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This paper is about adiabatic transport in quantum pumps. The notion of
‘‘energy shift,’’ a self-adjoint operator dual to the Wigner time delay, plays a
role in our approach: It determines the current, the dissipation, the noise and
the entropy currents in quantum pumps. We discuss the geometric and topolog-
ical content of adiabatic transport and show that the mechanism of Thouless
and Niu for quantized transport via Chern numbers cannot be realized in
quantum pumps where Chern numbers necessarily vanish.
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To Elliott Lieb, a mentor and friend, on the occasion of his 70th birthday.

1. INTRODUCTION

An adiabatic quantum pump (11, 13, 16) is a time-dependent scatterer con-
nected to several leads. Figure 1 is an example with two leads. Each lead
may have several channels. The total number of channels, in all leads, will
be denoted by n. Each channel is represented by a semi-infinite, one
dimensional, (single mode) ideal wire. We assume that the particles propa-
gating in the channels are non-interacting5 and all have dispersion E(k).

5 Quantum pumps have also been discussed in the context of interacting electrons, see, e.g.,
refs. 2 and 33.

For the sake of concreteness we shall take quadratic dispersion, E(k)=
k2/2, but most of our results carry over to more general dispersions. We
also assume that the incoming particles are described by a density matrix



Fig. 1. A model of a quantum scatterer with two leads.

r common to all channels: r(E)=(1+eb(E−m))−1, with chemical potential
m and temperature T. The scatterer is adiabatic when its characteristic
frequency w° 1/y, with y the typical dwell time in the scatterer. We take
units so that kB=(=m=e=+1.

The central questions about an adiabatic quantum pump concern how
particles are transported from one lead to another by the pump. What
is the expected charge transport per unit time (or per cycle)? How much
energy is dissipated in the process? How much statistical fluctuation (noise
and entropy) is expected in the current? How are energy dissipation and
entropy production related? How can these quantities be minimized?

The first of these questions was addressed by Büttiker, Prêtre, and
Thomas (16) (BPT) in the context of linear response theory. They derived a
formula for the expected current as a function of the scattering matrix and
its time derivative. (Some of the elements of their derivation can be found,
though in a rather different form, in Section 4.2.) Subsequent work, both
theoretical and experimental, explored the significance of the BPT formula.
Interest in the subject was piqued by Brouwer’s rewriting the BPT formula
as an area integral, (11) and by the experiments of ref. 36. (It is unclear
whether the latter actually represents an adiabatic quantum pump, as
alternative explanations (12) have been proposed.)

In this paper we address all of the above questions, and see that the
answers all depend on a single quantity: the matrix of energy shift, con-
structed below from the scattering matrix and its first derivative in time.
The expected transport, described by the BPT formula, is given by the
diagonal elements of the matrix of energy shift and appear at order w1.
Expected energy dissipation, noise, and entropy production depend on the
off-diagonal matrix elements, and appear at order w2. One might hope
that these expressions are the leading terms of an asymptotic expansion in
powers of w, with coefficients computable from the scattering matrix and
its derivatives, but no such expansion exists. We construct examples with
identical scattering matrices, but whose charge and energy transports agree
only to leading order.

An incoming particle sees a quasi-static scatterer. (15) The scattering can
therefore be computed, to leading order, by time-independent quantum
mechanics, using the scattering Hamiltonian in effect at the time that the
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particle reaches the scatterer. In other words, we pretend that the Hamil-
tonian always was, and always will be, the Hamiltonian seen by the particle
at the time of passage. This gives the ‘‘frozen S-matrix.’’ Since time-inde-
pendent systems conserve energy, so does the frozen S-matrix. We denote
by S(E, t) the on-shell frozen S-matrix.

The frozen S-matrix S(E, t) can be viewed in two ways. On the one
hand, it is the matrix that gives the amplitudes of outgoing plane waves
in the n channels in terms of the amplitudes of incoming plane waves.
In abstract scattering theory, however, the S-matrix is an operator that
compares time evolution via the actual Hamiltonian H(t) to time evolution
via a reference Hamiltonian H0. If H(t) is independent of time, then the
(abstract) S-matrix conserves energy; if H0 is chosen correctly, then the
energy-E fiber of this operator is the same matrix S(E, t).

The outgoing states have, to order w0, the same occupation density as
the incoming states (since S(E, t) is unitary, and the incoming densities are
the same for all channels). This implies no net transport. However, at orderw,
there is an interesting interference effect: An incoming particle of well-
defined energy does not have a well-defined time of passage. This spread
in time is a consequence of the uncertainty principle, and is not related to
the dwell time of the particle in the scatterer. Thus, even if w° 1/y, the
(frozen) S-matrix seen by the tail of the wave packet will differ slightly
from that seen by the head of the wave packet. This differential scattering
causes the outgoing occupation densities to differ from the incoming den-
sities to order w1, leading to a nonzero transport.

The density matrix for the outgoing states, rout, is determined by the
density matrix r(H0) of the incoming states, and by the S-matrix. Let Sd
be the exact (dynamical) S-matrix, computed from the time-dependent
HamiltonianH(t). As we shall explain in Section 4, rout is given by

rout=r(H0−Ed), Ed=iṠdS
g
d . (1.1)

A dot denotes derivative with respect to time.6 Ed is the operator of energy

6 The time dependence of Sd is discussed in Section 4.

shift introduced in ref. 27. It combines information on the state of the scat-
terer with its rate of change Ṡd. For time independent scattering, Ed=0 and
Eq. (1.1) is an expression of conservation of energy. The formula for rout,
Eq. (1.1), holds independently of whether the scattering is adiabatic or not.

We call the frozen analog of the operator Ed the matrix of energy shift.
It is the n×n matrix

E(E, t)=iṠ(E, t) Sg(E, t), (1.2)
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and is a natural dual to the more familiar Wigner time delay (18)

T(E, t)=−iS −(E, t) Sg(E, t), (1.3)

where prime denotes derivative with respect toE. As we shall see in Section 6.3
their commutator

W=i[T, E] (1.4)

has a geometric interpretation of a curvature in the time-energy plane,
analogous to the adiabatic curvature.

Adiabatic transport can be expressed in terms of the matrix of energy
shift. For example, the BPT (16) formula for the expectation value of the
current in the jth channel, OQ̇Pj takes the form:

OQ̇Pj (t)=−
1
2p

F
.

0
dE rŒ(E) Ejj(E, t). (1.5)

At zero temperature, −rŒ is a delta function at the Fermi energy and the
charge transport is determined by the energy shift at the Fermi energy
alone.

There are two noteworthy aspects of this formula. The first one is that
OQ̇P, which is of order w, can be accurately computed from frozen scatter-
ing data which is only an w0 approximation. The second one is that the
formula holds all the way to T=0, where the adiabatic energy scale w is
large compared to the energy scale T.

As noted above, the matrix of energy shift also determines certain
transport properties that are of order w2. An example is dissipation at low
temperatures. Let OĖPj (t) be the expectation value of energy current in the
jth channel. Part of the energy is forever lost as the electrons are dumped
into the reservoir. The part that can be recovered from the reservoir, by
reclaiming the transported charge, is mOQ̇Pj (t), where m is the chemical
potential. We therefore define the dissipation in a quantum channel as the
difference of the two. As we shall show in Section 4.3 the dissipation at
T=0 is:7

7 For related results on dissipation see, e.g., ref. 28. For relations between dissipation and the
S-matrix see ref. 1.

OĖPj (t)−mOQ̇Pj (t)=
1
4p

(E2)jj (m, t) \ 0. (1.6)
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Both the dissipation and the current admit transport formulas that are
local in time at T=0. Namely, the response at time t is determined by the
energy shift at the same time. This is remarkable for at T=0 quantum
correlations decay slowly in time and one may worry that transport at time
t will retain memory about the scatterer at early times. This brings us
to transport equations which admit a local description only at finite
temperatures.

The entropy and noise currents are defined as the difference between
the outgoing (into the reservoirs) and incoming entropy (or noise) currents.
Namely,

ṡj(t, m, T)=ṡ(rout, j)− ṡ(rj), ṡ(r)=
1
2p

F dE(h p r)(E, t) (1.7)

where (14, 21)

h(x)=˛ −x log x−(1−x) log(1−x) entropy,

x(1−x) noise.
(1.8)

In the adiabatic limit, wQ 0, and for w° T°`w/y we find (see
Section 4.4)

ṡj(t, m, T)=
b

2pk
DE2

j (m, t) \ 0, k=˛2 entropy;

6 noise,
(1.9)

where

DE2
j=(E2)jj−(Ejj)2=C

k ] j
|Ejk |2. (1.10)

When T M w the entropy and noise currents at time t are mindful of the
scattering data for earlier times and there are no transport equations that
are local in time. What sets them apart from the current and the dissipation
is the non-linear dependence on the density. The non-linearity makes the
transport sensitive to the slow decay of correlations.

Our result about the noise overlap with results that follow from the
‘‘full counting statistics’’ of Levitov et al. (24) When there is overlap, the
results agree. However, the results are mostly complementary, a reflection
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of the fact that both the questions and the methods are different. ‘‘Count-
ing statistics’’ determine transport in a pump cycle in terms of the entire
history of the pump. We give information that is local in time. In this sense,
we give stronger results. On the other hand, the counting statistics deter-
mine all moments all the way down to zero temperature, while our results
go down to T=0 for the current and dissipation but not for the entropy
and noise. A detailed comparison of our results with results that follow
from the Lesovik–Levitov formalism (24) is made in Appendix B. For other
results on noise in pumps see, e.g., ref. 30.

In Section 2 and Appendix A we examine the BPT formula from
several perspectives. In Section 2 we consider a pump with two leads where
the BPT formula admits an elementary derivation. In Appendix A we
derive the BPT formula for an arbitrary number of leads, and show that it
can be understood in terms of classical scattering.

Transport in adiabatic scattering is conveniently described using semi-
classical methods (25) a.k.a. pseudo-differential (Weyl) calculus. (31) As we
shall explain in Section 4, S(E, t) is the principal symbol of the exact
S-matrix, Sd. Semi-classical methods can be used to derive Eqs. (1.5)–(1.7).
For an alternate point of view using coherent states, see ref. 8.

In Section 6 we discuss the geometric and topological significance of
our results. We shall see that charge transport can be formulated in terms
of the curvature, or Chern character, of a natural line bundle. This is
reminiscent of works of Thouless and Niu (37) which identified quantized
charge transport with Chern numbers (38) and inspired the study of quantum
pumps. Nevertheless the situation is different here, since the bundle is
trivial and, besides, the integration manifold has a boundary. This does not
preclude the possibility that charge is quantized for reasons other than
being a Chern number. In fact, one can geometrically characterize a class
of periodic pump operations (7) for which the transported charge in a cycle,
and not just its expectation value, is a non-random integer. It is to be
cautioned that a small change of the scattering matrix will typically destroy
this quantization.

Some of the results of this paper are new, while others are not. The
argument of Section 2 first appeared in ref. 6, and the formulas for energy
dissipation and entropy production (Section 5) were derived, non-rigor-
ously, in ref. 7, with supporting estimates on the extent to which Ed can be
approximated by E appearing in ref. 8. A rigorous proof of the BPT
formula, along lines somewhat different from those presented here,
appeared in ref. 9. Sections 3, 6, and Appendix A, by contrast, are almost
completely new material. By combining old results with new insights, we
have attempted to produce a consistent and comprehensive description of
quantum pumping.
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2. PEDESTRIAN DERIVATION OF BPT

At T=0 the Fermi energy is a step function and r −(E)=−d(m−E),
and the BPT formula, Eq. (1.5), takes the form

OQ̇Pj (m, t)=
1
2p

Ejj(m, t). (2.1)

In this section we shall describe an argument (6) that explains this equation
in the two channel case. The two channel case is special in that the changes
in the scattering matrix break into elementary processes so that for each
one BPT follows either from simple physical arguments or from known
facts.8

8 We assume that the transported charge depends only on S(m) and, linearly, on dS(m),
regardless of the physical realization of the scatterer.

In the two channel case, Fig. 1, the frozen, on shell, S-matrix takes the
form

S(m)=R r tŒ

t rŒ
S (m), (2.2)

with r and t (respectively rŒ and tŒ) the reflection and transmission coeffi-
cients from the left (right). Equation (2.1) reads

2pOdQP−=i(r̄ dr+t̄Œ dtŒ), 2pOdQP+=i(r̄Œ drŒ+t̄ dt) (2.3)

OdQP− is made from data (r, tŒ) describing the scattering to the left, and
similarly OdQP+ from those to the right.9

9 This is why Sg is on the right in the energy shift, Eq. (1.2).

To identify the physical interpretation of the differentials we introduce
new coordinates (h, a, f, c). The most general unitary 2×2 matrix can be
expressed in the form:

S=e ic R e
ia cos h ie−if sin h

ie if sin h e−ia cos h
S (2.4)

where 0 [ a, f < 2p, 0 [ c < p, and 0 [ h [ p/2. In terms of these param-
eters, the BPT formula reads

2pOdQP±=±(cos2 h) da + (sin2 h) df−dc. (2.5)

As we shall now explain, the variations da, df, and dc can be identified
with simple physical processes.

Transport and Dissipation in Quantum Pumps 431



ξd

Fig. 2. Moving the scatterer changes aQ a+2kF dt.

2.1. The Snowplow

Let kF be the Fermi momentum associated with m. Translating the
scatterer a distance dt multiplies r, (rŒ) by e2ikF dt, (e−2ikF dt), and leaves t
and tŒ unchanged. It follows that da=2kF dt corresponds to shifting the
scatterer. (See Fig. 2.)

As the scatterer moves, it attempts to push the kF dt/p=da/2p elec-
trons that occupy the region of size dt out of the way, much as a snowplow
attempts to clear a path on a winter day. Of these, a fraction |t|2=sin2 h
will pass through the scatterer (or rather, the scatterer will pass through
them), while the remaining fraction |r|2=cos2 h will be propelled forward,
resulting in net charge transport of

2pOdQP±=±(cos2 h) da, (2.6)

in accordance with Eq. (2.5).

Remark 2.1. It is instructive to examine the special case of a uni-
formly moving scatterer where we can use Galilei transformations to
compute the charge transport exactly. By taking the limit of a slowly
moving scatterer we get a check on the result above.

Since the mass of the electron is one, the Galilean shift from the lab
frame to the frame of the scatterer shifts each momentum by − ṫ. In the lab
frame, the incoming states are filled up to the Fermi momentum kF while
in the moving frame the incoming states of the ± channels are filled up
to momenta kF ± ṫ. In the moving frame, the outgoing states on the ±
channels are filled up to kF + ṫ, and partially filled with density |tŒ(k)|2 for
momenta in the interval (kF − ṫ, kF+ṫ). Transforming back to the lab
frame we find for dr of the − (=left) channel

dr−(k2)=˛
0 if k < kF −2ṫ

−|rŒ(k+ṫ)|2 if kF −2ṫ < k < kF

0 if k > kF.

(2.7)
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To order ṫ,

dr−(E)=−2kF ṫ |rŒ(kF)|2 d(E−m). (2.8)

Since the current is

OQ̇Pj (t)=
1
2p

F
.

0
dE drj(E, t), (2.9)

Eq. (2.6) is reproduced.

Remark 2.2. The net outflow of charge, OdQP−+OdQP+, vanishes
to order ṫ but not to order ṫ2. This is because the moving snowplow leaves
a region of reduced density in its wake.

2.2. The Battery

To vary f we add a vector potential A. This induces a phase shift
df=> A across the scatterer, and multiplies t, (tŒ) by e idf, (e−idf), while
leaving r and rŒ unchanged. This phase shift depends only on > A, and is
independent of the placement or form of the vector potential. The variation
in the vector potential induces an EMF of strength − > Ȧ=−ḟ. To first
order, the current is simply the voltage times the Landauer conductance
|t|2/2p. (21) That is,

2pOdQP±=+ (sin2 h) df, (2.10)

in agreement with Eq. (2.5). (See Fig. 3.)

Remark 2.3. Consider the special case of a time independent
voltage drop. In a gauge where the battery is represented by a scalar
potential, the pump is represented by a time independent scattering
problem where the potential has slightly different asymptotes at ±.. If the
battery is placed to the left of the scatterer, the states of particles incident

A(x,t)

Fig. 3. Applying a vector potential changes fQ f+> A.
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from that side are occupied up to energy m− ḟ, while those incident from
the right are occupied up to energy m. Suppose ḟ is negative. Then dr+ is

dr+(E)=˛
0 if E < m,

|t(E)|2 if m < E < m− ḟ,

0 if E > m− ḟ.

(2.11)

If, however, the battery is placed to the right of the scatterer then dr+ is

dr+(E)=˛
0 if E < m,

|t(E+ḟ)|2 if m < E < m− ḟ,

0 if E > m− ḟ.

(2.12)

In either case, to leading order in ḟ,

dr+(E)=−ḟ |t(m)|2 d(E−m). (2.13)

Plugging in Eq. (2.9), we recover Eq. (2.5).

Remark 2.4. To leading order in ḟ, dr+ is independent of whether
the battery is to the left of the pump or to the right of it. To order ḟ2 this is
no longer true as one sees from Eqs. (2.11) and (2.12). The frozen S-matrix
is, however, insensitive to the location of the battery. It follows that it is
impossible to have a formula for dr, accurate to order O(w2), that involves
only the frozen S-matrix and its derivatives (see ref. 29 for some model
calculations in the non-adiabatic regime).

2.3. The Sink

The scattering matrix depends on a choice of fiducial points—the
choice of an origin for the two channels. Moving the two fiducial points
out a distance dt may be interpreted as forfeiting part of the channels in
favor of the scatterer. This new, bigger, scatterer is shown schematically in
Fig. 4. This transforms the scattering matrix according to

S(kF)Q e idc S(kF), dc=2kF dt. (2.14)

This operation removes kF dt/p electrons from each channel and so we get

2pOdQP±=−2kF dt=−dc, (2.15)
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ξd

Fig. 4. A scatterer that has gobbled up dt of each wire.

in accordance with Eq. (2.5). Changing c is therefore equivalent to having
the pump swallow particles from the reservoirs.

For arbitrary variations dS the above result still holds for the sum
dQ−+dQ+. This follows directly from a fact in scattering theory known as
Birman–Krein formula (39) and in physics as Friedel sum rule (19) which says
that the excess number of states below energy m associated with the scat-
terer is (2pi)−1 log det S(m), whence

−2p(OdQP−+OdQP+)(m)=−id log det S(m)=2 dc. (2.16)

2.4. The Ineffective Variable

We have already seen that changes in a, f, c yield transported charges
dQ± which are correctly reproduced by Eq. (2.5). Moreover, for any change
of S, the sum OdQP−+OdQP+ is correctly described as well. To complete
the derivation of Eq. (2.5) we must consider variations in h, with a, f, and c
fixed, and show that OdQP− −OdQP+=0.

Suppose a scatterer has a, f, and c fixed, but h changes with time. By
adding a (fixed!) vector potential and translating the system a (fixed!)
distance,10 we can assume that a=f=0. Now imagine a second scatterer

10 This can be achieved, in general, only at a fixed energy, and we pick the energy to be the
Fermi energy m.

that is the mirror image of the first (i.e., with right and left reversed) as in
Fig. 5. Since h and c are invariant under right-left reflection, and since a
and f are odd under right-left reflection, the second scatterer has the same
frozen S matrix as the first, and this equality persists for all time.

From the frozen scattering data we therefore conclude that the
currents for the second system are the same as for the first. However,
by reflection symmetry, OdQP− −OdQP+ for the first system equals
OdQP+−OdQP− for the second. We conclude that OdQP+−OdQP−=0 for
variations of h.
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Fig. 5. An asymmetric scatterer and its image under reflection.

3. TIME DEPENDENT SCATTERING AND WEYL CALCULUS

3.1. The Energy Shift

In this section we describe the notion of energy shift in the context of
time dependent scattering theory and derive an operator identity relating
the outgoing density rout to the incoming density and the energy shift. In
Section 4 we then use this identity to derive formulas for the energy dissi-
pation, noise, and entropy production.

The (exact, dynamical) S-matrix is a comparison between the dynam-
ics generated by a reference time-independent Hamiltonian H0 (often called
the free Hamiltonian), and the actual time-dependent Hamiltonian H(t)=
H0+V(t). Let U(t2, t1) be the time-evolution from time t1 to time t2,
generated by H(t), and let U0(t2, t1)=e−i(t2 − t1) H0 be the time-evolution
generated by H0. The S-matrix is defined to be

Sd(t)= lim
t± Q±.

U0(t, t+) U(t+, t−) U0(t− , t), (3.1)

assuming the limit exists.
Energy is conserved in time independent scattering but not in time

dependent scattering. In the time independent case, conservation of energy
is expressed as the statement that the scattering matrix S commutes with
H0 (not H!). Hence, for the frozen S-matrix

Sfe−iH0t=e−iH0tSf. (3.2)

This may be interpreted as the statement that the state k, and the time
shifted state e−iH0tk both see the same scatterer. Therefore it makes no
difference if the time shift takes place before or after the scattering.

This is, of course, not true in the time-dependent case. The states k
and its time shift e−iH0tk do not see the same scatterer, and the (dynamical)
scattering matrix Sd acquires a time dependence:

Sd(t) e−iH0t=e−iH0tSd(0). (3.3)

In the time dependent case one does not have a single scattering matrix,
but rather a family of operators Sd(t). Since these operators are all related
by conjugation, any one of them is unitarily equivalent to any other. To
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pick one is to pick a reference point on the time axis. We shall henceforth
write Sd(0) as simply Sd.

If Sd(t) is unitary,11 which we henceforth assume, then Ed(t)=

11 Sd(t) is unitary as a map between the spaces of in and out states which may differ because
states may get trapped or released from the pump.

iṠd(t) S
g
d(t) is Hermitian. Taking the derivative of (3.3), we obtain the

equation of motion

iṠd(t)=[H0, Sd(t)]. (3.4)

Using the (assumed) unitarity of Sd, this can be reorganized as

Sd(t) H0S
g
d(t)=H0−Ed(t). (3.5)

Conjugation by the scattering matrix takes outgoing observables to incom-
ing observables. Equation (3.5) justifies identifying Ed with the operator of
energy shift.

Remark 3.1. If we let Qj(t) denote the projection on the states in
the jth channel, then Q̂j(t)=SdQj(t) S

g
d projects on the outgoing states fed

by the jth channel. The energy shift generates the evolution of Q̂j:

iQ̇̂j=[Ed, Q̂j]. (3.6)

We are now ready to derive Eq. (1.1), which is an operator identity
for rout. This is our starting point in analyzing adiabatic transport. By the
functional calculus we can extend Eq. (3.5), evaluated at t=0, to (measur-
able) functions of H0, namely

rout=Sd r(H0) S
g
d=r(H0−Ed). (3.7)

This identity is exact, and does not assume an adiabatic time depen-
dence. In the adiabatic limit, however, we may approximate the energy
shift operator Ed, acting on states of energy E and approximate time of
passage t, with the matrix of energy shift E(E, t). This is done in Section 4.
Having obtained rout in terms of E(E, t), we can then compute dissipation,
noise, and entropy production.

Remark 3.2. For comparison we establish the classical counterpart
to Eq. (3.5). Let C be the classical phase space described in Appendix A.2
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and let fs: CQ C be the flow fs(E, t)=(E, t−s) generated by the Hamil-
tonian h(E, t)=E, i.e., the solution of the canonical equations of motion

d
ds
fs(x)=I(dh)|fs(x), (3.8)

where x=(E, t) and I: TgCQ TC is the symplectic 2-form. If times of
passage are measured not w.r.t. time 0 but w.r.t. time t, then the scattering
map, Sd(t), satisfies, cf. Eq. (3.3),

Sd(t) p ft=ft p Sd, (3.9)

where Sd(0)=Sd has been introduced in Eq. (A.10). Since Sd(t) is a family
of symplectic maps its vector field is Hamiltonian:

d
dt

Sd(t)(x)|t=0=I(dEd)|Sd(x), (3.10)

where Ed is a function on C uniquely determined up to an additive con-
stant. By taking derivatives of (3.9) at t=0 we obtain I(dEd)+Sd*(I(dh))
=I(dh). Since Sd is symplectic we have Sd*I=I and hence Sd*(I(dh))=
(Sd*I)(Sd* dh)=I(Sg

d)
−1 dh=Id(h p S−1

d ), so that we conclude

h p S−1
d =h−Ed, (3.11)

provided the constant not determined by Sd is properly adjusted.

3.2. The Weyl Calculus

A convenient language for discussing the relation between operators in
quantum mechanics and functions on phase space, called symbols, is the
Weyl calculus. (25, 31) For pumps the classical phase space is described at the
beginning of Appendix A.2, with points labelled by the pair (E, t), where
E is the energy of the (classical) particle and t its time of passage at the
origin. An additional index j=1,..., n labels the channels.

The relation of a (matrix valued) symbol a(E, t) to the corresponding
operator A is

Ot, j| A |tŒ, jŒP=
1
2p

F dE e−i(t−tŒ) EajjŒ 1E,
t+tŒ
2
2 , (3.12)

where |t, jP is the (improper) state in the jth channel whose time of passage
at the scatterer (in the H0 dynamics) is t. Equivalently,

OE, j| A |EŒ, jŒP=
1
2p

F dt e i(E−EŒ) tajjŒ 1
E+EŒ
2

, t2 , (3.13)
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where |E, jP is the (improper) state in the jthe channel with energy E. It
follows that (if A is trace class (34))

Tr A=
1
2p

F tr a dE dt (3.14)

where tr a denotes a trace over channels, i.e., a trace of finite dimensional
matrices. Similarly, if a or b are ( locally supported) functions, we have

Tr(AB)=
1
2p

F tr(ab) dE dt. (3.15)

4. ADIABATIC TRANSPORT

The notion of approximation in adiabatic scattering requires some
explanation. In this regime the scattering of a particle occurs on the time
scale of the dwell time y which is short compared to the adiabatic time
scale w−1. Therefore, the (unitary) operator Sd should be related to the
frozen scattering matrices S(E, t). While the uncertainty relation forbids
specifying both coordinates E and t of a particle, the variables on which
S(E, t) actually depends are E and wt. This gives adiabatic scattering a
semiclassical flavor where w plays the role of (. Its theory can be phrased
in terms of the Weyl calculus (25, 31) with symbols which are power12 series

12 The dimensionless expansion parameter is wy.

in w. In particular, as we shall explain, S(E, t) may be interpreted as the
principal symbol of Sd. The chain of argument in making the identification
goes through the frozen S-matrix, Sf(t), where the time of freezing, t, is
picked by the incoming state.

4.1. Adiabatic Scattering

We shall show the following correspondence between operators and
symbols which, in our case, are n×n matrix functions of E and t:

Sd(t0). S(E, t+t0)+O(w) (4.1)

Ed . E(E, t)+O(w2) (4.2)

rout . r(E)−rŒ(E)(E(E, t)+O(w2))+1
2 r
'(E) E2(E, t)+O(w3). (4.3)
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Since the Fermi function at T=0 is a step function, r − is a delta function
and consequently, the notion of smallness in the expansion in Eq. (4.3) is in
the sense of distributions.13

13 In agreement with Eqs. (2.8) and (2.13).

To see the first relation, let |t, jP denote the state that traverses the
scatterer at time t and Sf(s) denote the frozen S-matrix associated with the
Hamiltonian in effect at time s. Then

Ot, j| Sd |tŒ, jŒP=7 t, j: Sf 1
t+tŒ
2
2 :tŒ, jŒ8+O(w). (4.4)

The matrix elements on both sides are significant provided t− tŒ is small,
within the order of the dwell time, or the Wigner time delay. Using

|t, jP=(2p)−1/2 F dE e iEt |E, jP (4.5)

one finds

Ot, j| Sf(s) |tŒ, jŒP=
1
2p

F dE e−i(t−tŒ) E S(E, s), s=
t+tŒ
2

, (4.6)

and we have used the fact that Sf is energy conserving. This establishes
Eq. (4.1) for t0=0 by comparison with Eq. (3.12). The ‘‘quantization’’ of
S(E, t) then satisfies Eq. (3.3), as it must.

Equations (4.2) and (4.3) now follow from the rules of pseudo-dif-
ferential calculus, (31) and the operator identity for the outgoing states
Eq. (1.1).

4.2. Currents

We shall here present a formal, but relatively straightforward deriva-
tion of BPT using Weyl calculus.

Let Q in/out
j (x, t0) be the observable associated with counting the

incoming/outgoing particles in a box that lies to the right of a point x in
the jth channel at the point in time t0. The point x is chosen far from
the scatterer, but not so far that the time delay relative to the pump is of
order w−1. Namely, vy° x° v/w. The symbol of Q in/out is a matrix
valued step function:

Q in/out
j (x, t0). Pjh(v(t0−t)−x) h(+ (t0−t)), (Pj)ik=djkdij, v=E −(p),

(4.7)
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and Pj is the projection matrix on the jth channel. Indeed, the position of a
particle with coordinates (E, t) at time 0 will be −v(t−t0) at time t0, see
Eq. (A.9). The particle will then be outgoing if t− t0 < 0. Notice that t=t0
falls outside of the support of the first Heaviside function. The associated
incoming/outgoing current operators are

Q̇ in/out
j (x, t0)=i[H, Q in/out

j (x, t0)]=i[H0, Q
in/out
j (x, t0)]. (4.8)

Here we used the fact that beyond x, deep inside the channel, H(t) coin-
cides with H0. The symbol associated with the current is most easily com-
puted recalling that in Weyl calculus commutators are replaced by Poisson
brackets. This reproduces the usual notion of a current

Q̇ in/out
j (x, t0). Pj{E, h(v(t− t0)−x)}=+ Pj d(t− t0−x/v) h(+ (t0−t)),

(4.9)

x is where the ‘‘ammeter’’ is localized. By the assumption that the ammeter
is not too far it leads to a slight modification of t0, the time when current is
measured. We henceforth drop x. Now the expectation value of the current
is

OQ̇Pj (x, t0)=Tr(routQ
out
j )+Tr(rQ in

j )=Tr(dr Q̇out
j (x, t0)), dr=rout −r.

(4.10)

Using Eq. (3.15) to evaluate the trace we find

OQ̇Pj (x, t0)=−
1
2p

F dE dt r −(E) Ejj(E, t) d(t− t0)+O(w2)

=−
1
2p

F dE r −(E) Ejj(E, t0)+O(w2) (4.11)

reproducing Eq. (1.5).

4.3. Dissipation

To compute the dissipation we start as in the previous section. Let
D in/out
j denote the observable associated with the incoming/outgoing excess

energy in the jth channel in a box to the right of the point x. The excess
energy is, of course, energy measured relative to the Fermi energy:

D in/out
j (x, t0)=

1
2 {Q

in/out
j (x, t0), H0−m} (4.12)
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and Q in/out
j is as in Eq. (4.7). The observable associated with dissipation

current in the jth channel is the time derivative of the excess energy, i.e.,

Ḋ in/out
j (x, t0)=Ė in/out

j (x, t0)−mQ̇
in/out
j (x, t0)=i[H0, D

in/out
j (x, t0)]. (4.13)

The symbol corresponding to the dissipation current is then

D in/out
j (x, t0). + Pj(E−m) d(t− t0−x/v) h(+ (t0−t)). (4.14)

The expectation value of the dissipation current is therefore

OḊPj (x, t0)=Tr(dr Ḋout
j (x, t0)). (4.15)

We shall now show that for T M`w/y the dissipation is quadratic in w
and is determined by Eq. (1.6).

As in Section 4.2 we shall evaluate the trace using Eq. (3.15). At low
temperature r − is concentrated near the Fermi energy. We may then
approximate the energy shift up to its linear variation near m. For the term
proportional to r − in the expansion Eq. (4.3) the contribution to the dissi-
pation is proportional to

−
1
2p

F dE r −(E)(Ejj(m, t0)+(E−m) E −jj(m, t0)+O(w2))(E−m)

=O(be−bm)+O(wT2)+O(w2T). (4.16)

The term proportional to r' in the expansion gives,

1
4p

F dE r'(E)(E2)jj (E, t0)(E−m)=
1
4p

(E2)jj (m, t0)+O(w2T), (4.17)

which is the requisite result, Eq. (1.6).
The result (1.6) is remarkable in that we obtain the dissipation to

order w2 by making two approximations, each valid only to order w. First
we replace Ed with E, and then we evaluate E at E=m. Had we used this
procedure to compute the quantities Ėj and Q̇j separately, each of them
would be off by nonzero O(w2) terms (as can be seen in the snowplow
and battery examples); nevertheless, the combination Ėj−mQ̇j is computed
correctly to order w2. The reason is that in each quantum channel one has
the following lower bound on the dissipation: (7)

Ėj−mQ̇j \ pQ̇
2
j . (4.18)
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This bound is saturated by the outgoing population distribution that is
filled up to energy m and empty thereafter. The dissipation should therefore
be quadratic in the deviation of the outgoing distribution from this mini-
mizer. Since the outgoing distribution is an O(w) perturbation of the
minimizer, knowing the distribution to order w should give the dissipation
to order w2.

Remark 4.1. There would appear to be two problems with the
argument above. In minimizing a functional on a region with a boundary,
one obtains a quadratic estimate for the functional around its minimizer if
the minimum occurs at an interior point. If the minimum occurs at the
boundary, then a variation away from the boundary can increase the
function to first order. Furthermore, whether the minimum occurs at an
interior point or on the boundary, quadratic estimates depend on the
Hessian being a bounded operator. If the Hessian is unbounded, then an
arbitrarily small change in the point can cause an arbitrarily large increase
in the functional. In our case, the minimum occurs at a point that is on the
boundary of the constraints 0 [ r(E) [ 1. There are large modes for the
Hessian, involving adding electrons at arbitrarily high energies.

Fortunately, neither exception is relevant. In fact, the correction of the
distribution, as given by (4.3), consists of a local reshuffling of electrons
around the Fermi energy and does not involve the large modes of the
Hessian. These variations should not be viewed as being either towards or
away from the boundary, since neither the expression (3.7) nor its opposite
(replacing E with −E) violates the constraints.

4.4. Entropy and Noise Currents

Entropy and noise introduce a new element in that the transport
equation, Eq. (1.7), depends on the density through a non-linear function
h(r). For the entropy and noise h(x) is given in Eq. (1.8). Using the fact
that in either case h(0)=h(1)=0, we shall show that for w° T°`w/y
the currents are quadratic in w and are given by

ṡj(t, m, T)=
b

2p
DE2

j (m, t)) F
1

0
dx h(x), (4.19)

where DE2
j has been defined in Eq. (1.10). For the entropy the integral

gives 1/2 and for the noise it gives 1/6. To complete the derivation of the
noise and entropy currents, we now derive Eq. (4.19).
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The condition w° T makes it possible to consider the outgoing state
of the electrons with a fixed time of passage, provided the time resolution is
short compared to w−1 but large w.r.t. T−1. The state rout, j=Pj routPj is
then given, see (4.3), as

rout, j(E)=r(E−Ejj(E, t))+
1
2 r
'(E)((E2)jj (E, t)−Ejj(E, t)2). (4.20)

The entropy/noise current (1.7) is

1
2p

F dE((h p r)(E−Ejj(E, t))−(h p r)(E))

+
1
4p

F dE(h − p r)(E) r'(E) DE2
j (E, t). (4.21)

In these integrals, Ejj may be regarded as constant in E because of the
condition T°`w/y. The first integral then vanishes and in the second we
may pull DE2

j (m, t) out of the integral. This leaves us with the integral

F dE(h − p r)(E) r'(E)=−b F
1

0
dr h −(r)(1−2r)

=2b F
1

0
dr h(r), (4.22)

where, in the second step, we have used a property of the Fermi function,
r −=−br(1−r), and an integration by parts in the last step. This
establishes the result.

We have nothing to say about the range T M w. The noise at T=0 can
be calculated using a formalism of Lesovik and Levitov that we discuss in
the appendix. This formula is nonlocal in time. It is instructive to examine
what goes wrong with our approach at T=0. In this limit rŒ and r' are
distributions and r a discontinuous function. Since it is not allowed to
multiply distributions by distributions, or even by discontinuous functions,
equations such as Eq. (4.22) which are not linear in r make no sense. This
is a reflection of the fact that in the regime where T M w entropy and noise
currents have a memory that goes back in times of order b. In the regime
we consider w° T the memory is short compared with the time scale of
the pump and instantaneous formulas make sense. At the opposite regime,
where T M w, a local formula in time cannot be expected.
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5. EXAMPLES

Quantum pumps may be viewed either as particle pumps or as wave
pumps. The particle interpretation has a classical flavor where the driving
mechanism is identified with forces on the particles. The wave interpreta-
tion stresses the role played by phases and suggests that interference phe-
nomena play a role. This duality can be seen in the BPT formula in the two
channel case of Section 2. On the one hand Eq. (2.5) makes it clear that the
phases in the S-matrix, (a, f, c), play a role in charge transport. In fact,
changing the transmission and reflection probabilities while keeping the
phases fixed cannot drive a current. At the same time, the rate of change of
two of the three phases, ḟ and ȧ, also admit a classical interpretation
as EMF and Galilean shift. The pedestrian derivation is a reflection of the
fact that particle interpretation is more intuitive. Here we shall consider
two examples where dual reasoning is insightful.

5.1. The Bicycle Pump

In an ordinary bicycle pump the action of the valves is synchronized
with the motion of the piston. The analogous quantum pump has syn-
chronized gates as shown in Fig. 6. The particle interpretation of the pump
is simple and intuitive. The wave (or BPT) point of view is more subtle. In
particular as we shall see, in terms of the elementary processes described
in Section 2 the pump operates by changing the phases c and a: Galilean
shifts arise from the synchronized action of the gates.

Let us choose a length scale so that kF=p and an energy scale so that
m=1. In these units, choose the length of the pump, L, to be an integer
L=n, pick the valves thin, d° 1, and impenetrable, i.e., of height M with
Md± 1. Consider the potential, shown in Fig. 6, that depends on two
parameters, a and b, that vary on the boundary of the unit square
[0, 1]×[0, 1]:

aM

bM
L

(1-a)M

a

b

Fig. 6. On the left a typical configuration of the potential of the quantum bicycle pump. On
the right a loop in the a–b parameter space.
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Va, b(x)=˛
0 if x < 0,

aM if 0 [ x < d,

10b if d [ x < L,

(1−a) M if L [ x < L+d,

0 if x \ L+d.

(5.1)

Since the quantum box was designed to accommodate n particles, the
pumps transfers n particles in each cycle. Like in the bicycle pump, at all
times, at least one of the valves is closed. This give the particle point of
view.14

14 For related results see, e.g., ref. 23.

We now consider this pump from the perspective of the phases in
BPT. At all stages of the cycle, the transmission coefficients at the Fermi
energy are essentially zero, so, by unitarity, the reflection coefficients r and
rŒ are unit complex numbers. The phases of the reflection amplitude, c±a
of Eq. (2.4), must therefore change by ±2pn in each cycle of the pump.
How does this happen? As we shall see in spite of the fact that the pump is
operated by manipulating gate voltages, the interpretation in terms of the
S-matrix is in terms of an interplay between Galilean shifts da and the
Birman–Krein term dc.

At a=0, b=1, we have r=−1, since the piston imposes a Dirichlet
condition at x=0, and rŒ=−exp(2ikFL)=−1, since the valve on the right
imposes a Dirichlet condition at x=L. As b is decreased, rŒ remains −1
(since the right valve is closed) and by Eq. (2.4) da=dc. Meanwhile, the
wave functions of incoming waves from the left penetrate deeper and
deeper into the region 0 < x < L, eventually accumulating n half-wave-
lengths. The phase of r increases by 2pn, since the left barrier has been
effectively shifted a distance L to the right and > dQ1=−n.

The path with b=0 has no effect on the scattering matrix, since L is
an integral number of half-wavelengths, so a Dirichlet condition at x=0 is
equivalent to a Dirichlet condition at x=L. The left valve closes and the
right valve opens but no current flows. The remaining two legs of the path
can be similarly analyzed. Increasing b with a=1 decreases the phase of rŒ
by 2pn, while decreasing a with b=1 has no effect on r or rŒ.

The fact that t=tŒ=0 throughout the process might seem strange.
After all, how can you transport particles without transmission? However,
this is exactly what happens with classical pumps. A good pump has valves
that do not leak.
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Φ

Fig. 7. The graph associated with a model of the quantum Hall effect.

5.2. The U-Turn Pump

The U-turn pump, shown in Fig. 7, is a highly schematic version of the
quantum Hall pump. There are two leads connected to a loop of circum-
ference a. The loop is threaded by a slowly varying flux tube carrying a
flux F. The particle satisfies the free Schrödinger equation on the edges
of the graph and and satisfies an appropriate boundary condition at the
vertices. The boundary conditions are such that at the Fermi energy all
particles are forced to make a U-turn at the loop. Namely, all particles
coming from the right circle the loop counter-clockwise and the exit on the
right while all those coming from the left circle the loop clockwise and exit
on the left.

Let us first look at this pump as a wave pump. Since all particles make
a U-turn, the transmission amplitude vanish and the reflection amplitudes
are phases. A left mover on the loop accumulates a Bohm–Aharonov phase
in addition to the phase due to the ‘‘optical length’’ of the path. This means
that the S-matrix at the Fermi energy is

S(m, F)=Re
i(kFa+F) 0

0 e i(kFa−F)
S . (5.2)

By BPT the charge transport is

OdQP± (m)=±
dF
2p

. (5.3)

One charge is pumped from left to right in a cycle of the pump as F
increases by 2p, the unit of quantum flux.

The scattering calculation, although easy, does not really explain how
the pump operates: How does it transport charges from right to left if all
charges are forced to make a U-turn at the loop? The particle interpreta-
tion demystifies the pump: Particles in the loop see a force associated with
the EMF Ḟ which make the clockwise movers feel as if they are going
uphill while the counter-clockwise movers all go downhill. Because of this
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B

Φ

Fig. 8. The Hall effect as a pump driven by the EMF Ḟ.

some of the slow counter-clockwise movers turn into clockwise movers and
exit on the other side. Although insightful, the particle interpretation does
not readily translate to a qualitative computation without invoking some
wave aspects.

The integer quantum Hall effect (17) can be described by a scatterer with
four leads (north, south, east, and west) with a north-south voltage and an
east-west current. However, if the north and south leads are connected by a
wire, and if the resulting loop is threaded by a time-varying magnetic flux
to generate the north-south voltage, then one obtains a geometry shown in
Fig. 8.

The U-turn pump of Fig. 7 models the essential features of this geom-
etry. The 2D electron gas in the Hall sample, and the magnetic field applied
to the Hall crystal, are modelled by the vertices, which scatter particles in a
time-asymmetric manner. The clockwise movers of Fig. 7 correspond to
electrons that enter the Hall bar from the west, move along the edge of the
crystal until they reach the south lead, go along the loop from south to
north, move along the edge from north to west, and emerge to the west.
The counter-clockwise movers correspond to electrons that go from east to
north (along the Hall bar) to south (along the loop) and then to east and
out the east lead. By standard arguments, (20) the edge states reflect the
existence of localized bulk states in the crystal.

5.3. A Family of Optimal Pumps

Optimal pumps (7) saturate the bound in Eq. (4.18). In ref. 4 it was
shown that optimal pumps that do not break time-reversal are transmis-
sionless. (The two examples above also fall into the category of being
optimal and transmissionless.) We recall that under time-reversal S is
mapped to S−1=S t (assuming that the operation does not act on the
channel indices). If invariant, S has symmetric transmission coefficients.
The question was posed in ref. 4 whether an optimal pump, which is not
time-reversal invariant, could be constructed. The following example shows
that such an optimal pump can have any value of r and t.
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In the battery of Section 2.2 the scatterer got in the way of the elec-
trons, and the most efficient transport was with r=0. In the snowplow
of Section 2.1 the scatterer pushed the electrons and the most efficient
transport was with |r|=1. In the following example of optimal pump we
combine a voltage with a moving scatterer, such that the scatterer is
moving along with the electrons, neither pushing nor getting in the way. In
this case, the scatterer doesn’t actually do anything, and we get efficient
transport, regardless of the initial values of (r, t, rŒ, tŒ).

Write the scattering matrix of a system where a=2mt and f evolve as

S(m)=R re
−2imt tŒe−if

te if rŒe2imt
S . (5.4)

Synchronizing the velocity ṫ with the voltage ḟ according to

2mṫ=ḟ (5.5)

makes Ṡ=iḟs3S. The energy shift is then a diagonal matrix

E=iṠSg=−ḟs3 (5.6)

which implies that the pump is optimal.

5.4. The Phase Space of a Snowplow

We give a description of a classical snowplow moving on the real axis
at speed v0 during the time interval [−T, T], but at rest before and after
that. It is described by the (total) phase space R2 ¦ (x, p) with Hamiltonian
function h=p2/2+V(t), where V(t) is a barrier of fixed height V > v20/2
and zero width located at

x(t)=˛ −v0T, (t [ −T),

v0t, (−T < t < T),

v0T, (t \ −T).

(5.7)

We use the notation of Appendix A.2 and denote by 1 the left channel
(x < 0) and by 2 the right one (x > 0). Let C+ij … Cj … C

+ be the outgoing
labeled trajectories originating from channel i and eventually ending in
channel j. The same meaning has C−

ij … Ci … C
−, except that the trajectories

are incoming labeled.
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Fig. 9. The thick line represents the position x(t) of the snowplow. The other lines are free
trajectories of common energy E indicated by the slope v=`2E > 0. Their times of passage t
are read off at the intercepts with the abscissa.

If a particle crosses the above scatterer of zero width, then its trajec-
tory is free at all times. Hence

C−
12=C

+
12, C−

21=C
+
21. (5.8)

It suffices to compute these subsets only. The remaining ones are then
given by complementarity:

C−
i1 2 C−

i2=Ci, C+1j 2 C+2j=Cj, (5.9)

with disjoint unions.

• C−
12=C

+
12. Depending on their time of passage t, trajectories of

this type will (see Fig. 9) require an energy E=v2/2 > Ec — v2c/2, with
critical energy Ec given as

Ec=V if |t| > T−
v0
v
T=T−

v0
`2E

T;

resp. by vc−v0=`2V, i.e.,

Ec=
1
2
(`2V+v0)2 if |t| [ T−

v0
`2E

T.

This portion of phase space is drawn dark shaded in the upper part of
Fig. 10.
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Fig. 10. Portions of phase space corresponding to transmitted (dark shaded) and reflected
(light shaded) trajectories with labels +/− corresponding to outgoing/incoming data. The
curves on the right halves correspond to t=T± v0

`2E
T.

• C−
21=C

+
21. In this case the slope of free trajectories is v=

−`2E < 0. As a result the critical energy Ec is

Ec=V if |t| > T+
v0
`2E

T,

Ec=
1
2
(`2V−v0)2 if |t| [ T+

v0
`2E

T.

This portion of phase space is drawn dark shaded in the lower part of
Fig. 10.

5.5. Classical Scattering from a Battery

This example shows that, in the classical case, static scattering data
cannot determine the energy shift. Consider the classical version of the
battery, see Section 2.2, with Hamiltonian function h(x, p)=(p−A)2/2
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and gauge A(x, t)=tfŒ(x) of compact support. Clearly, this describes par-
ticles which get accelerated as they cross the pump, whence there is an
energy shift. More formally, the quantity f(x, p)=(p−A)2/2+f is a
constant of motion, as it is verified from Newton’s equation (d/dt)(p−A)
=−Ȧ=−fŒ. In the leads, f=p2/2+f, which implies that the energy
E=p2/2, as defined there, gets shifted by E=−f|.−. if a particle crosses
the battery from left to right. On the other hand, for each static scatterer,
p−A is a constant of motion, whence the static scattering maps all equal
the identity map! The quantum mechanical phase information, which was
present in the static S-matrix and determined the energy shift, is of course
unavailable here.

6. GEOMETRY AND TOPOLOGY

When a pump undergoes a complete cycle, so does the scattering
matrix S(E, t). The rows of the matrix define unit vectors in Cn and the
charge transport in the jth channel can be interpreted in terms of geometric
properties of these vectors.

As we shall explain in Section 6.2, the charge transport in the jth lead
is the integral of the ‘‘global angular form’’ along the path of the jth row
of the S-matrix during a cycle. This integral need not yield an integer mul-
tiple of 2p. Computing this angle is formally the same as computing Berry’s
phase. (10) That this phase has direct physical significance is related to the
fact that a quantum pump is a wave pump. As with all problems in parallel
transport, the charge transport in a closed cycle can also be computed by
integrating a ‘‘curvature’’ over a surface spanning this cycle.

6.1. Charge Transport and Berry’s Phase

Let

|kjP=R
Sj1
Sj2
x

Sjn

S ¥ Cn (6.1)

be the transpose of the jth row of the frozen S matrix, evaluated at the
Fermi energy. Yet another rewriting of the BPT formula at zero tempera-
ture is as

2pOdQPj=iOkj | dkjP. (6.2)

452 Avron et al.



The expression on the right hand side is familiar from the context of adia-
batic connections and Berry’s phase. (10) To simplify notation we shall fix a
row, say the first, and drop the index j.

There is an important conceptual difference between Berry’s phase
associated to a quantum state |kP and the phases that arise in the study of
a row of the S-matrix |kP. In the usual Berry’s phase setting one starts with
a circle of Hamiltonians to which one associates a (unique) circle of projec-
tions |kPOk|, say on the ground state. To represent these projections in
terms of a circle of eigenvectors |kP one needs to choose a reference phase
arbitrarily for each point on the circle. The physical evolution picks its own
phase via the Schrödinger equation, which is known to give parallel trans-
port in the adiabatic limit.15 Berry’s connection is given by a formula

15 By choosing the energy of the state to be zero one can always get rid of the dynamic phase.

similar to the right hand side of Eq. (6.2), and measures the accumulated
difference between the physical phase (determined by parallel transport)
and the reference phase. At the end of a closed cycle, the reference phase
returns to its original value, so the accumulated difference is exactly the
change in phase of the physical wavefunction.

A cycle of a pump, by contrast, generates a path of vectors |kP of the
scattering matrix, not a path of projections. No choice of a phase needs to
be made, as the phases are all fixed by solving the scattering problem. In
particular, the vector |kP always returns to itself after a complete cycle of
the pump. However, one can still ask how the accumulated phase (namely
zero) compares to that determined by parallel transport, and Berry’s con-
nection still measures the difference. Only the interpretation is different.
Rather than measuring the extent to which (physical) parallel transport
fails to close on itself, in this context the integral of Berry’s connection
measures the extent to which (physical) closed evolution fails to be parallel.

6.2. Global Angular Form

In differential geometry, the deviation from parallel transport can be
described intrinsically, without reference vectors, by using the global angular
form, which we now describe.

If the projection |kPOk| is fixed,

|kP=e ic |k0P, (6.3)

then the accumulated angle is obvious: the change in angle is > dc=
>−iOk | dkP.
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Now, how do we compare angles of vectors when the projections are
not fixed? To do this, we need a rule for taking one vector to another
without changing its global phase. A natural way to do so is to impose that
there be no motion in the ‘‘direction’’ |kPOk|. Explicitly, we say that |kP is
parallel transported if

|kPOk | dkP=0. (6.4)

For parallel transport, −iOk | dkP is of course zero.
If we imagine an arbitrary path as a combination of parallel transport

and additional angular change, then

−iOk | dkP (6.5)

precisely measures the component of motion in the ‘‘change the angle’’
direction. Since this expression is defined globally, without need of refer-
ence vectors, it is called the global angular form.

We can now compute the phase difference accumulated along any
path connecting two vectors. The path may be either open or closed, and
the integral of the global angular form makes sense in either case. The
geometric content of the BPT formula is that expected charge transport is
−1/2p times the integral of the global angular form along the path.

6.3. Curvature

In the previous section we identified charge transport with the integral
of the global angular form (6.5) along a path. Remarkably, when the path
is closed, one can compute the total charge transport without knowing the
phase of |kjP, relying only on the projection |kjPOkj |. For a closed cycle
one can relate the line integral on the boundary of a disk “D to a surface
integral on the disk D via Stokes

2pOQPj=i F
“D

Okj | dkjP=i F
D
Odkj | dkjP. (6.6)

In the context of pumps this identity is known as Brouwer’s formula. (11)

Remark 6.1. For other ways to rewrite Eq. (6.6), use the identities

iOdkj | dkjP=−i(dSNdSg)jj=−i Tr P̂j(dP̂j NdP̂j) P̂j, (6.7)

where P̂j=SgPjS is the projection onto the state feeding channel j. The
r.h.s. is the trace of the curvature of the connection P̂jd (see, e.g., ref. 5,
Section 9.5).
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We shall now describe a different interpretation of Brouwer’s formula
that focuses on the Wigner time delay and the energy shift. We consider the
charge transport in a cycle, so t is an angle. By Eq. (A.26), and assuming
no semi-bound states, so E(0, t)=0, the charge transport in a cycle is

2pOQPj=F
C
dENdt Wjj (6.8)

where C is the cylinder [0, m]×S. Now

Wjj dENdt=dEjj Ndt+dENdTjj=−i(dSNdSg)jj. (6.9)

The difference between this formula and Eq. (6.6) is the domain of inte-
gration: A disc in Brouwer’s formula, and a cylinder here. However, since
E(0, t)=0 the bottom of the cylinder may be pinched to a point and the
cylinder turns to a disk. The r.h.s. is the trace of the curvature of the
connection P̂jd (see, e.g., ref. 5, Section 9.5) or of its connection 1-form
i[(dS) Sg]jj=Ejj dt−Tjj dE. Similar equations are found in the context of
the quantum Hall effect (35) (see, e.g., ref. 5, Section 11.3), but, unlike there,
>mE− ? dENdt W(E, t)jj is not a Chern number as a rule, since the integra-
tion manifold has a boundary.

6.4. The Two Channel Case

The two channel case is particularly simple. |kP=( r
tŒ) lives in S3. The

projection associated to |kP can be identified with a point on S2 according
to

|kPOk|=
1+n̂ ·sF

2
(6.10)

where n̂ is a unit vector in R3 and sF is the triplet of Pauli matrices. Equa-
tion (6.6) then says that the charge transport is half the spherical angle.

The claim that one can compute the charge transport in a closed cycle
while forfeiting all knowledge of the global phase means, in the 2-channel
case, that all that matters is z=r/tŒ. z lives in CP1=C 2 {.} and is
related to n̂ above by stereographic projection

|kPQ (2 Re(rt̄Œ), 2 Im(rt̄Œ), |r|2−|tŒ|2)=12 Re(z)
1+|z|2

,
2 Im(z)
1+|z|2

,
|z|2−1
1+|z|2
2 .
(6.11)
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The curvature

i(dr̄ dr+dt̄Œ dtŒ)=i(1+|z|2)−2 dz̄ dz, (6.12)

can be written entirely in terms of z. The current pumped by a small loop
in parameter space can therefore be computed by a calculation on S2.

For large loops, however, things are more subtle. If a path in param-
eter space maps to the equator, is the bounding region the northern hemi-
sphere (area +2p) or the southern hemisphere (signed area −2p)? Because
of this ambiguity, the path in S2 only determines the fractional part of the
expected charge transported, not the integral part. In particular, if the path
on the unit sphere is trivial—the ratio z=r/tŒ is constant—then the frac-
tional part is zero and the charge transported is an integer. The bicycle
pump, where tŒ is identically zero, is an example of this quantized trans-
port.

How, then, can one determine also the integral part without a knowl-
edge of the global phase? Consider a region in parameter space bounded by
our path. The integral part is how many times it wraps around S2 (i.e., the
degree of the map). For the bicycle pump, this is counting (with sign and
multiplicity) how many points on the unit square [0, 1]×[0, 1] correspond
to a particular value of z, say z=0. In fact, since we have already com-
puted that the charge transport in each cycle is n, there must be n points in
the interior of the square where the potential is reflectionless at the Fermi
energy.

6.5. Chern and Winding Numbers

Part of the motivation for pumps is as standards of charge transport,
whence quantization is an issue. In this section we want to explain why
Chern numbers in quantum pumps must vanish. Instead, in some cases,
winding numbers play a role.

The Hopf fibration gives the unit sphere S2n−1 … Cn the structure of a
U(1) principal bundle over CPn−1 via the map

p: S2n−10 CPn−1 (6.13)

|kP0 |kPOk|, (6.14)

where we realize CPn−1 as the set of all rank-1 projections in Cn.
Chern numbers in transport theory (38) typically arise as follows. The

physical parameter space is a closed surface, M, say a sphere or a torus.
The Hamiltonian, acting on the vector space Cn, is then a function on M,
and any one of its simple eigenvalues map M to CPn−1. The pullback of
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the Hopf fibration is then a U(1) bundle over parameter space, with local
geometry and possibly nontrivial topology. The integrated curvature is a
Chern number, and may be nonzero.

In adiabatic pumps, however, the frozen S matrix defines a map from
M directly to S2n−1, and indirectly to CPn−1. This gives a trivialization of
the bundle, and shows that all Chern numbers are zero. Besides, as seen
from Eq. (6.6), charge transport is the integral of the Chern character
iOdkj | dkjP over a surface D with boundary, and thus not given by a
Chern number.

Despite the nonexistence of Chern numbers, quantization may occur
in some examples. If a pump fixes the projection |kPOk|, as in (6.3),
then ? OdQP is the winding number of e ic. (3, 7) Alternatively, the curvature
Eq. (6.7) can be computed in terms of P̂j=p(|kP), cf. Eq. (6.12), and the
integral (6.6) thus performed over p(D). The condition (6.3) means
“p(D)=”, which again shows that ? OdQP is an integer.

An example where this quantization occurs is the U-turn pump,
Section 5.2: The charge transport in a cycle is the winding number of the
map from the circle of fluxes to the circle of complex numbers of modulus
one. A small change of the parameters underlying Fig. 8 will only modify
kF a in the effective description by Eq. (5.2) and thus preserve quantization.
On the other hand, if the U-turn pump is viewed as an example of a
Schrödinger operator on a graph, then a generic perturbation in this class
will destroy quantization.

6.6. Geometry of Dissipation and Noise

Equations (1.6) and (1.9) that describe dissipation and entropy (and
hence also noise) currents have a simple geometric interpretation in terms
of the fiber bundle S2n−1Q CPn−1. The jth row of E describes the velocity
of |kP in S2n−1. Of this, Ejj is the projection of this velocity onto the fiber,
and Ejk, with k ] j, give the projection of this velocity onto CPn−1. The
current OQ̇jP, and the minimal dissipation |Ejj |2/4p, are both functions of
motion in the fiber, while the excess dissipation

OĖjP−mOQ̇jP−pOQ̇jP
2=

1
4p

C
k ] j

|Ejk |2 (6.15)

is the ‘‘energy’’ (that is, squared velocity) associated with motion in the
base. In particular, a pump operation is of the form (6.3) if and only if the
bound Eq. (4.18) is saturated, or equivalently if the noise at T > 0 or
at T=0 vanishes, see Eqs. (1.9) and (B.19). Such pumps may be called
optimal (7) w.r.t. the jth channel.
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In an interesting piece of work, Mirlin and Makhlin (26) relate the
problem of finding a cycle with minimal noise production at T=0 to the
problem of finding a minimal surfaces supported by a given loop. This
result is outside the scope of transport properties which are local in time, as
it deals with T=0 and the noise associated with a complete cycle.

APPENDIX A. ALTERNATIVE PERSPECTIVES ON BPT

In this appendix we analyze the BPT formula from several different
perspectives that shed light on its physical and mathematical content and
on the semiclassical interpretation of the matrix of energy shift.

A.1. An Axiomatic Derivation of BPT

The pedestrian argument of Section 2 does not extend beyond the
two channel case. This is because with more than two channels, a general
variation dS cannot be described in terms of known physical processes.
One can, nevertheless, derive BPT from general and simple physical con-
siderations, without recourse to formal perturbation expansions in scatter-
ing theory. The BPT formula follows from the following natural axioms:

1. Existence and Bilinearity: There exist universal (complex) coeffi-
cients amijkl such that

dQm=C
ijkl

amijkl dSij S̄kl+complex conjugate. (A.1)

2. Covariance: The formula is covariant under permutation of the
channels. In particular, it is invariant under permutations of the channels
other than the mth.

3. Gauge invariance: The formula is unchanged by time-independent
gauge transformations, and also under time-independent changes in the
fiducial points.

4. Cluster: If the system consists of two subsystems, disconnected
from one another, then the currents in each subsystem depend only on the
part of the S matrix that governs that subsystem.

5. Landauer: If a voltage, applied to a single lead mŒ ] m, is modeled
by a time-dependent gauge transformation, then dQm is given by the
Landauer formula where the transmission probability is given by the scat-
tering probability mŒQ m.
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6. Birman–Krein (39) or Friedel (19) sum rule:

C
j
dQj=

i
2p

d log(det S)=
i
2p

Tr(dS S†).

The physical motivations for most of the axioms are clear. For
example, bilinearity comes from the fact that the current is an interference
effect between the original outgoing wavefunction (described by S) and an
additional piece (described by dS). The one axiom that seems the most
arbitrary is existence—the assumption that charge transport at T=0 is
determined by the scattering matrix at the same time and at the Fermi
energy alone.

By covariance, it suffices to study the current on the first channel, dQ1

(and drop the superindex in a). Henceforth, Latin indices will run from 1
to n, while Greek indices will run from 2 to n.

The most general bilinear (A.1) vanishing identically on unitaries S
and their variations dS is of the form aijkl=ejldik+dikdjl with hermitian
matrices (ejl) and (dik). Indeed, by SSg=SgS=1 the matrices (dS) Sg and
(dS)g S are anti-hermitean, which implies vanishing of the stated bilinear
form. We can thus fix aijkl in (A.1) by imposing the uniqueness constraints
that ;a aajal and ;a aiaka are anti–hermitian.

We shall now see that by axiom 3

aijkl=cijdikdjl. (A.2)

Indeed, if we move the fiducial point on the ith channel by distance ti, the
S-matrix transforms by

Sij Q Sije ikF(t i+tj), (A.3)

and so aijkl Q aijkle ikF(t i+tj −tk −t l). The only invariant terms are those with
i=k and j=l or with i=l and j=k. Similarly, gauge transformations
send

Sij Q Sije i(f i −fj). (A.4)

Now the invariant aijkl terms are those with i=k and j=l or with i=j and
k=l. Putting the two selection rules together gives Eq. (A.2). At this point
Eq. (A.1) reduces to

dQ1=C
ij
cij dSij S̄ij+complex conjugate, (A.5)

with the constraint that the coefficients cij are pure imaginary.
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By the cluster property cab must all vanish, for otherwise dQ1 will be
affected also by channels disconnected from it. Now c1a and ca1 are inde-
pendent of a by permutation symmetry. We can therefore write Eq. (A.1)
as

dQ1=c1 dS11 S̄11+c2 C
k
dS1k S̄1k+c3 C

k
dSk1 S̄k1+complex conjugate,

(A.6)

where c1=c11, c2=c1a, and c3=ca1 . Summing dQj over all channels, using
that c1, c2, c3 are pure imaginary, and setting the result to agree with the
Birman–Krein formula gives

C
j
dQj=2ic1 Im C

j
dSjj S̄jj+2(c2+c3) Tr(dS S†)=

i
2p

Tr(dS S†). (A.7)

Thus c1=0 and 4p(c2+c3)=i.
What remains is to distinguish between c2 and c3. Imagine modeling

a voltage V on channel a by a time dependent vector potential that shifts
the phase of the wavefunction on the ath channel by df. Equating with
Landauer gives

dQ1=−2i(c2 |S1a |2−c3 |Sa1 |2) df=
1
2p

|S1a |2 df. (A.8)

Since (for n \ 3) |Sa1 |2 and |S1a |2 are independent, this implies that
c2=i/4p and c3=0. We thus obtain BPT for n \ 3.16

16 To get the n=2 case, consider a 2-channel scatterer as a degenerate 3-channel scatterer,
where the third channel is disconnected from the first two. Then S31 is identically zero, and
the 3-channel BPT formula for dQ1 reduces to the 2-channel formula.

A.2. Classical Pumps

We next examine classical pumps and the roles of the classical time
delay and energy shift. Although there are important differences in detail,
the relation between energy shift and expected current in the classical case
is qualitatively similar to the BPT formula for the quantum case. By con-
trast, the energy shift can not be expressed in terms of static scattering
data.

We picture each channel as a real half-line x > 0, see, e.g., Fig. 1. The
classical phase space associated to a given channel is the half-plane
{x, p | x > 0, p ¥ R}. We can choose coordinates so that points in phase
space are labelled by the pair (E, t), where E is the energy of the (classical)
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particle and t its time of passage at the origin. For concreteness, let us
assume a dispersion relation E(p)=E(−p) with E(p) increasing from 0 to .
as p ranges over the same interval, e.g., a quadratic dispersion. Then

E=E(p), t=−x/v, (v=E −) (A.9)

is a canonical transformation to the energy-time half plane {E, t | E > 0,
t ¥ R}, since dENdt=dxNdp. The mapping is singular when v=0. States
with t > 0 are incoming (at time 0), while those with t < 0 are outgoing
(at time 0). (All states are, of course, incoming in the distant past and out-
going in the distant future.)

The phase space of n disconnected channels is C=1n
i=1 Ci={(E, t, i) |

E > 0, t ¥ R, i=1,..., n}. When analyzing pumps, i.e., channels communi-
cating through some pump proper, C still serves as phase space of the
scattering states. More precisely, (E, t, i) shall be the label of the scattering
state whose past asymptote is the free trajectory with these initial data.
Similarly, we may indicate a scattering state by its future oriented data
(EŒ, tŒ, j). In this way we avoid introducing the full phase space for the
connected pump. However, some of these trajectories may admit only one
of the two labels, as they are free for, say, tQ −. but trapped as tQ+..
With this exception made, the relation defines a bijective map, the (dyna-
mical) scattering map:

S: C−
Q C+, (E, t, i)W (EŒ, tŒ, j), (A.10)

where C0C− are the incoming labeled trajectories which are trapped in the
future, and correspondingly for C0C+. If (A.10) is viewed as a function of
(E, t) with i fixed, the channel j is piecewise constant and the map to
(EŒ, tŒ) symplectic. We shall illustrate S by an example in Section 5.4. The
inverse map may be written as

S−1: (EŒ, tŒ, j)W (E, t, i)=(EŒ−Ed(EŒ, tŒ, j), tŒ−Td(EŒ, tŒ, j), i), (A.11)

which defines the classical energy shift Ed and the time delay Td as func-
tions of the outgoing data. We remark that, for a static pump, E=0 and
T is independent of tŒ. For adiabatic pumps, we have Ed(EŒ, tŒ, j)=O(w)
and Td(EŒ, tŒ, j)=T(EŒ, tŒ, j)+O(w), where T is the time delay of the
static scatterer in effect at the time of passage tŒ, on which it then depends
parametrically. Since S−1 preserves volume (by Liouville’s theorem) and
the derivative with respect to time brings in a factor of w, we have

E −+Ṫ=0, (A.12)
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where E is the part of Ed of order w1. This relation shows that the static
scattering data determine E(EŒ, tŒ, j) up to an additive function of tŒ and j.
This is in sharp contrast to the quantum case, where E is fully determined
by the frozen scattering matrix, see Eq. (1.2). We will further comment on
the origin of this ambiguity in the classical case in Sections 3.1 and 5.5 and
relate it to the lack of phase information in classical scattering.

As in the quantum case, Eq. (1.5) is the correct expression for the
current in terms of the energy shift:

Q̇j(t)=−F
.

0
dE gŒ(E) E(E, t, j), (A.13)

where g(E) is the phase space particle density in the incoming flow. We
remark that in a semiclassical context g is related to the occupation density
r by g(E)=r(E)/2p.

In fact, the net outgoing charge transmitted in the time interval [0, T]
through channel j is

Qj=F
Cj

dEŒ dtŒ q[0, T](tŒ) g(E)−F
Cj

dE dt q[0, T](t) g(E), (A.14)

where E in the first integral is given through the map (A.11) if (EŒ, tŒ, j)
¥ C+; if (EŒ, tŒ, j) ¥ C0C+, which may occur if EŒ is close to threshold
energy 0 and E < 0, we assume that g(E)=g(0), i.e., that the occupation
of the bound states and threshold energies are equal.

Equation (1.5) is obtained immediately by expanding g(E)=g(EŒ)−
gŒ(EŒ) E(EŒ, tŒ, j)+O(w2) in the first integral (A.14). The contribution of
the first term cancels against the second integral.

Another derivation, which is more involved, is of some interest espe-
cially in view of the semiclassical discussion of pumps in Appendix A.3.
The first integral (A.14) equals

F
Cj

dEŒ dtŒ q[0, T](t) g(E)−F
.

0
dEŒg(E)T(EŒ, tŒ, j):

t=T

t=0
. (A.15)

In the adiabatic regime we may describe Cj, to lowest approximation, as
Cj=1n

i=1 Cij, where Cij consists of states (EŒ, tŒ, j) originating from lead i
under static scattering. W.r.t. them and to next approximation, their pre-
images (E, t, i) appearing as arguments in the first integral (A.15), are
displaced by the vector field −(E(EŒ, tŒ, j),T(EŒ, tŒ, j)), which is typically

462 Avron et al.



discontinuous across the boundaries of the Cij’s, but divergence free
otherwise by (A.12). (For an illustration, see Example 5.4 and Fig. 10
there.) As a result, that integral differs from the second integral (A.14) by

− C
n

i=1
F
“Cij

(dsE E(EŒ, tŒ, j)+dst T(EŒ, tŒ, j)) q[0, T](t) g(E), (A.16)

where (dsE, dst) is the outward normal to “Cij. Within 1n
i=1 “Cij we may

distinguish between boundary parts contained in the boundary {E=0}
of Cj, and inner boundaries. The contribution of the former is
>T0 dt g(0) E(0, t, j) and, mostly for comparison with the promised
semiclassical derivation, we formally write that of the latter as
>Cj W(E, t, j) q[0, T](t) g(E), where W(E, t, j) is a distribution supported
on the inner boundaries. Since the map (A.10) is bijective on C except
for bound states, the displacements of the sets Cij are such that
;n

j=1 W(E, t, j)=0. In summary, we obtain

Qj=F
T

0
dt g(0) E(0, t, j)−F

.

0
dE g(E) Ṫ(E, t, j):

t=T

t=0

+F
.

0
dE F

T

0
dt g(E) W(E, t, j) (A.17)

and, by differentiating w.r.t. T,

Q̇j=g(0) E(0, t, j)−F
.

0
dE g(E) Ṫ(E, t, j)+F

.

0
dE g(E) W(E, t, j).

(A.18)

The first term on the r.h.s. describes the release and trapping from bound
states. The middle term describes the depletion of the outgoing flow as
a result of a time delay increasing over time, since effectively no charge
is exiting during a time dT. The last term describes electrons that are
reshuffled between leads, but with no withholdings since ;n

j=1 W(E, t, j)
=0.

From (A.18), Eq. (A.13) can be recovered: Let [Ek(t), Ek+1(t)],
(k=0, 1,...) be the intervals of the partition of [0,.) on which E,T are
continuous, and DkE=E(Ek+, t, j)−E(Ek−, t, j), DkT=T(Ek+, t, j)−
T(Ek−, t, j), (k=1, 2,...) the values of their discontinuities at the end-
points. Then
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F
.

0
dE g(E) W(E, t, j)=C

k \ 1
g(Ek)(DkE−Ėk DkT),

−F
.

0
dE g(E) Ṫ(E, t, j)=− C

k \ 0
F
Ek+1

Ek
dE g(E) Ṫ(E, t, j)

+C
k \ 1

g(Ek) Ėk DkT.

(A.19)

Using Eq. (A.12) and integration by parts, the first term on the r.h.s. of
(A.19) can be written as

C
k \ 0

F
Ek+1

Ek
dE g(E) E −(E, t, j)

=−g(0) E(0, t, j)− C
k \ 1

g(Ek) DkE− C
k \ 0

F
Ek+1

Ek
dE gŒ(E) E(E, t, j).

(A.20)

By collecting terms, we recover Eq. (A.13).

A.3. Currents and theT–E Uncertainty

Finally, we present a semiclassical derivation of Eq. (1.5), where we
however take for granted the physical meaning of the energy shift Eq. (1.2),
which will be established in Section 3.1. Since the time delay is a matrix, see
Eq. (1.3), we should, as a preliminary, point out that it is the diagonal
element Tjj(E, t) which has the meaning of the average time delay of a
particle exiting channel j. In fact, consider an incoming wave packet
> dk e−i(kx+E(k) t)j(k) in channel i centered on the trajectory −x=EŒ(k) t+c.
The part of it scattered into lead j is > dk e i(kx− E(k) t)Sji(E(k), t) j(k) and is
associated with x=EŒ(k)(t−(arg Sji)Œ)+c (with Œ=d/dE on arg Sji ), which
implies a time delay of (arg Sji)Œ. Averaging this with the probability |Sji |2

for the particle to have come from channel i, we find for the average delay

C
n

i=1
|Sji |2 (arg Sji)Œ=Im C

n

i=1
S̄jiS

−

ji=Tjj. (A.21)

The net outgoing charge in the time interval [0, T] is at order w

OQPj=
1
2p

F
.

0
dEŒ F

T

0
dtŒ r(E)−

1
2p

F
.

0
dE F

T

0
dt r(E), (A.22)

464 Avron et al.



where E in the first integral is given through the map

F: (EŒ, tŒ)W (E, t)=(EŒ−Ejj(EŒ, tŒ), tŒ−Tjj(EŒ, tŒ)), (A.23)

which describes the effect of the pump on the energy and the time of
passage of an electron in terms of the outgoing data (EŒ, tŒ). This is similar
to the classical Eq. (A.11) except that E and T are now defined in terms of
the quantum mechanical frozen scattering matrix S, see Eqs. (1.2) and
(1.3). Energies EŒ close to the threshold EŒ=0 may not be in the domain
of the map F. Similarly, energies E may there fail to be in its range.
These situations correspond to electrons released from, resp. trapped into,
a bound state of the pump.

The BPT formula, Eq. (1.5), is again obtained immediately by
expanding r(E)=r(EŒ)−rŒ(EŒ) Ejj(EŒ, tŒ)+O(w2) in the first integral
(A.22). The contribution of the first term cancels against the second
integral. A further derivation, which is longer but adds another interpreta-
tion to the result, is by using F as a change of variables. The Jacobian of
(A.23) is 1−Wjj(EŒ, tŒ), where Wjj is the divergence of the displacement
(Ejj,Tjj). As a matrix, W is the time delay-energy shift uncertainty intro-
duced in Eq. (1.4):

W=i[T, E]=i(ṠSgŒ−SŒṠg)=E −+Ṫ. (A.24)

Since W is formally of order O(w), the Jacobian is close to 1 and the
map (A.23) is invertible. After changing variables to (E, t) the first
integral (A.22) extends over (E, t) ¥ F([0,.)×[0, T]), which differs from
[0,.)×[0, T] to leading order by displacements −Ejj(E, t) along E=0
and −Tjj(E, t) along t=0, T. This yields

2pOQPj=−F
T

0
dt r(E) Ejj(E, t):

.

0
−F

.

0
dEr(E)Tjj(E, t):

t=T

t=0

+F
.

0
dE F

T

0
dt r(E) Wjj(E, t), (A.25)

and the differential version thereof is

2pOQ̇Pj (t)=r(0) Ejj(0, t)−F
.

0
dE r(E) Ṫjj(E, t)+F

.

0
dE r(E) Wjj(E, t).

(A.26)

Upon inserting (A.24) and performing an integration by parts on rE −jj,
Eq. (1.5) is recovered. The interpretation of the three terms is the same as
given after Eq. (A.18). For the first term, with bound states now quantized,
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this is further discussed in the remark below. As for the last term, notice
that ;n

j=1 Wjj=0 still holds true because of Eq. (1.4). While generally, and
in contrast to the classical case, W may have full support in phase space, it
remains true that it vanishes if scattering is deterministic: If on some open
subset of phase space

Sji(E, t)=0 for i ] p(j), (A.27)

where p is some fixed permutation of the channels, then Sg is in the same
manner related to p−1, and E,T to the identity permutation, i.e., they are
both diagonal matrices. Hence W=0 by (1.4).

Remark A.1. The first term on the r.h.s. of (A.26) typically consists
of delta functions located at times t where the pump has a semi-bound state
at a band edge, i.e., a state which can be turned either into a bound state
or a scattering state by an arbitrarily small change of the pump configura-
tion. We illustrate this for E(k)=k2, and first claim: either S(0, t) —
limE a 0 S(E, t)=−1, or the (static) pump at time t admits a semi-bound
state. This is seen as follows: For each k ¥ C the 2n plane waves

ei cos kx, ei
sin kx
k

, (A.28)

({ei}
n
i=1 being the standard basis of Cn), form a basis of solutions with

energy k2 in the n disconnected leads. Upon connecting them to the scat-
terer an n-dimensional subspace of solutions is left, which depends analyti-
cally on k. Since the dependence of (A.28) is also analytic, solutions may be
written as

kk(x)=C
n

i=1
a iei cos kx+biei

sin kx
k

, (A.29)

with amplitudes a=(a1,..., an), b=(b1,..., bn) satisfying a set of linear
equations

A(k) a+B(k) b=0 (A.30)

with analytic n×n coefficient matrices A, B. As (A.30) defines an
n-dimensional subspace, we have rank(A, B)=n. For k=0 (A.28) reduce
to ei, eix. By a semi-bound state we mean more precisely a bounded solu-
tion k0(x), i.e., one with b=0 in (A.29). Its existence is tantamount to
det A(0)=0. If det A(0) ] 0, (A.30) can be solved for a at small k:
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a=−A(k)−1 B(k) b, with arbitrary b ¥ Cn. For k > 0, the scattering
matrix maps the incoming part of (A.29) to its outgoing part, ika+b=
S(k2)(ika−b). Thus

S(k2)=(−ikA(k)−1 B(k)+1)(−ikA(k)−1 B(k)−1)−1Q −1, (kQ 0).
(A.31)

This proves the claim, and in particular that E(0, t)=0 except at times
t when the scatterer has a semi-bound state. To discuss its behavior
there, say this happens at t=0, we assume generically that C(k, t)=
B(k, t)−1 A(k, t) (=C(k, t)g) has a simple eigenvalue c(k, t) with a first
order zero at k=t=0. Let P be its eigenprojection at crossing and let
s=sgn ċ(0, 0) be the crossing direction. Then, we claim,

lim
E a 0

E(E, t) dt=−2psPd(t) dt, (A.32)

so that in the process, by (2.1), the charge

− lim
E a 0

1
2p

F
E

−E
tr E(E, t) dt=s (A.33)

is captured at arbitrarily small energy. Since the l.h.s. also equals
limE a 0 arg det S(E, t)|

E
−E, (A.33) states that the phase of S(0, t) changes

by 2p upon capture of a bound state, which is a dynamical version of
Levinson’s theorem. The proof of (A.32) rests on the approximation of
(A.31)

S(k2, t)=
ikP−(cŒ(0, 0) k+ċ(0, 0) t)
ikP+(cŒ(0, 0) k+ċ(0, 0) t)

, (A.34)

valid near k=t=0.

APPENDIX B. COMPARISON WITH THE THEORY OF FULL

COUNTING STATISTICS

The formulas for the entropy and noise currents, Eq. (1.9), are singu-
lar in the limit TQ 0. This appears to be in conflict with the Lesovik–
Levitov’s formula (LL) which gives finite noise at T=0 (see below). We
shall verify here that, in fact, for T N w, LL is consistent with our results.
We shall start by recalling LL.
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B.1. The Lesovik–Levitov Formula

Here we shall describe a version of the Lesovik–Levitov formalism (22)

where LL is an identity rather than an (adiabatic) approximation.
Assume that in the distant past and distant future the Hamiltonian

H(t) of the pump coincides with H0, the disconnected pump. Let Qj be a
projection on one the jth channels. Since the channel is fixed we suppress
the index j below. It is important in this formulation that the channels are
disconnected at the distant past and distant future and that [Q, H0]=0. It
is also assume that the initial state of the system is thermal state r(H0). The
counting statistics can be described by means of the characteristic function
q(l)=;.

n=−. pne iln, where pn is the probability for n charges having been
transferred to channel j in the course of whole process. The formula is

q(l)=det(1+r(e−ilQ/2 e ilQ̂ e−ilQ/2−1)), Q̂=Sg
dQSd, r=r(H0)

(B.1)

where, as before, r is the Fermi function and Q̂ is a projection on the states
feeding the channel in question.

Remark B.1. The reason Q plays a special role is traced to the fact
that the second quantized dC(Q) is the number (charge) operator in the
channel.

Since Q is a projection e ilQ=1+(e il−1) Q. Using this one finds

e−ilQ/2 e ilQ̂ e−ilQ/2−1=iA sin l−(1− cos l) A2

+2i sin(l/2)(1− cos(l/2))(QQ̂Q++Q+Q̂Q)
(B.2)

where

A=Q̂−Q (B.3)

is a difference of projections. To second order in l

log q(l)=Tr log 11+ilrA−
l2

2
rA22+O(l3)

=il Tr(rA)−
l2

2
Tr(rA(1−r) A)+O(l3). (B.4)
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In the last step we used the fact that Q commutes with H0 and the cyclicity
of the trace.

B.2. Charge Transport

The expectation value of charge transport into the jth channel is the
first moment:

OQPj=−i(log q)Œ (0)=Tr(rA)=Tr((r(H0−Ed)−r(H0)) Qj). (B.5)

This is clearly the correct result, independent of the adiabatic limit, for the
rhs is precisely what one means by the change in the total charge in the jth
reservoir. In the adiabatic limit Ed is small and hence

OQPj % −Tr(rŒ(H0) EdQj)=−
1
2p

F dt dE rŒ(E) Ejj(E, t) (B.6)

in agreement with BPT. In the last step we used Eq. (3.15) and Eq. (4.3).

B.3. Splitting the Noise

Noise is the variance of the distribution associated to q(l) or, more
precisely, the variance per unit time. It splits into two positive terms.
One term is proportional to the temperature—this is the Johnson–Nyquist
noise. The second term involve correlations at different times and survives
at T=0. This is the quantum shot noise.

The variance is

O(DQ)2P=−(log q)'|l=0=Tr(rA(1−r) A). (B.7)

Now, write

rA(1−r) A=rA2(1−r)+rA[A, r]=r(1−r) A2+r[r, A] A. (B.8)

Using the cyclicly of the trace and the average of the two terms in
Eq. (B.8), we find

Tr(rA(1−r) A)=Tr(r(1−r) A2)+1
2 Tr([r, A][A, r]). (B.9)

Each term is positive. The Johnson–Nyquist noise is the first term

Q2
JN=Tr(r(1−r) A2)=−T Tr(r −A2) \ 0, (B.10)
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and the quantum shot noise is the second term:

Q2
QS=

1
2 Tr([r, Q̂][Q̂, r])=

1
2 Tr([dr, Q][Q, dr]) \ 0. (B.11)

(We have repeatedly used [Q, H0]=0.) Since the semi-classical limit of a
commutator is of order (, the quantum shot noise vanishes in the classical
limit.

B.4. Thermal Noise

r − is a multiplication operator in E which, at low temperatures, is
concentrated near m. The symbol of Aj is:

Aj . a(E, t)=Sg(E, t) PjS(E, t)−Pj, (B.12)

where Pj is an n×n matrix that projects on the jth channel. The Johnson–
Nyquist noise at low temperatures can be written as

2p Q2
JN=T F

R
dt tr(a2(m, t))=T F

R
dt tr(P̂(t)+P−P̂(t) P−PP̂(t))

=2T C
k ] j

F
R
dt |S|2jk (m, t), (B.13)

where tr denotes a trace of n×n matrices, and we have used the fact that P
and P̂ are one dimensional projections. We see that the Johnson–Nyquist
noise is proportional to the temperature and the time integral of the
conductance at the Fermi energy. It is finite since for large times H(t)
coincides with H0 and the scattering matrix reduces to the identity.

B.5. Shot Noise at Finite Temperatures

The symbol associated to [dr, Q] is, to leading order, the matrix

−r −(E)[E(E, t), Pj]

where, as before, Pj is the projection on the j th channel. At finite tempera-
tures r −(E) is a smooth function and it makes sense to look at the square of
the symbol as we must by Eq. (B.11). Now

tr[E(E, t), Pj][Pj, E(E, t)]=2((E2)jj−(Ejj)2)(E, t)=2DE2
jj(E, t).

(B.14)
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Substituting in Eq. (3.14) and using the fact that r − is localized near the
Fermi energy, we find

Q2
QS=

1
2p

F dE dt (r −(E))2 DE2
jj(E, t)

=
b

2p
F dt F

1

0
dr r(1−r) DE2

jj(m, t)

=
b

12p
F dt DE2

jj(m, t) (B.15)

in agreement with Eq. (1.9).

B.6. Shot Noise at T=0

The result at finite temperature may suggest that the noise over a
pump cycle diverges as TQ 0. This is not the case. At T=0 the symbol r −

is a distribution and it is not permissible to multiply them as we did in
Eq. (B.15). However, the problem can be easily avoided by simply not
using the r.h.s. of Eq. (B.11) but instead the middle identity. As before, we
approximate the symbol of Q̂ by its value on the Fermi energy

Q̂j . Sg(E, t) PjS(E, t) % Sg(m, t) PjS(m, t)=qj(t). (B.16)

This approximation makes Q̂j a multiplication operator in t and hence

Q2
QS=F

R
F
R
dt dtŒ | r̃(t− tŒ)|2 tr(q(t)−q(tŒ))2, (B.17)

where r̃ is the Fourier transform of the Fermi function. At T=0 the Fermi
function associated with chemical potential m is

r̃(t)=
i

2p(t+i0)
e−itm. (B.18)

The shot noise at T=0, in the limit of large m, is given by

Q2
QS(m)=

1
4p2

FF dt dtŒ
1− |(S(m, t) Sg(m, tŒ))jj |2

(t− tŒ)2
. (B.19)

Since S is unitary the numerator vanishes quadratically as t− tŒQ 0. It
follows that the integrand is a bounded function. However, it is supported
on set of infinite area made of two strips: One along the t axis and one
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along the tŒ axis. Nevertheless, the decay properties of the denominator one
easily sees that the integral is convergent. The noise in a pump cycle does
not diverge as TQ 0.
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