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Adiabatic theorem without a gap condition: Two-level system coupled
to quantized radiation field

J. E. Avron and A. Elgart
Department of Physics, Technion, 32000 Haifa, Israel

~Received 8 July 1998!

We prove an adiabatic theorem for the ground state of the Dicke model@Phys. Rev.93, 99 ~1954!# in a
slowly rotating magnetic field and show that for weak electron-photon coupling, the adiabatic time scale is
close to the time scale of the corresponding two-level system without the quantized radiation field. There is a
correction to this time scale, which is the Lamb shift of the model. The photon field affects the rate of approach
to the adiabatic limit through a logarithmic correction originating from an infrared singularity characteristic of
QED. @S1050-2947~98!02112-X#

PACS number~s!: 12.20.2m, 03.65.Db, 32.80.2t
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I. INTRODUCTION

In this work we investigate the relation between adiaba
theorems for models that, like QED, allow for the creati
and annihilation of photons and the corresponding quan
mechanical models where the electron is decoupled from
photon field. We study this problem in the context of a sp
cific and essentially soluble model: the Dicke model@1#. The
corresponding quantum-mechanical model is a two-le
system, such as a spin in an adiabatically rotating magn
field, which is a basic paradigm of adiabatic theory@2#.

In the usual quantum adiabatic theorem@3,4# the gap be-
tween eigenvalues plays an important role: It fixes the a
batic time scale and determines the rate at which the a
batic limit is approached. There is no such gap in
corresponding QED models, so the nature of the adiab
theorem in the two cases has qualitatively different featu
For example, there is no gap in the spin-boson@10# and
Dicke models~for weak coupling!, both of which describe a
two-level system in a radiation field.

The first problem we address is whether there is an a
batic theorem for the ground state in a radiation field. A
suming a positive answer, the second question is, What p
erty of the QED model plays the role of the gap in t
adiabatic theorem? Another way of phrasing this questio
how does the adiabatic time scale of the two-level sys
compare to that of the QED model? Are the two close in
limit of a small fine-structure constanta and if so, how
close? The third question compares the rate of approac
the adiabatic limit in the two models.

Consider a two level system, such as a spin or a twof
Zeeman split atomic level, in an external magnetic fie
pointing in thez direction. When radiation effects are n
glected, the corresponding Hamiltonian is

H5msz , m5mB. ~1!

The corresponding Dicke model is

HD5H ^ 11a211^ E1Aas1 ^ a†~ f !1Aas2 ^ a~ f !,
~2!

where
PRA 581050-2947/98/58~6!/4300~7!/$15.00
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E5E ukua†~k!a~k!ddk ~3!

and1

f ~k!5A2p

uku ^
c1u$e2 ik–x,p%uc2&, ~4!

with c j (x) the atomic wave functions of the two-level sy
tem. Polarization indices are omitted since the helicity of
photon does not play an interesting role in the questions
study. We use atomic units wheree5\51, so a51/c
51/137 is small.m, the magnetic moment, is also of ordera
in these units.

Following Berry@2#, we consider the case where the ma
netic field changes its direction adiabatically and has fix
magnitude. The time-dependent Hamiltonian for the t
level system is

H~s!5mB~s!•s5U~s!HU* ~s!, ~5!

with U(s)PSU(2) the appropriate rotation. The correspon
ing adiabatic Dicke model has the time-dependent Ham
tonian

HD~s!5@U~s! ^ 1#HD@U* ~s! ^ 1#. ~6!

Our aim is to compare the evolution of the ground state
HD with the instantaneous ground state ofHD(s).

Adiabatic theorems for quantum systems coupled to
field have been studied in@5,6#. In @5# Narnhofer and
Thirring give a characterization of extremal Kubo-Marti
Schwinger states by adiabatic invariance. When applica
this result shows, in particular, that the ground state is a
batically invariant. The characterization depends on the c
dition of asymptotic Abelianess, which does not hold for t
models we consider. In@6# Davies and Spohn give a deriva
tion of linear response theory for a system coupled to a b
in the adiabatic limit. The notion of adiabaticity in this wor

1$ , % stands for the anticommutator.
4300 © 1998 The American Physical Society
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is such that the coupling between the field and the quan
system vanishes in the adiabatic limit. This is not a stand
notion of adiabaticity.

Let us now describe our results. First, we show that th
is an adiabatic theorem for the ground state of the Di
model, even though the model has no spectral gap to pro
the ground state. Second, we show that the distance
nearby resonance in the Dicke model plays the role of a g
Third, we show that the adiabatic time scale for the Dic
model and the two-level system agree in the limit of smalla.
The ~inverse! of two time scales differs by the Lamb shift o
the Dicke model. Finally, we show that the approach to
adiabatic limit in the two models is different: While in th
two-level system the approach to the adiabatic limit is w
an errorO(1/t), the approach to the limit in the Dicke mod
is with an error ofO(Aln t/t). The logarithm comes from an
infrared divergence characteristic of QED.

Although the results we derive here are for a rather s
cial model, we suggest that something similar happens
for more realistic models. The success of the quantum a
batic theorem in numerous applications that depend o
correct prediction of the adiabatic time scale is evidence
at least the time scale aspect of our results may carry ove
more realistic models. It would be interesting to know if th
is indeed the case for the spin-boson model@7–13#. The
spin-boson model is a more realistic QED version of a tw
level system that, unlike the Dicke model, is not explici
soluble. However, as much progress in the spectral ana
of the spin-boson problem has been made recently, the p
lem we pose here may be a reasonable challenge.

II. THE ADIABATIC THEOREM AND
A COMMUTATOR EQUATION

In this section we explain what we mean by ‘‘adiaba
theorem’’ and give a condition for an adiabatic theorem
hold. This condition is that the commutator equatio
Eq. ~10! below, has solutionsX,Y, which are bounded
operators.2 We also introduce notation and terminology, a
collect known facts that we need. To simplify the presen
tion, we shall stay away from making optimal assertions.

We consider Hamiltonians that are bounded from bel
and choose the origin of the energy axis so that the spec
begins at zero. LetH(s)>0 be a family of such self-adjoin
Hamiltonians. The unitary evolution generated by the Ham
tonianUt(s) is the solution of the initial-value problem

iU̇ t~s!5tH~s!Ut~s!, Ut~0!51, sP@0,1#. ~7!

t is the adiabatic time scale and we are concerned with
limit of large t. The physical time ist5tsP@0,t#. Sincet is
largeH(s)5H(t/t) varies adiabatically. We assume that
operators are defined on some fixed dense domain in
Hilbert space.

The ~instantaneous! ground state is in the range of th
kernel ofH(s) and we assume that the kernel is smooth a
one dimensional. LetP(s)Þ0 be the projection on the ker

2For X we require that its derivative is bounded.
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nel of H(s), i.e., H(s)P(s)50, dimP5Tr P51. By

smoothness we mean thatṖ(s) is a bounded operator.
The adiabatic theorems we consider are concerned

the large time behavior of the evolution of the ground st
where t5O(t) or, equivalently,s5O(1). The smoothness
of the kernel implies that there is a natural candidate for
adiabatic theorem for the ground state, which is independ
of whether or notH(s) has a gap in its spectrum, namely,
c(0)PRangeP(0) at times50, then it evolves in time so
that ct(s)5Ut(s)c(0) lies in RangeP(s) at time s in the
adiabatic limitt→`.

To formulate the adiabatic theorem with error estima
we need to get hold ofadiabatic phases@2#. To do that we
introduce the adiabatic evolution of Kato@4#: Let UA(s) be
the solution of the evolution equation

U̇A~s!5@ Ṗ~s!,P~s!#UA~s!, UA~0!51, sP@0,1#.
~8!

It is known that

UA~s!P~0!5P~s!UA~s!, ~9!

that is, UA(s) maps RangeP(0) onto RangeP(s). We can
now formulate the basic adiabatic theorem.

Theorem 1.Let H(s)P(s)50 for all 0<s<1, with P the
differentiable projection on the ground state andi Ṗ(s)i
<D. Suppose that the commutator equation

@ Ṗ~s!,P~s!#5@H~s!,X~s!#1Y~s! ~10!

has operator valued solutionsX(s) and Y(s) so that for
«↘0

iX~s!i1iẊ~s!i<C3H «2n

u ln «u,
iY~s!i<Ĉ«m, ~11!

with m,n>0. Then

i@Ut~s!2UA~s!#P~0!i<C̃3H t2 m/~n1m!

ln t

t

~12!

for sP@0,1#
We make the following remarks.
~i! In the case where there is a gap in the spectrum,

can always findX(s) bounded so thatn50 andY50; see
@14#. X and thereforeC̃ are of the order of~gap! 21. This
gives an error of 1/t and generalizes the adiabatic theorem
Born, Fock, and Kato for discrete spectra to more com
cated spectra provided there is a gap.

~ii ! The theorem states that the physical evolution clin
to the instantaneous spectral subspace. In particular, ifP is
one dimensional, it states that the physical evolution of
ground state remains close to the instantaneous ground s

~iii ! Here and throughout we are concerned only with
adiabatic theorem to lowest order. Ifs is chosen outside the
support ofṖ then much stronger results can be obtained. S
e.g.,@15#.

~iv! The adiabatic time scalet0 set by this theorem is
t05O„(21D)C….
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Proof. Let W(s)5UA
†(s)Ut(s), with W(0)51. From the

equation of motion and the commutator equation,~10!,

P~0!Ẇ~s!52P~0!UA
†~s!$ i tH~s!1@ Ṗ~s!,P~s!#%Ut~s!

52UA
†~s!P~s!$ i tH~s!1@ Ṗ~s!,P~s!#%Ut~s!

52UA
†~s!P~s!@ Ṗ~s!,P~s!#Ut~s!

52UA
†~s!P~s!$@H~s!,X~s!#1Y~s!%Ut~s!

52UA
†~s!P~s!$2X~s!H~s!1Y~s!%Ut~s!

5
i

t
P~0!UA

†~s!X~s!U̇t~s!

2P~0!UA
†~s!Y~s!Ut~s!. ~13!

To get rid of derivatives ofUt , which are large by the equa
tion of motion, we rewrite the first term on the right-han
side @up to theP(0) on the left# as

UA
†~s!X~s!U̇t~s!5@UA

†~s!Ẋ~s!Ut~s!#

2UA
†~s!Ẋ~s!Ut~s!2U̇A

†~s!X~s!Ut~s!

5@UA
†~s!Ẋ~s!Ut~s!#2UA

†~s!Ẋ~s!Ut~s!

1UA
†~s!@ Ṗ~s!,P~s!#X~s!Ut~s!. ~14!

From this it follows, by integrating, that forsP@0,1#

i@Ut~s!2UA~s!#P~0!i5iP~0!@Ut
†~s!2UA

†~s!#i

5iP~0!@12W~s!#i<Ĉ«m1
~21D !C

t
3H «2n

u ln «u.
~15!

Choosing«5t2 1/(m1n) gives

i@Ut~s!2UA~s!#P~0!i<C̃3H t2 m/~n1m!

ln t

t
.

~16!

This concludes the proof of the theorem.
It is convenient to rewrite this solvability condition in

way that one needs to solve for a fixedX andY rather than
functionsX(s) andY(s). This is accomplished as follows.

Corollary 1. Let P(s) be the family

P~s!5V~s!PV†~s!, V~s!5exp~ iss!. ~17!

It is enough to solve for the commutator equation

iK 5@H,X#1Y, K5$s,P%22PsP, ~18!

for fixed X andY, so that for«↘0

iXi<C3H «2n

u ln «u,
iYi<Ĉ«m, ~19!

with m,n>0 andi Ṗ(s)i<D. X(s) andY(s) are then deter-
mined by the obvious unitary conjugation.

Proof. SinceP(s)5V(s)PV†(s), we have
Ṗ~s!5 iV~s!@s,P#V†~s! ~20!

and

@ Ṗ~s!,P~s!#5 iV~s!†@s,P#,P‡V†~s!

5 iV~s!~$s,P%22PsP!V†~s!. ~21!

j

III. AN ADIABATIC THEOREM FOR A THRESHOLD
STATE: THE FRIEDRICHS MODEL

As preparation for the analysis of the Dicke model, w
prove an adiabatic theorem for the Friedrichs model that
a bound state at the threshold of the continuum. There is
inherent difficulty in the situation of a bound state at thres
old in general and in the Friedrichs model@16–18# in par-
ticular, namely, that a bound state at threshold is not a st
situation. Under a small deformation of the Hamiltonian, t
ground state will, generically, split away from the absolute
continuous spectrum and a gap develops. Since our
is to study families related by a unitary operator, this pro
lem does not appear. That is, we consider the familyHF(s)
5V(s)HFV†(s), whereHF has a bound state at thresho
andV(s) is a smooth family of unitary operators.

The Friedrichs model

We shall consider a family of Hamiltonians, closely r
lated to the standard Friedrichs model@16#, parametrized by
the scaled times, a real numberd.0 that plays the role of
dimension, and a functionf that describes the deformation o
the family. Since we are interested only in the low-ener
behavior of the family we shall introduce an ‘‘ultraviole
cutoff’’ to avoid inessential difficulties.

The Hilbert space of the Friedrichs model~with an ultra-
violet cutoff! isH5C% L2(@0,1#,kd21dk). A vectorcPH is
normalized by

c5S b

f ~k!
D ici25ubu21E

0

1

u f ~k!u2kd21dk, bPC.

~22!

We choose a special, and trivial, case of a diagonal Ham
tonian whose action on a vectorc is

HFc5S 0 0

0 k D S b

f ~k!
D 5S 0

k f~k!
D . ~23!

H has a ground state at zero energy with projection

P5S 1 0

0 0D . ~24!

The rest of the spectrum is the unit interval@0,1# and is
absolutely continuous. The density of states in this mode
proportional toEd21.

We construct the familyH(s) by conjugatingH with a
family of unitary operators
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Vf~s!5exp@ iss~ f !#, s~ f !5S 0 ^ f u

u f & 0 D , ~25!

wheref is a vector inL2(@0,1#,kd21dk).
Theorem 2.Let HF(s;d, f ) be the family of Friedrichs

models with a ground state at threshold for alls,

HF~s;d, f !5Vf~s!HFVf
†~s!. ~26!

Suppose that

g~k!5 ik21f ~k!PL2~@0,1#,kd21dk!,

Vf~s!5exp@ iss~ f !#. ~27!

Then the quantum evolution of the ground state
HF(s;d, f ) is adiabatic and its deviation from the instant
neous ground state is at mostO(1/t).

We make the following remarks.
~i! Note that if the conditions in the theorem hold in d

mensiond0, then they hold in all dimensionsd>d0. The
physical interpretation of that is that the density of states
low energies decreases withd. So even though there is spe
trum near zero, there is only very little of it.

~ii ! If g is not inL2 there may still be an adiabatic theore
with slower falloff in t by accommodatingYÞ0. An ex-
ample will be discussed in Sec. IV.

~iii ! The Friedrichs model is vanilla:HF has no interesting
energy scale to fix the adiabatic time scale. The scale is
by the perturbation alone:t05O„(11i f i2)igi…. This is
quite unlike the case in the usual adiabatic theorem and
like what we shall show for the Dicke model.

Proof. In this caseK of Corollary 1 isK5s( f ). With g
PL2, s(g) is a bounded~in fact, finite rank! operator and an
easy calculation gives

@HF ,s~g!#5S 0 ^2kgu

ukg& 0 D 5 is~ f !. ~28!

Hence

X5s~g!, Y50 ~29!

solve the commutator equation~18! with a boundedX(s)
andY(s)50. j

IV. ADIABATIC THEOREM FOR THE DICKE MODEL

In this section we describe an adiabatic theorem for
Dicke model@1# that states that the adiabatic rotation of
two-level system evolves the ground state so that it adh
to the instantaneous ground state and the time scale, at
in three dimensions, is essentially the time scale fixed
quantum mechanics without photons. The rate of approac
the adiabatic limit is different from that of a two level syste
and has a logarithmic correction in three dimensions. T
section also collects known facts about the Dicke model
we need.

A. The Dicke model

The spin-boson Hamiltonian is the canonical QED v
sion of a two-level system@7,12,13#. The Dicke model is a
f

t

et

n-

e
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ast
y
to
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simplified version of the spin-boson Hamiltonian in th
rotating-wave approximation. The rotating-wave approxim
tion can indeed be motivated by the single-mode Dic
model. In the multimode case we consider the rotating-w
approximation as describing which terms in the spin-bos
Hamiltonian are kept and which are not.

The model describes a two-level system coupled to
massless boson field ind dimensions. The Hamiltonian is

HD~m,d, f ,a!5m~12P! ^ 11a211^ E

1Aas1 ^ a†~ f !1Aas2 ^ a~ f !, ~30!

acting on the Hilbert spaceC2
^F with F being the symmet-

ric Fock space overL2(Rd,ddk). Here

P5S 1 0

0 0D , s15S 0 1

0 0D ,

s25S 0 0

1 0D , E5E ukua†~k!a~k!ddk. ~31!

m.0 is the gap in the quantum Hamiltonian~without pho-
tons!. a( f ) anda†( f ) are the usual creation and annihilatio
operators onF obeying the canonical commutation relatio

@a~ f !,a†~g!#5^ f ug&. ~32!

We denote byu0& the field vacuum and byV the projection
on the vacuum.

It may be worthwhile to explain where the various powe
of a in H come from. For the radiation field thea21 comes
from \v5\cuku, which explains why the field energ
comes with a large coupling constant. TheAa has one in-
verse power ofc from minimal coupling, (e/2mc) (pA
1Ap). Half a power ofa comes from the standard formul
for the vector potential

A~x!ªE d3kA2pc

uku @e2 ik–xa†~k!1eik–xa~k!#. ~33!

Compare, e.g.,@19#.
With reasonable atomic eigenfunctionsf (k), Eq. ~4! has

fast decay at infinity and the model is ultraviolet regular.
the infrared limit f (k) behaves like

f ~k!→2 iA2p

uku E @c1* ~x!~¹c2!~x!

2~¹c1!* ~x!c2~x!#ddx. ~34!

In particular we see that for smallk

f ~k!5KA 1

uku
. ~35!

The square root singularity is a characteristic infrared div
gence of QED and it has consequences for the adiabatic t
rem as we shall see. Note that withf having a square roo
singularity the model makes sense~as an operator! provided
d.1; otherwisea†( f ) is ill defined sincef is not in L2.

An important parameter in the model is
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E5 K fU 1

uku U f L . ~36!

Bearing in mind the square root singularity off, we see that

E;E ddk

uku2
~37!

is finite for all d.2.

B. Spectral properties

What makes the Dicke model simple is that it has a c
stant of motion@7#. If we let N5*a†(k)a(k)ddk be the pho-
ton number operator, thenN commutes withHD where

N5S N 0

0 N11D 51^ N1P^ 1. ~38!

The spectrum ofN is the non-negative integers. The spect
properties ofHD(m,d, f ,a) can be studied by restricting t
subspaces ofN.

For N50 the kernel ofN is one dimensional and is as
sociate with the projection

P5S V 0

0 0D . ~39!

V is the projection on the field vacuum. It is easy to see t
PHD(m,d, f ,a)P50, so the model always has a state at z
energy. This state may or may not be the ground state.
the ground state ifa2E,m @7#.

For N51 the space is basicallyH of the Friedrichs
model. The correspondence of vectors in the two spaces

S a†~g!

b D u0&↔S g

b D . ~40!

The Hamiltonian action in the Friedrichs model language

HD~m,d, f ,a!↔S uku
a

uAa f &

^Aa f u m
D . ~41!

It is a known fact about the Friedrichs model@16,17# that
provided

a2E,m ~42!

the model has no bound state and the spectrum is@0,̀ ) and
is absolutely continuous. Sincef has a square root singularit
at the origin~and has fast decay at infinity!, this condition
holds ford>3 if a ~or f ) is not too large. In three dimen
sions, provided the level spacingm@a2 in atomic units
~about 1023 eV!, the inequality holds. In two dimensions th
left-hand side is logarthmically divergent and the spectr
in theN51 sector has a bound state at negative energy. T
state lies below the bound state of theN50 sector. We do
not consider this situation and henceforth stick tod>3.

ForN>2 it is known@7# that the bottom of the spectrum
in all these sectors is at zero if Eq.~42! holds.
-

l

t
o
is

s

s

is

C. Adiabatic rotations

Suppose that the two-level system of the Dicke mo
describes, e.g., two Zeeman split energy levels of an atom
constant external magnetic fieldB pointing in thez direction.
Rotations about thez axis do not change the orientation o
the magnetic field, commute withN, and are uninteresting
Rotations about thex axis change the orientation of the ma
netic field and are implemented by

V~s!5exp~ issx! ^ 1. ~43!

Such rotations do not commute withN. Indeed,

@N,s#5S 0 1

21 0D ^ 15J^ 1, s5sx^ 1. ~44!

D. The adiabatic theorem

Theorem 3. Let HD(s;m,d, f ,a)5V(s)HD(m,d, f ,a)
V†(s),sP@0,1#, be the family of time-dependent Dicke mod
els with f square integrable, with square root singularity
k50; m.a2^ f u 1/uku u f &; d>3; and V(s)5exp(iss) as in
Eq. ~43!. ThenUA , the adiabatic evolution associated wi
the ground state ofHD(s;m,d, f ,a), and Ut , the Schro¨-
dinger evolution, are close in the sense that

i@UA~s!2Ut~s!#P~0!u<C3H 1

t
if d.3

Aln t

t
if d53.

~45!

The time scale is determined bym2a2E and coincides with
the gap without photonsm up to a correction by the Lamb
shift a2E.

Proof. From Corollary 1 we findK5s ^ V. We will first
show that a solution of the commutator equation~18! for d
.0 is

X5
iX12X2~g!

m2a2E
, Y50, ~46!

where

X15J^ V, X2~g!5P^ @a†~g!V1H.c.#,

g5 ia3/2
f

uku
. ~47!

Note that the gap of the two-level systemm is renormalized
to m1 ia^ f ug&, which is just the Lamb shift~see the Appen-
dix!. This is a small correction, of ordera2.

A useful formula we shall need is

Ea†~g!V5a†~ ukug!V. ~48!

Let us compute the commutators ofX1, X2 with H:
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@H,X1#5F S E

a
Aaa†~ f !

Aaa~ f ! m1
E

a

D ,S 0 2V

V 0 D G5ms ^ V1AaP^ @a†~ f !V1Va~ f !#. ~49!

For the second commutator

@H,X2#5F S E

a
Aaa†~ f !

Aaa~ f ! m1
E

a

D , S a†~g!V1H.c. 0

0 0D G
5

1

a
P^ @a†~ ukug!V2Va~ ukug!#1AaS 0 2^gu f &

^ f ug& 0 D ^ V. ~50!
ua

t

or
as-

.
p-
the
mo-

hat
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e
e
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.e.,
y.
te-

e
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So if we takeg of Eq. ~47! then

@H,iX12X2#5 i ~m2a2E!s ^ V. ~51!

We see that we can formally solve for the commutator eq
tion ~18! providedE is finite.

This is not, however, the only condition.X is a bounded
operator in the Hilbert space providedgPL2 otherwise
a†(g) is ill defined:

E u f u2

uku2
ddk;E 1

uku3
ddk,`. ~52!

The integral is finite ifd>4, but is logarithmically divergen
if d53. Ford53 we need to squeezeX back to the bounded
operators. We do that by allowing forYÞ0.

Let x« be the characteristic function of a ball of radius«
and x«

c512x« and letg«
c5x«

cg and g«5x«g. Let us take
X2(g«

c), which is well defined; its norm isO(a3/2Au ln «u). For
X we take, as before,

X5
iX12X2~g«

c!

m1 iAa^ f ug«
c&

. ~53!

From this

iXi5OS 11a3/2u ln «u1/2

um2a2Eu D . ~54!

For Y we take

~m1 iAa^ f ug«
c&!Y5@H,X2~g!2X2~g«

c!#5@H,X2~g«!#

5
1

a
P^ @a†~ ukug«!V2Va~ ukug«!#

1AaS 0 2^g«u f &

^ f ug«& 0 D ^ V ~55!

and we used the computation of the commutator~50!. With f
having a square root singularity,
-

iYi5OS Aa«1a2«

um2a2Eu D . ~56!

This puts us in the frame of Theorem 1; except for the min
modification, the logarithm appears with a square root. Ch
ing the square root establishes the main result. j

ACKNOWLEDGMENTS

We are grateful to I. M. Sigal, S. Graffi, A. Ori, and C
Brif for useful discussions. This work was partially su
ported by a grant from the Israel Academy of Sciences,
Deutsche Forschungsgemeinschaft, and the Fund for Pro
tion of Research at the Technion.

APPENDIX: RESONANCE AND LAMB SHIFT
OF THE DICKE MODEL

TheN51 sector of the Dicke model has a resonance t
serves to define the Lamb shift. The resonance is a solu
of the analytically extended eigenvalue equation,~A1!; see
@16,18,13#. The real part of the shift is, by definition, th
Lamb shift of the model, while the imaginary shift is th
lifetime. For d>3, the Lamb shift is dominant and the life
time is a higher order ina. For the application to the adia
batic theorem we need only the dominant contribution, i
only the Lamb shift. Computing the Lamb shift is eas
Computing the lifetime is harder. For the sake of comple
ness we compute both, even though we only need one.

The eigenvalue equation is

E2m5a2G~aE!, ~A1!

whereG(e) is defined as the analytic continuation from th
upper half plane of

G~e!5E
Rd

u f u2

e2uku
ddk, Im e>0. ~A2!

By taking the imaginary part, it is easy to see that Eq.~A1!
has no solution in the upper half plane. To solve the equa
in the lower half plane one needs an explicit expression
least for smalla, ande nearam, of this analytic continua-
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tion. Then we can solve Eq.~A1! by iteration and to lowes
order we have

Er'm1a2G~am!. ~A3!

Clearly G(am)→2E in the limit a→0, so to leading order

Er'm2a2E. ~A4!

To this order, one does not see the imaginary part of
resonance energy.a2E is, by definition@19#, the Lamb shift
of the model. It may be worthwhile to point out that th
Lamb shift for the hydrogen atom@20# is actually ofhigher
order, namely,a3ln(a21). Since the Lamb shift of hydroge
also involves an ultraviolet regularization while the pres
model is ultraviolet regular, it is not surprising that the ord
of the two is different.

Estimating the lifetime is, as we noted, irrelevant to t
adiabatic theorem. So a reader will lose little by skipping
rest of this appendix. However, for the benefit of the rea
who is interested in how the computation of the lifetim
goes, it is given below.

We shall show below that ford>3 and ue2amu,am,
the analytic continuation ofG(e) to the lower half plane and
to the next relevant order ina is given by

G~e!52E2 ipKVded22, Im e<0, ~A5!

whereK is as in Eq.~35! andVd is the surface area of th
unit ball in d dimensions. From Eq.~A3! and taking into
account Eq.~35!, we get for the Lamb shift and the lifetim

Er'm2a2E2 ia2pKVd~ma!d22

5m2a2E2 ia2pVd~ma!d21u f ~am!u2. ~A6!

The lifetime is higher order ina than the Lamb shift and is
of orderad. For d53 this is indeed the order of the lifetim
of atomic levels that decay by dipole transition. For smala
the Lamb shift dominates the lifetime, both in the Dic
model and in hydrogen.

It remains to show that the analytic continuation ofG(e)
to the lower half plane in a neighborhood ofma is indeed
.

e

t
r

e
r

given by Eq.~A5!. This can be done as follows. LetBr be a
ball of radiusr 52ma. Then, in the upper half plane

G~e!5S E
Br

1E
Br

cD u f u2

e2uku
ddk5Gr~e!1Gr

c~e!. ~A7!

Clearly, Gr
c(e) extends analytically to a half circle in th

lower half planeue2amu,am. In the limit of a→0, by
continuity,

Gr
c~0!→2E. ~A8!

This is the dominant piece and it is real.
Consider the analytic continuation ofGr(e) for ue2amu

<am. Since, for a small argument,f (k) is given by Eq.
~35!, one has~in the upper half plane!

Gr~e!5KVdE
0

2makd22

e2k
dk5KVdE

g

kd22

e2k
dk, ~A9!

whereg is the obvious semicircle in the complexk plane and
Vd the surface area of the unit ball ind dimensions. The
right-hand side is analytic ine in the lower half plane pro-
vided ue2amu,am and so gives the requisite analytic co
tinuation. Sincee is small and of ordera, to leading order
we have

Gr~e!5KVdE
g

~k2e1e!d22

e2k
dk

52KVd(
j 50

d22 S d22

j D ed2 j 22E
g
~k2e! j 21dk

'2KVded22E
g

dk

k2e

52KVded22F ip1 lnS 2am

e D1O~a ln a!G ~A10!

and the error term in the approximation that we did not co
pute is real and being subdominant toE is irrelevant.
s.
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