Suppose th&t) is real, smooth, strictly monotonic and compactly
supported in [01]. Then

s e . Jo@/Th if s>1 foralln
/,Oog(’)é dt‘{oa/f) if selo,1].

The gapless basket seems to have no analogue in integrals, as we shall see.

What can one say about adiabatic theorems that lie both in the long-time and gapless
baskets? In the uniform adiabatic theorem 1, the price one pays for the absence of a gap is,
in general, loss of information on the rate at which the adiabatic limit is approached. The
guestion we address here is what is the price one pays in the long-time adiabatic theorem, for
the absence of a gap.

Adiabatic theorems without a gap condition are normally associated with two distinct
settings: those that describe eigenvalue crossings and those associated with an eigenvalue at
the threshold of the essential spectrum.
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Hagedorn [8] studied adiabatic theorems for crossing eigenvalues. He showttkbthat
is no improvement in the adiabatic theorem in the long-time limiparticular, the leaking is
always of order% for linear crossing.

Here we consider the cases where the absence of a gap is associated with an eigenvalue
at the threshold of the continuous spectrum. The results of Hagedorn for crossing eigenvalues
do not shed light on this caseft.

To investigate this we consider the Friedrichs model [5] with an eigenvalue at the threshold
of the continuous spectrum. The model is parametrized by a real pargtnetérrelated to
the behaviour of the density of states at low energies. Our main result ist

o ™#) 1<B<2 and s>1
o™ 1<pB<2 and sel0,1]

Unlike the gap basket, the long-time behaviour in the Friedrichs model indeed has power tails,
and unlike the crossing basket, there is an improvement in the rate of decay at long times.

The main application of adiabatic theorems with eigenvalues at threshold is to the theory
of atoms in radiation field, where the photon field eliminates spectral gaps. The absence of a
gap makes the adiabatic theory of atoms in radiation field qualitatively different from quantum
mechanics. Two distinct processes lead to the error in adiabatic evolutions. The first is photon
production and the second is atomic excitation. Folk wisdom holds that the leaking due to
atomic excitations has exponential tails. A simple argument suggests that the leaking due to
photon production is of order/t. The argument goes as follows: the power radiated by a
dipole is, by classical electrodynamics,

2 (d)?
3 3

whered is the dipole moment andthe velocity of light. It follows that the number of radiated
photons (assuming characteristic frequency of orddr/©), is of order

32 2
T

in atomic unitss.

dist ( (s), RangeP (s)) = { (5)

2. Adiabatic evolutions
A basic strategy for studying adiabatic evolutions, introduced by Kato [12], is to compare the
true evolution U, (s) with a fictitious one[J, (s), which respects the spectral splitting. That is
P(s) = Ua(s) PU, (s). (6)
We shall denote, by a subscript, the generator and the evolution of such a fictitious dynamics,
i.e.
iUa(s) = THy()Ua(s) ~ Ua(0) =1 @
while for the true dynamics
iU:(s5) =tH®Ue(s) U (0 =1 (8)

T Atcrossing the spectral projection is discontinuous while for the eigenvalue at threshold that we consider the spectral
projection is smooth for all times.

T All estimates should be considered in an asymptotic sense with respeettoo.

§ Recall that in atomic units = 1/c.
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It was shown by Kato thakl, satisfies the commutator equation
T[Ha(s), P()] =i[P(s), P(s)]. )

This commutator equation does not have a unique solution, and different choidgsaif be
made. Kato chose

Hy = %[P(s), P(s)]. (10)

This generates a geometric evolution so that, in particlatys) is independent of. Itis a
convenient choice for proving a uniform adiabatic theorem whéy) is the kernel ofH (s).
It is inappropriate for generating a systematic adiabatic expansion.

A more effective choice, introduced in [2], is

Hap = H(s) + L—[P(s), P(s)]. (11)

This generator is close to the Hamiltonian and it can be used to prove stronger adiabatic
theorems than those handled by Kato, and it can also be used to generate an adiabatic expansion
and prove long-time adiabatic theorems [13]. However, it is often difficult to use this evolution
for concrete computations because there is no explicit formul@/fgy(s; t). This is the
course one should follow when one wants to show fat leaky tails where one némdsra
boundon the part that leaks. For this reason we require yet another choice of an adiabatic
evolution that more readily lends itself to explicit computation.

In the special case when the time dependence enters through the unitary family

H(s)=V(s)HV'(s) (12)
the evolution in the rotating frame is both adiabatic and explicit:
U.(s) = V(s)exp(—itsH). (13)

It is generated by
H($) = HE) + 2V 6)V(s) (14)

and like H,p is also close tdd (s). This evolution turns out to be inferior td8,p when the
game is to proveipper bound®n the leaky tails, but, it is a useful evolution in estimating fat
leaky tails where the game is to obtain lower bounds. The best of all worlds occursiyfzen
andH, coincide. This will turn out to be the case in the Friedrichs model we consider and this
is what makes the analysis of this case simple.

3. The wave operator

To compare the true dynamics with the fictitious dynamics one introduces the wave operator
Qup(s:T) = Ujp(s: DU (s). (15)

The leaking out of the spectral subspace is governed by the ‘off-diagonal’ gagtofNamely,
from estimate oPQ4p(s; T) P, andP, Qap(s; T) P whereP = P(0)andP, = 1— P. This
follows from

| Pr(s) — P()I| = |PLSLap(s; T)P — PQap(s; T)PLl
= max{||PLLap(s; )P, I1PRLap(s; T) PLI} (16)
where
P.(s) = U, (s) PU(s). (17)
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Q,p can be calculated via a Volterra-type equation:
Qup(s; T) = Kap(s)Qap(s; 7) (18)
where
Kap(s) = —=Ujp(s; D[P, PI(s)Uap(s; 7). (19)
By standard arguments, the series

QoG =D 0% BEO=1  %n® = [ KO d (20)
0

is absolutely convergentt.
Itis nota priori clear that the series in equation (20) is an expansion in the small parameter
of the adiabatic limit, Iz. To appreciate that it is, note the following lemma.

Lemma 1.

(i) 2,; isdiagonalinthe sense thatit maBsngeP to RangeP andRangeP, to RangepP,,
at the same time&,;+; is off-diagonal in the sense that it maRangeP to RangeP, and
RangeP, to RangeP. In particular, only the odd terms contribute to leaking.

(if) Let us denoteD(s) :=1— Qap(s), f(r) :=sup [|Q(s)|l. Then for alls,

12:2() | < Cf (z)supll€2(s). (21)
In particular
12; ()l < Cf(T) i=12
22
12,6l < Cfa@  j>3 (22)
Remarks.

(a) In the case where a gap condition holds, the uniform adiabatic theorem says that
f(r) = 0O(1/7). It follows that sup||Qa2i+1(s)| < % In the absence of a gap condition
f(t) may, in general, decay more slowly with

(b) For the lemma to be useful one needs a strong version of the uniform adiabatic theorem
which guarantees th& (s) is small for larger. This goes beyond the information given
by the uniform adiabatic theorem quoted in the previous section. That is, the adiabatic
evolution must approximate the true evolution both on Rahgnd its complement
RangeP, .

(c) Note that from the estimates above it follows, that wkais) > f2(r) for s > 1 that
the leaky tails are determined 34 (s).

Proof. The first part of the lemma is standard [2] and follows from the fact tﬁ’atFl] if
off-diagonal. The second part follows from the identity

Qir2(s) = /OA QK ap®)(t) d — /Ol Kap(0)Qap(®) Q" (1)Qisa(1) df — Q($)Qisa(s).

(23)
K 4p(s) vanishes outside the interval,[0], hence,
1Q2i2() | < f(7) SURI Kap () - 1S2: ()| + (1K ap ()] + DII2i+2(s) 1)
< 2f(r)(supllKap(s)|l +1) sup||€2;(s)]l. (24)
|

T Recall that we assunmié(s) andP(s) are bounded.
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4. Power tails in Friedrichs models

The Friedrichs modelt is defined on the Hilbert spate= C & L2(R., du(k)) with
inf (supportw) > 0 andu(0) = 0. A vector¥ € H is normalized by

W= (wo) W1* = lel +/R+|1/f(k)| du (k) weC. (25)
The Friedrichs Hamiltonia®/ acts onH as

’”’=<8 /?)(|$>>:<|k?m>' 0)

It has a ground state at threshold and the projection on the groundPsiste

p=<g 8) (27)

We consider the case when the time dependence is of the fon = V (s) HV'(s) with
unitary V (s) generated by

y N Tk Yy 0 (ol
V(s)VT(s) = [P(s), P(s)] = ig(s) (|¢>> 4 > (28)
where 0< g(s) € C5°([0, 1]), and
f ) lpl2du(k) = O(x%) p=0 (29)
0

for smallx. Note that, due to the particular form of time dependence (equation (28)), one has
thatH,.p = H,.
In the following proposition we borrow a result from [1].

Proposition 1. For the Friedrichs model and the adiabatic evolution generatedRy, 1 (t)
of lemma 1 is such that

O(%) B>1
f(r) < O('Oﬂ) f—1 (30)

T
O(r’ﬂ) B <1

for all s.
In the following proposition we present the main result of this section.

Proposition 2. For the Friedrichs model the evolution of the state that starts as the bound
statey, (0) € RangeP, is such that for any > 0

CitP* > dist(y, (s), RangeP (s)) > Cot™# (31)

when2 > 8 > 0ands > 1.

Proof. With the choice ofH,p all the even terms2,; are diagonal while all the odd terms
are off-diagonal. By lemma X2; = O(f?(r)) for j > 3. We need to comput®;(s) and,

T In some circles this is known as the Fanno model.
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provided it dominateg?(r), we are done. Now, far > 1,

1
P, Q(s)P = PL/ K@) dsP
0

(0 0\ [t. . (0 O 0 (el\(1 O
(o 9) [ woealm (5 2) (0 ) (o 0)e
(. 0 0

Z'/o g(s) <|exp(irsk)g0) o) ds

. 0 0
= <|§(rk)¢> 0) (32)

whereg stands for Fourier transform gf Now, sinceg is positive,|g(k)| takes its maximal
value at the origin. Since this function is continuous, for semk positive |g(k)| > b for
k € [0, a]. We can now estimate the norm 8f Q4(s) P given below using equation (29):

IPLQ1(s)PII? = lllg(th)p(k))II*> = /0 18 (k) 2| (k) [? du (k)

@ k\|? k
>/ lg (k) |? w(—) du (—)
0 T T

> b2[ 1o (k)2 due (k)

1
Similarly,
IPLQu(s)P]? = /0 |g(th) Pl (k)| dpe (k)
i o
= {/ +/ }|§<rk>|z|¢(k>|2du(k>
0 e
(e + 13aP 1 34
< m lg(t9)| s> 1L (34)
Since|g (k)| is decaying faster then any power at lakg¢he proof is complete. O

Note that there is an improvement in the long-time limit over the uniform result for
2>p82>1.

We thark M V Berry for several useful conversations. This research was supported in part by
the Israel Science Foundation, the Fund for Promotion of Research at the Technion and the
DFG.

Appendix A. Slaved leaking

In this appendix we want to address an apparent puzzle associated with the (standard) long-time
adiabatic theorem.

Itis, in fact, surprising that a gap condition is all one needs for the fast decay in the long-
time adiabatic theorem: suppose tlta¢s) had one eigenvalue separated by a gap from the
rest of the spectrum, which is purely absolutely continuous. For dim¢0, 1] the leaking to
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the (instantaneous) absolutely continuous spectruni{ig€). One would expect that once a
piece leaks to the absolutely continuous part of the spectrum it would propagate to infinity, as
states in the absolutely continuous spectrum invariably do. If this was the case, then it would
be difficult to understand how the wave reconstructs itself so that, for time4, the part in
the absolutely continuous spectrum is smaller than any powefzn As we shall see from
the proof of the adiabatic theorem to all orders below, the parts that leak to the absolutely
continuous spectrum and is a finite powerraé slaved to the instantaneous eigenvalue, and
disappears for time > 1. It does not propagate. Only the terms smaller than any power in
1/7 are free to propagate to infinity.

The following lemma is taken, verbatim, from [18].

Lemma 2. Let R(s, z) be the resolvent ofl (s) and define the tilde operation by
~ 1
X(s) = ——,/ R(s,2)X(s)R(s, z)dz (A1)
27T| r

whereT is a contour enclosing the part of the spectrum associated #ith. Let, X (s) and
Y (s) be bounded, then

PL/ Ul )X (@) UspPY (1) dt = l—PL(UlD(t)f((t)UADPY(t)ﬁ)
0

—/s Ul ()X () UapPY (1) dr — / Ul (X (OUapPY (1) dt). (A2)
0

0

If we now apply the lemma wittx (s) = [P, P](s) to Q;+1 We get
s i ~
P Qj1(s) = PL/ U:{D(f)X(f)UADPQj(f) dr = _;PL<U,ID(S)X(S)UAD(S)PQj(S)
0

—/0 UjD(t)j?(t)UADPQj(t)dt—/() U);D(t))?(t)UADPK(t)Qj_l(t)dt>.
(A3)

Each of thantegralsin the above expression are once again of the form such that the lemma
can be applied again and again. We see that the power terms that occuxfer9 1 are
boundary terms, proportional #®(s), and instantaneously reflect what happens to the bound
state. That is, the power tails in RanBe(s) are slaved to the state in RanBé).

Appendix B. Asymptotics of Fourier transforms in Cg°

Wheng e Cg° its Fourier transform decays faster than any power, but not quite exponentially.
The canonical example of such a function is

= ex 1 1,1 B.1
g(S)—eF)(m) se[-1.1] (B.1)

and zero otherwise. Itis of some interest to have an explicit asymptotic expansion of its Fourier
transform.

Lemma 3. g(p) is an entire even function ¢f, and on the reap-axis it has the asymptotic
behaviour

JT exp—/p)

N 3
8(p) = 2(2g)1/4 e <COS(P —P- 5”) + O(l/ﬁ)) : (B.2)
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Proof. The fact that the function is even and entire follows directly from the definition

o -1 ! -1
g(p) = / expips) -expl —— ) ds = / cogps) - exp| —— | ds. (B.3)
-1 1 — SZ 1 1 — SZ
The asymptotics follow from the Laplace saddle point method. Let

1 .
h(s, p) = — 1.2 +isp (B.4)

denote the logarithm of the integrand. The integral is estimated by Gaussian integrals near the
appropriate extrema @f. The extremum ady contributes

2r
| Wi py P D) (B5)

where the prime denotes a partial derivative with respect to
The extrema are the solutions of the quartic equation

(s, p)=— 5 +ip=0. (B.6)

2s
(1-s?)
When p is large, two of the solutions are close to 1 and the other two are closé.tolo
leading order irp the two extrema near 1 are

1 1
o) = @3 8 == +0( ) ®.7)
where
h(liS,p):ip:I:(lH)f—%+O(8). (B.8)

It is now clear that the right way to deform the contour is so that it goes througli,Jand
the saddle point at 1 & should be avoided. Now, to leading orderzinthe second derivative
there is

852
h// , - __ — _ + O
(s0, P) 1= 373 (p)
= —(@2ip)*"*(1+0)
3]
— _(2p)¥? exp<%‘) (1 +O6)). (B.9)
Substituting in equation (B.5) one finds the contribution from the saddle points near 1 to be
JT o exp—/p) :
Goin e Wi — /P~ 31/8)(L+ O/ V). (B.10)
Using the fact thag(p) is real valued for reap, the saddle near1 must give the complex
conjugate of this, and the result follows. a
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