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Adiabatic theorem without a gap condition: Two-level system coupled
to quantized radiation field
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We prove an adiabatic theorem for the ground state of the Dicke nj&dtgls. Rev.93, 99 (1954] in a
slowly rotating magnetic field and show that for weak electron-photon coupling, the adiabatic time scale is
close to the time scale of the corresponding two-level system without the quantized radiation field. There is a
correction to this time scale, which is the Lamb shift of the model. The photon field affects the rate of approach
to the adiabatic limit through a logarithmic correction originating from an infrared singularity characteristic of
QED. [S1050-294®8)02112-X]

PACS numbg(s): 12.20-—m, 03.65.Db, 32.80-t

I. INTRODUCTION
E=f [kla'(k)a(k)dk 3
In this work we investigate the relation between adiabatic
theorems for models that, like QED, allow for the creationgpd
and annihilation of photons and the corresponding quantum
mechanical models where the electron is decoupled from the

2 )
photon field. We study this problem in the context of a spe- f(k)= |T|< Pl {e X p} ), (4)
cific and essentially soluble model: the Dicke modgl The

corresponding quantum-mechanical model is a two-level

system, such as a spin in an adiabatically rotating magnetit ith ‘él' (IX) .th?. ato_md|p wave funcﬂogs of th(tahtwr(])-:g\(ttal Sfytsh
field, which is a basic paradigm of adiabatic thef#y. em. Folarization indices are omitted since the helicity ot the

In the usual quantum adiabatic theorf8] the gap be- photon does not play an interesting role in the questions we

tween eigenvalues plays an important role: It fixes the adiaStudy. We use atomic units where=%=1, so a=1/c

batic time scale and determines the rate at which the adialnﬁ ﬂlle:;s?e Iinsi'?s]a”#’ the magnetic moment, is also of order

batic limit is approached. There is no such gap in the Following B 5 ider th here th
corresponding QED models, so the nature of the adiabatic ~ollowing ermy[ ] We consider the case where the mag-
etic field changes its direction adiabatically and has fixed

theorem in the two cases has qualitatively different featured) . ; o
For example, there is no gap in the spin-bogad] and magnitude. The time-dependent Hamiltonian for the two
Dicke models(for weak coupling, both of which describe a level system is
two-level system in a radiation field.

The first problem we address is whether there is an adia-

batic theorem for the ground state in a radiation field. As- . . .
suming a positive answer, the second question is, What proﬂ\—'Ith U(s) e SU(2) the appropriate rotation. The correspond-

erty of the QED model plays the role of the gap in the N9 adiabatic Dicke model has the time-dependent Hamil-
adiabatic theorem? Another way of phrasing this question ilonian
how does the adiabatic time scale of the two-level system
compare to that of the QED model? Are the two close in the

lélrgge?)f Ta;](frt?]?rl:j fmuee';;:irgr?tgg?n cgpesstatr;te ?gfe 'Lfsg’ r;g\zlavch Qur aim is to compare the evolution of the ground state of
¥ q P PP tﬁD with the instantaneous ground statettf(s).

the adiabatic limit in the two models. . .

Consider a two Igvel system, such as a spin or a_twqfolqielﬁ‘df:\?;'cbgheenorgtrngiggr i%gae?tum f%']St,e\lgrSnﬁgf:Fr}le:néo a
B e Wher oo e, e{Thiing gve @ characenzaton of et Kubo-Vartn
glected, the corresponding Hamiltonian is Sghwmger states by adlgbatlc invariance. When apphcaple,

' this result shows, in particular, that the ground state is adia-
batically invariant. The characterization depends on the con-
dition of asymptotic Abelianess, which does not hold for the
models we consider. If6] Davies and Spohn give a deriva-
tion of linear response theory for a system coupled to a bath
in the adiabatic limit. The notion of adiabaticity in this work

H(s)=uB(s)-c=U(s)HU*(s), (5)

Hp(s)=[U(s)®@1]Hp[U* (s)@1]. (6)

H=mo,, m=uB. (1)
The corresponding Dicke model is

Hp=H®1+a MOE+ Jao,®a'(f)+ Jao_oa(f),
()

where I 1 stands for the anticommutator.
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is such that the coupling between the field and the quanturiel of H(s), i.e., H(s)P(s)=0, dimP=TrP=1. By
system vanishes in the adiabatic limit. This is not a standar

notion of adiabaticity. gmoothness we mean thaf{s) is a bounded operator.

The adiabatic theorems we consider are concerned with

is an adiabatic theorem for the ground state of the Dick heret=0(7) or, equivalently,s=O(1). The smoothness
{Egdel’oﬁxznstg ?ggg(tei?)r?&()dvstlehsﬁor\;\? fhgetc,:ﬁ ?j?sa;gc%rotfga the kernel implies that there is a natural candidate for an

9 - ’ adiabatic theorem for the ground state, which is independent
nearby resonance in the Dicke model plays the role of a gap

; . o .= 0f whether or noH(s) has a gap in its spectrum, namely, if
Third, we show that the adiabatic time scale for the D|c:kew(0)E Rang®(0) at times=0, then it evolves in time so

model and the two-level system agree in the limit of small B T ) X
The (inverseg of two time scales differs by the Lamb shift of tha}t QZ'T(.S‘)fL'.'T(S) #(0) lies in Rang®(s) at times in the
adiabatic limit7—oo.

the Dicke model. Finally, we show that the approach to the To formulate the adiabatic theorem with error estimates

adiabatic limit in the two models is different: While in the . ’
) : e s we need to get hold oddiabatic phase$2]. To do that we
two-level system the approach to the adiabatic limit is Wlthintroduce the adiabatic evolution of Kafd]: Let U(s) be

an errorO(1/7), the approach to the limit in the Dicke model the solution of the evolution equation
is with an error ofO(+/In 7/7). The logarithm comes from an q
infrared divergence characteristic of QED. . _TF _

Although the results we derive here are for a rather spe- Ua(S)=[P(8),P(S)]UA(S),  Ua(0)=1, se[0.1]. ®)
cial model, we suggest that something similar happens also
for more realistic models. The success of the quantum adidt is known that
batic theorem in numerous applications that depend on a
correct prediction of the adiabatic time scale is evidence that Ua(s)P(0)=P(s)Ux(s), )
at least the time scale aspect of our results may carry over .
more realistic models. It would be interesting to know if this t%at Is, Ua(s) maps Rgngé(O) onto RangB(s). We can
is indeed the case for the spin-boson mofe+13. The now formulate the basic adiabatic theorem. _
spin-boson model is a more realistic QED version of a two- Theorem 1Let H(s)P(s) =0 for all O<s<1, with .P the
level system that, unlike the Dicke model, is not explicitly differentiable projection on the ground state afiel(s)||
soluble. However, as much progress in the spectral analysis D. Suppose that the commutator equation
of the spin-boson problem has been made recently, the prob- .
lem we pose here may be a reasonable challenge. [P(s),P(s)]=[H(s),X(s)]+Y(s) (10

has operator valued solution$(s) and Y(s) so that for
Il. THE ADIABATIC THEOREM AND e\,0
A COMMUTATOR EQUATION
e 14
In this section we explain what we mean by “adiabatic IX(s)[|+X(s)[|<CXx
theorem” and give a condition for an adiabatic theorem to |Inel,
hold. This condition is that the commutator equation, .
Eq. (10) below, has solutionsX,Y, which are bounded with u,v=0. Then
operators. We also introduce notation and terminology, and U]
collect known facts that we need. To simplify the presenta- ~
tion, we shall stay away from making optimal assertions. I[U(s)=Ua(s)IP(0)[[<Cxy In7 (12
We consider Hamiltonians that are bounded from below T
and choose the origin of the energy axis so that the spectrum
begins at zero. Leil (s)=0 be a family of such self-adjoint for s€[0,1] .
Hamiltonians. The unitary evolution generated by the Hamil- We make the following remarks. _
tonianU (s) is the solution of the initial-value problem (i) In the case where there is a gap in the spectrum, one
can always findX(s) bounded so that=0 andY=0; see
[14]. X and thereforeC are of the order ofgap ~*. This
gives an error of I/ and generalizes the adiabatic theorem of
Born, Fock, and Kato for discrete spectra to more compli-
7 is the adiabatic time scale and we are concerned with thggteqd spectra provided there is a gap.
limit of large 7. The physical time i$= rse[0,7]. Sincer is (i) The theorem states that the physical evolution clings
largeH(s)=H(t/7) varies adiabatically. We assume that all to the instantaneous spectral subspace. In particul&,isf
operators are defined on some fixed dense domain in théne dimensional, it states that the physical evolution of the
Hilbert space. ground state remains close to the instantaneous ground state.
The (instantaneoysground state is in the range of the  (jii) Here and throughout we are concerned only with the
kernel ofH(s) and we assume that the kernel is smooth anchdiabatic theorem to lowest order.dis chosen outside the
one dimensional. LeP(s)#0 be the projection on the Ker- 5501t ofp then much stronger results can be obtained. See,
e.g.,[15].
(iv) The adiabatic time scale, set by this theorem is
2For X we require that its derivative is bounded. 70=0((2+D)C).

IY(s)|[<Ce”, (1D

iU (s)=rH(s)U(s), U(0)=1, se[0,1]. (7
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Proof. Let W(s)=UL(s)U (s), with W(0)=1. From the
equation of motion and the commutator equatid@),

P(0)W(s)=—P(0)UA(s){iTH(s)+[P(s),P(s)]}U ()

—UL(S)P(s){i TH(s) +[P(s),P(s)[}U(s)

—UL(S)P(S)[P(3),P(s)]U (5)

—UL(S)P(S){[H(s),X(8)]+ Y(s)}U (s)

= —UA(S)P(S){—X(S)H(8)+ Y(S)}U (5)

= ZPO)ULSIX(S)U ()

~P(0)UA(S)Y(s)U(9). (13)

To get rid of derivatives ol ., which are large by the equa-
tion of motion, we rewrite the first term on the right-hand
side[up to theP(0) on the left as

UL(S)X(5)U (s)=[UA(S)X(S)U (5)]
—UAS)X(9)U ()~ UA(9)X(S)U (s)

=[UL(S)X()U (s)]—UL(S)X(5)U (5)

+UA(S)[P(s),P(8)IX(S)U (). (14
From this it follows, by integrating, that fa<[0,1]
IU-(5)=Ua(s)IP(0)[=[IP(0)[U ()~ UA(s)]]
“[Po)1-W(s|<Eer+ T “‘;_V (15
el.
Choosinge = 7~ Y#*7) gives
7 wlvtp)
[(UA9)~Ua(s)IPO)<Cx{ In7 (16)

T

This concludes the proof of the theorem.

It is convenient to rewrite this solvability condition in a
way that one needs to solve for a fix¥dand Y rather than
functionsX(s) andY(s). This is accomplished as follows.

Corollary 1. Let P(s) be the family

P(s)=V(s)PV'(s), V(s)=expiso). (17
It is enough to solve for the commutator equation
iK=[H,X]+Y, K={o,P}—2PcP, (18)
for fixed X andY, so that fore\,0
Xi=cx| & vi=¢en, (19

[Ingl,

with ,»=0 and|P(s)|<D. X(s) andY(s) are then deter-
mined by the obvious unitary conjugation.
Proof. SinceP(s)=V(s)PV'(s), we have
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P(s)=iV(s)[a,PIVI(s) (20)
[P(s),P(s)]1=iV(s)[[o,P],PIV'(s)

=iV(s)({o,P}—2PaP)Vi(s). (21

]

Ill. AN ADIABATIC THEOREM FOR A THRESHOLD
STATE: THE FRIEDRICHS MODEL

As preparation for the analysis of the Dicke model, we
prove an adiabatic theorem for the Friedrichs model that has
a bound state at the threshold of the continuum. There is an
inherent difficulty in the situation of a bound state at thresh-
old in general and in the Friedrichs modél6—-1§ in par-
ticular, namely, that a bound state at threshold is not a stable
situation. Under a small deformation of the Hamiltonian, the
ground state will, generically, split away from the absolutely
continuous spectrum and a gap develops. Since our aim
is to study families related by a unitary operator, this prob-
lem does not appear. That is, we consider the fardi}y{s)
=V(s)HgV'(s), whereHg has a bound state at threshold
andV(s) is a smooth family of unitary operators.

The Friedrichs model

We shall consider a family of Hamiltonians, closely re-
lated to the standard Friedrichs modl&6], parametrized by
the scaled times, a real numbed>0 that plays the role of
dimension, and a functiohthat describes the deformation of
the family. Since we are interested only in the low-energy
behavior of the family we shall introduce an “ultraviolet
cutoff” to avoid inessential difficulties.

The Hilbert space of the Friedrichs modalith an ultra-
violet cutoff) is H=C® L?([0,1],k% " *dk). A vectorye H is
normalized by

o= o iwte=1aes [ropeton, pec
f(k) 0 ' '
(22

We choose a special, and trivial, case of a diagonal Hamil-
tonian whose action on a vectgris

o il

H has a ground state at zero energy with projection

10
P= .
0 0
The rest of the spectrum is the unit interjdl,1] and is
absolutely continuous. The density of states in this model is
proportional toE%~1.

We construct the familyH(s) by conjugatingH with a
family of unitary operators

0
kf(k)

B

(0 (23)

HF¢:(

(29)
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(f] simplified version of the spin-boson Hamiltonian in the

i o) (25 rotating-wave approximation. The rotating-wave approxima-
tion can indeed be motivated by the single-mode Dicke

wheref is a vector inL2([0,1],k4~dK). model. In the multimode case we consider the rotating-wave

Theorem 2.Let He(s:d,f) be the family of Friedrichs approximation as describing which terms in the spin-boson

models with a ground state at threshold forsll Hamiltonian are kept and which are not.
The model describes a two-level system coupled to a

Vi(s)=exdisa(f)], o(f)=

He(s;d,f)=Vi(s)HgVI(s). (26)  massless boson field shdimensions. The Hamiltonian is
Suppose that Hp(m,d,f,a)=m(1-P)®1+a M®E
g(k)=ik~*f(k) e L*[0,1],k?"*dk), +ao, @al(f)+ Jao_ea(f), (30
Vi(s)=exdisa(f)]. 27) acting on the Hilbert space?® F with F being the symmet-

ric Fock space ovek?(RY,d%). Here

Then the quantum evolution of the ground state of
He(s;d,f) is adiabatic and its deviation from the instanta- P—(l 0) _(O 1)
neous ground state is at ma3{1/7). “lo o 7 lo o)

We make the following remarks.

(i) Note that if the conditions in the theorem hold in di-
mensiond,, then they hold in all dimensiond=d,. The =14 O)’
physical interpretation of that is that the density of states at

low energies decreases with So even though there is spec- m>0 s the gap in the quantum Hamiltonigwithout pho-
trum near zero, there is only very little of it. tons. a(f) anda’(f) are the usual creation and annihilation

. . . 2 . . . g ) ) 3
(i) If gis not inL“ there may still be an adiabatic theorem gperators o obeying the canonical commutation relations
with slower falloff in 7 by accommodatingr#0. An ex-

ample will be discussed in Sec. IV. [a(f),a’(g)]=(f|g). (32
(iii) The Friedrichs model is vanilldd - has no interesting

energy scale to fix the adiabatic time scale. The scale is s&¥e denote by0) the field vacuum and b§) the projection

by the perturbation aloner,=0((1+||f||?)|g|). This is on the vacuum.

quite unlike the case in the usual adiabatic theorem and un- It may be worthwhile to explain where the various powers

like what we shall show for the Dicke model. of « in H come from. For the radiation field the * comes
Proof. In this caseK of Corollary 1 isK=c(f). Withg  from Zw=7c|k|, which explains why the field energy

eL?, o(g) is a boundedin fact, finite rank operator and an comes with a large coupling constant. Tkle has one in-

easy calculation gives verse power ofc from minimal coupling, €/2mc) (pA

+Ap). Half a power ofa comes from the standard formula

for the vector potential

E=f [k|a'(k)a(k)d%. (3D

[HF.U(Q)]=<|kg> 0 =io(f). (28
27C

Hence A(X)‘=fd3k W[efik'XaT(k)+eik'xa(k)]- (33

X=0(9), Y=0 @9 compare, e.g[19].

solve the commutator equatioil® with a boundedX(s) With reasonable atomic eigenfunctiohk), Eqg. (4) has

_ fast decay at infinity and the model is ultraviolet regular. In
dY(s)=0. | . - :
andy(s) the infrared limitf(k) behaves like
IV. ADIABATIC THEOREM FOR THE DICKE MODEL \/ﬂ
_. —_— *
In this section we describe an adiabatic theorem for the fl)——i |K| j (Y2 00(V2) ()

Dicke model[1] that states that the adiabatic rotation of a

two-level system evolves the ground state so that it adheres —(Vih)* (X) r2(x) 1. (34)
to the instantaneous ground state and the time scale, at Iea}ﬁt articular we see that for smal

in three dimensions, is essentially the time scale fixed by P

guantum mechanics without photons. The rate of approach to 1

the adiabatic limit is different from that of a two level system f(k)=K \E (35)

and has a logarithmic correction in three dimensions. This
section also collects known facts about the Dicke model th

we need. a+he square root singularity is a characteristic infrared diver-

gence of QED and it has consequences for the adiabatic theo-
rem as we shall see. Note that witthaving a square root
singularity the model makes sen@s an operatgprovided

The spin-boson Hamiltonian is the canonical QED ver-d>1; otherwisea'(f) is ill defined sincef is not inL2.
sion of a two-level systerfi7,12,13. The Dicke model is a An important parameter in the model is

A. The Dicke model
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1 C. Adiabatic rotations
g:<f’ mf> (36 Suppose that the two-level system of the Dicke model
S . . describes, e.g., two Zeeman split energy levels of an atom in
Bearing in mind the square root singularity fofve see that constant external magnetic figBipointing in thez direction.
§ Rotations about the axis do not change the orientation of
(9K 3 the magnetic field, commute witN, and are uninteresting.
PE (37) Rotations about the axis change the orientation of the mag-
netic field and are implemented by
is finite for alld>2. .
V(s)=expisoy)®1. (43

B. Spectral properties . .
i ) ) ) Such rotations do not commute witlf. Indeed,
What makes the Dicke model simple is that it has a con-

stant of motior{7]. If we let N= fa'(k)a(k)d% be the pho-

1
ton number operator, thek” commutes withH where [V, 0']:( 10 ®1=J®1, o=0,®L (44
( N 0 39
= =1oN+P®1. 38
0 N+1 D. The adiabatic theorem

The spectrum ofV'is the non-negative integers. The spectral _Theorem 3. Let Hp(s;m,d,f,@)=V(s)Hp(m,d.f,a)
properties ofHp(m,d,f,e) can be studied by restricting to V'(s),se[0,1], be the family of time-dependent Dicke mod-

subspaces al. els with f square integrable, with square root singularity at
For =0 the kernel of\ is one dimensional and is as- k=0; m>a?(f| 1/|k||f); d=3; and V(s)=exp(so) as in
sociate with the projection Eq. (43). ThenU,, the adiabatic evolution associated with

the ground state ofHp(s;m,d,f,a), and U, the Schre
dinger evolution, are close in the sense that

Q 0
p:( . (39

0 O

1 :
Q) is the projection on the field vacuum. It is easy to see that T it d=3
PHp(m,d,f,a)P=0, so the model always has a state at zero  I[[Ua(S)=U(s)]P(0)|<CX Jnr
energy. This state may or may not be the ground state. It is
the ground state if2£<m [7]. T
For N=1 the space is basicall{{ of the Friedrichs (49)

model. The correspondence of vectors in the two spaces is ) , . ’ L ,
The time scale is determined Iboy— «“£ and coincides with

a'(g) g the gap without photonm up to a correction by the Lamb
8 |0}« s (40 shift a?€.
Proof. From Corollary 1 we findK=0® (. We will first

The Hamiltonian action in the Friedrichs model language isShoW that & solution of the commutator equatias) for d
>

if d=3.

Ois
K|
—  [Jaf :
Hp(md,f,a)—| « ) ) (41) _IX1—X5(9) B
X=————, Y=0, (46)
(Jaf|  m m—a?€
It is a known fact about the Friedrichs modédl6,17 that | here
provided
2E<m 42) X;=JoQ, Xy(g)=P®[a'(g)Q+H.c],
the model has no bound state and the spectrurf,ss) and o
is absolutely continuous. Sinééas a square root singularity g=ia® Zﬂ- (47)

at the origin(and has fast decay at infinjtythis condition

holds ford=3 if « (or f) is not too large. In three dimen- Note that th f the two-level svstammi lized
sions, provided the level spacing>a? in atomic units ote that the gap ot the two-level Systemis renormalize

(about 102 eV), the inequality holds. In two dimensions the tq m+ i ‘.¥<f.|g>’ which is just .the Lamb shiftsee the Appen-

left-hand side is logarthmically divergent and the spectrumd'x)' This is a small correction, of Qrderz.

in the /=1 sector has a bound state at negative energy. This A useful formula we shall need is

state lies below the bound state of thé&=0 sector. We do . .

not consider this situation and henceforth sticldte3. Ea'(g)Q=a'(|k|g)Q. (48)
For N=2 it is known[7] that the bottom of the spectrum

in all these sectors is at zero if E@2) holds. Let us compute the commutators Xf, X, with H:
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— Nea'h) o
[H,Xl]: !(
E Q
Jea(f) m+—
o
For the second commutator
= Yeal(f)
[H!X2]: E
Jaa(f)  m+ -

1
= ~Pa[al(klg)0—0a(Klg)]+a

So if we takeg of Eg. (47) then

[H,iX;—X,]=i(m=—a?8) oo Q. (51)

ADIABATIC THEOREM WITHOUT A GAP CONDITION:

-Q
0
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) =meeQ+JaP&[al(H)lQ+Qa(f)]. (49)
a'(g)Q+H.c. o)
’ 0 0
—(glf

(flg) <o>)®9' 0

[
\/;s—i-azs
||Y|—O(m : (56)

We see that we can formally solve for the commutator equa] his puts us in the frame of Theorem 1; except for the minor

tion (18) provided¢ is finite.

This is not, however, the only conditioX is a bounded
operator in the Hilbert space providegle L?> otherwise
a'(g) is ill defined:

|17

K 2

1
ddk~f —ddk<ee,
ISH

The integral is finite ifd=4, but is logarithmically divergent
if d=3. Ford=3 we need to squee2¢back to the bounded
operators. We do that by allowing fof#0.

Let x, be the characteristic function of a ball of raditis
and xyS=1-y, and letgi=x‘g andg, = x,g. Let us take
X,(g), which is well defined; its norm i©(a*?\[In ef). For
X we take, as before,

iX1—Xo(9%)
X= 1—2(9 (53)
m+ia(f|g%)
From this
XI—0 1+ a¥In g| 12 -
- |m— a2

For Y we take
(M+iVa(fIg)Y=[H,X5(g) — Xa(9%)]=[H,Xx(g,)]
1
= —Pae[a'([klg,) - Qa(lk|g.)]

0 —(g.lf)
(flg,) 0

and we used the computation of the commut&b®. With f
having a square root singularity,

+a

®Q (55

modification, the logarithm appears with a square root. Chas-
ing the square root establishes the main result. |
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APPENDIX: RESONANCE AND LAMB SHIFT
OF THE DICKE MODEL

The A/'=1 sector of the Dicke model has a resonance that
serves to define the Lamb shift. The resonance is a solution
of the analytically extended eigenvalue equatiohl); see
[16,18,13. The real part of the shift is, by definition, the
Lamb shift of the model, while the imaginary shift is the
lifetime. Ford=3, the Lamb shift is dominant and the life-
time is a higher order inx. For the application to the adia-
batic theorem we need only the dominant contribution, i.e.,
only the Lamb shift. Computing the Lamb shift is easy.
Computing the lifetime is harder. For the sake of complete-
ness we compute both, even though we only need one.

The eigenvalue equation is

E—m=a’G(aE), (A1)
whereG(e) is defined as the analytic continuation from the
upper half plane of

G(e)=j ﬁo|dk
rde—|K| ’

By taking the imaginary part, it is easy to see that &)

has no solution in the upper half plane. To solve the equation
in the lower half plane one needs an explicit expression, at
least for smalle, ande nearam, of this analytic continua-

Ime=0. (A2)
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tion. Then we can solve E@A1) by iteration and to lowest
order we have

E,~m+ a?G(am). (A3)
Clearly G(am)— — £ in the limit «— 0, so to leading order

E,~m— a?E. (A4)

To this order, one does not see the imaginary part of th

resonance energy:>€ is, by definition[19], the Lamb shift

of the model. It may be worthwhile to point out that the

Lamb shift for the hydrogen atof20] is actually ofhigher
order, namelya®In(a1). Since the Lamb shift of hydrogen

also involves an ultraviolet regularization while the present

J. E. AVRON AND A. ELGART
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given by Eq.(A5). This can be done as follows. LBt be a
ball of radiusr =2mea. Then, in the upper half plane

f+f |f|?
B, Bf — k|

Clearly, G{(e) extends analytically to a half circle in the
lower half plane|e—am|<am. In the limit of «a—0, by

G(e)=

d%=G,(e)+GS(e). (A7)

e

%ontinuity,

GS(0)— —€&. (A8)

This is the dominant piece and it is real.
Consider the analytic continuation &;(e) for |e—am|

model is ultraviolet regular, it is not surprising that the order< ym. Since, for a small argument(k) is given by Eq.

of the two is different.

Estimating the lifetime is, as we noted, irrelevant to the
adiabatic theorem. So a reader will lose little by skipping the
rest of this appendix. However, for the benefit of the reader
who is interested in how the computation of the lifetime

goes, it is given below.
We shall show below that fod=3 and|e—am|<am,
the analytic continuation d&(e) to the lower half plane and
to the next relevant order ia is given by
G(e)=—E—imKQ%ed2,

Ime=0, (A5)

whereK is as in Eq.(35) and Q¢ is the surface area of the
unit ball in d dimensions. From Eq(A3) and taking into
account Eq(35), we get for the Lamb shift and the lifetime

E,~m—a?E—ia?mKQY(ma)?—2
=m—a?E—ia?7Q%(ma)? f(am)|?.  (AB)

The lifetime is higher order imx than the Lamb shift and is
of ordera®. Ford=3 this is indeed the order of the lifetime
of atomic levels that decay by dipole transition. For snaall

the Lamb shift dominates the lifetime, both in the Dicke

model and in hydrogen.
It remains to show that the analytic continuationGe)
to the lower half plane in a neighborhood i is indeed

(35), one hagin the upper half plane

2makd—2 d-2

k
——dk=KQ¢ e—dk,

Gr(e)=KQdf —

. oK , (A9)
wherevy is the obvious semicircle in the compli&yplane and
QY the surface area of the unit ball oh dimensions. The
right-hand side is analytic ie in the lower half plane pro-
vided |e— am|< am and so gives the requisite analytic con-
tinuation. Sincee is small and of order, to leading order

we have
(k—e+e)??
— d
G,(e)=KQ ek

-2 /q—2 _ _
:_Kgd2< _ )edlzf(k—e)lldk
j=0 J y

%_KQdedizf i
JK—e

=—-KQU%92 +0O(alna)| (A10)

] 2am
im+In| —
e

and the error term in the approximation that we did not com-
pute is real and being subdominant&as irrelevant.
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