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Optimal time schedule for adiabatic evolution
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We show that, provided dephasing is taken into account, there is a unique timetable which maximizes the
fidelity with a target state in adiabatic evolutions. The optimum has constant tunneling rate along the path.
Application to quantum search algorithms recovers the Grover result for appropriate scaling of the dephasing
with the size of the database. Moreover, the Grover bound imposes constraints on the dephasing rates of systems
coupled to a universal Markovian bath.
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Quantum computation holds a promise of solving some
of the most challenging problems in computational science,
e.g., integer factorization [1]. The adiabatic model of quantum
computation introduced by Farhi et al. [2] is equivalent [3] to
the standard circuit model of a quantum computer [1] while
having a built-in protection from decoherence associated with
the exchange of energy with the environment. This protection
comes from the (assumed) energy gap of the quantum system.
The simplicity and physical character of the model led to a
resurgence of interest in adiabatic control of both isolated [4]
and open quantum systems [5] and gave rise to new and
interesting optimization problems in the context of adiabatic
evolutions [6]: One is interested in minimizing the requisite
time to reach a target state with given fidelity and given cap
on the available energy. Equivalently, one is interested in
minimizing the tunneling out of the ground state given a cap on
the energy and the time duration T . For unitary evolution, path
optimization problems have been studied by several authors
analyzing various upper bounds on the tunneling; see [4] and
references therein. A variational ansatz for the optimal path
has been proposed by Rezakhani et al. [6].

Dephasing is a special case of decoherence which leads to a
loss of information that does not depend on exchange of energy.
The role of dephasing in adiabatic quantum computation is,
at present, less well understood than that of decoherence in
general [7]. Our aim is to describe a simple model where
the role of dephasing in adiabatic quantum computation can
be studied in detail. Surprisingly, it turns out to be an elixir
for the path optimization problem: It allows one to solve the
optimal time-scheduling problem.

The time-scheduling problem is to determine the optimal
time parametrization of a given path of Hamiltonians. In the
absence of dephasing, there is no unique optimizer—there are
plenty of them. Dephasing singles out a unique optimizer.
The optimizer turns out to have a “local” characterization:
It has a fixed tunneling rate along the path. This means that
monitoring the tunneling rate (or, equivalently, the purity of
the state) allows one to adhere to an optimal time schedule. No
a priori knowledge about the governing dynamics is required.

As an application we derive relations between Lindblad
operators [8] and the Grover bound [9] on the time for
searching an unstructured data base. Lindblad operators
describe the quantum evolution of a system coupled to a
memoryless (Markovian) bath. The formal theory of Lindblad
operators allows one to choose the Hamiltonian and the

terms responsible for decoherence independently. In particular,
“wide open” systems with large dephasing rates are as
legitimate as weakly coupled ones. We show that Markovian
baths which are universal, i.e., do not anticipate any properties
of the system, must have dephasing rates that are bounded by
the spectral gaps in the Hamiltonian for consistency with the
Grover bound and cannot be wide open.

Let us now describe the setting and results in more detail.
Let Hq , q ∈ [0,1], be a path in the space of Hamiltonians, e.g.,
a linear interpolation,

Hq = (1 − q)H0 + qH1 (0 � q � 1). (1)

We are interested in the optimal parametrization of the
interpolating path. That is, a timetable q(s), which optimizes
the fidelity of the state, initially in the ground state of H0,
with the ground state of the target Hamiltonian at the end time
T . Here s = εt ∈ [0,1] is the slow time parametrization and
ε = 1/T the adiabaticity parameter.

For the sake of simplicity we assume that the Hilbert space
has a dimension N (finite) and that Hq is a self-adjoint matrix-
valued function of q with ordered simple eigenvalues ea(q),
so that

Hq =
N−1∑
a=0

ea(q)Pa(q). (2)

Pa(q) = |ψa(q)〉 〈ψa(q)| are the corresponding spectral pro-
jections.

The cost function is the tunneling Tq,ε(1) at the end point
defined by

Tq,ε(s) = 1 − tr[P0(q)ρq,ε(s)]. (3)

ρq,ε(s) is the quantum state at slow time s which has evolved
from the initial condition ρq,ε(0) = P0(0).

We consider the quantum evolution generated by a Lind-
bladian

ερ̇ = Lq(ρ), (4)

where the overdot indicates d/ds and [8]

L(ρ) = −i[H,ρ] +
M∑

j=1

(2�jρ�∗
j − �∗

j �jρ − ρ�∗
j �j ) (5)

with �j , a priori, arbitrary. Unitary evolutions are generated
when �j = 0.
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FIG. 1. (Color online) Left: ĝ± are the images on the Bloch sphere
of the end points of an interval of size O(ε) of a given parametrization
(blue). The intersection of the associated interpolating path with the
equatorial plane (shaded) determines the point q∗ and thereby the axis
of precession ĝ(q∗) (dashed red) that maps the instantaneous state at
the initial end point to the corresponding state at the final end point.
Right: A nonsmooth interpolating path that takes the instantaneous
eigenstate at the beginning of the interval to the instantaneous
eigenstate at the end of the interval with no tunneling.

In the case of unitary evolution the time-schedule optimiza-
tion problem has no unique solution; on the contrary, optimiz-
ers are ubiquitous. To see this consider the two-level system

2Hq = g(q) · σ, (6)

where σ is the vector of Pauli matrices and g(q) a smooth,
vector-valued function with a gap, |g(q)| � g0 > 0; let
ε/g0 be small. Then, in a neighborhood of order ε of
any smooth parametrization, there are many nonsmooth
parametrizations with zero tunneling and therefore many
smooth parametrizations with arbitrarily small tunneling.

To see why this must be so, consider a discretization of
any given parametrization to (slow) time intervals of size
2πε/g0. In each interval one can find a point q∗, such that the
time-independent Hamiltonian Hq∗ acting for appropriate time
τ � 2π/|g(q∗)| � 2π/g0 will map the image on the Bloch
sphere of the starting point q− to the image of the end point
q+ (Fig. 1). The existence of q∗ follows from the geometric
construction in Fig. 1: g(q∗) is a point of intersection of the
path with the equatorial plane orthogonal to ĝ(q+) − ĝ(q−).
The resulting parametrization differs from the original one
by at most [sups |q̇(s)|]2πε/g0, as seen from the mean-value
theorem. This says that there are many (nonsmooth) paths
having zero tunneling.

Dephasing Lindblad operators belong to a special class
of Lindblad operators which share with unitary (time-
independent) evolutions the existence of N stationary states
and conservation of energy L∗(H ) = 0. [General Lindblad op-
erators allow for energy exchange L∗(H ) �= 0 and generically
have a unique equilibrium state.1] They can be interpreted

1L always has a nonempty kernel since L∗(1) = 0. Since L can be
represented as a matrix, its kernel is generically one dimensional by
a simple argument of perturbation theory.

as representing a monitoring of the energy of the system.
Explicitly, dephasing Lindbladians have the form [10]

L(ρ) = −i[H,ρ] +
∑
a,b

2γba PaρPb −
∑

a

γaa{Pa,ρ}, (7)

where 0 � γ is a positive matrix. Time-dependent dephasing
Lindblad operators [11] are then defined by setting H → Hq

and Pa → Pa(q) and γ → γ (q).
An adiabatic theorem for dephasing Lindblad operators can

be inferred from [12]. It says that the solution ρ(a)
q,ε of the

adiabatic evolution, Eq. (4), for the parametrization q(s) and
initial condition ρ(a)

q,ε(0) = Pa(0), adheres to the instantaneous
spectral projection2

ρ(a)
q,ε(s) = Pa(s) + O(ε) (s > 0). (8)

For the sake of writing simple formulas we shall, from now
on, restrict ourselves to the special case where the positive
matrix γ (q) > 0 of Eq. (7) is a multiple of the identity

Lq(ρ) = −i[Hq,ρ] − γ (q)
∑
j �=k

Pj (q)ρPk(q). (9)

Our main results follow from the following theorem.
Theorem 1. Let Lq be the dephasing Lindbladian of Eq. (9),
and ρq,ε a solution of (4) with initial condition ρ(0) = P0(0)
for the parametrization q(s). Assume a gap condition ea(q) �=
eb(q), (a �= b). Then the tunneling defined by Eq. (3) is
given by

Tq,ε(1) = 2ε

∫ 1

0
M(q) q̇2 ds + O(ε2), (10)

where the q-dependent mass term

M(q) =
∑
a �=0

γ (q) tr
(
PaP

′
0

2)
[e0(q) − ea(q)]2 + γ 2(q)

� 0 (11)

is independent of the parametrization. P ′
0(q) denotes a deriva-

tive with respect to q and q̇(s) with respect to s.
In the special case of a two-level system, Eq. (6), where g(q)

is a three-vector-valued function parametrized by its length
dg(q) · dg(q) = (dq)2, the “mass” term of Eq. (11) takes the
simple form

M(q) = γ (q)

4

|ĝ′|2(q)

g2(q) + γ 2(q)
. (12)

|ĝ′| is the velocity with respect to q on the Bloch sphere ball
and g(q) = |g(q)| is the gap.

Before proving the theorem let us discuss some of its
consequences.

1. The tunneling rate 2εM(q)q̇2 � 0 is local and unidirec-
tional: Whatever has tunneled cannot be recovered, in contrast
with unitary evolutions.

2. Equation (10) has the standard form of variational Euler-
Lagrange problems with a Lagrangian that is proportional to
the adiabaticity ε and with the interpretation of kinetic energy

2Since there are several energy scales in the problem: ε, γ , and the
minimal g0, the remainder term is guaranteed to be small provided
ε � γ,g0 is the smallest energy scale.
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with position-dependent mass. This variational problem has a
unique minimizer q0(s) in the adiabatic limit, in contrast with
the case for unitary evolutions, which as we have seen, has no
unique minimizer.

3. Since the Lagrangian is s independent, q0(s) conserves
“energy” and the tunneling rate is constant along the mini-
mizing orbit. This gives a local algorithm for optimizing the
parametrization: Adjust the speed q̇(s) to keep the tunneling
rate constant.

4. The optimal speed along the path is then

q̇ =
√

τ

M(q)
, (13)

where τ > 0 is a normalization constant. This formula quan-
tifies the intuition that the optimal velocity is large when the
gap is large and the projection on the instantaneous ground
state changes slowly.

5. The optimal tunneling Tmin is then

Tmin = 2ετ + O(ε2),
√

τ =
∫ 1

0
dq

√
M(q). (14)

We now turn to proving Theorem 1. Evidently

1 − tr(P0ρq,ε)(1) = −
∫ 1

0

d

ds
tr[P0(q)ρq,ε(s)] ds. (15)

Using Eq. (4), the defining property of dephasing Lind-
bladians, Lq(P0(q)) = 0, and by Eq. (7), the concomitant
L∗

q(P0(q)) = 0, one finds

d

ds
tr[P0(q)ρq,ε(s)] = tr[P ′

0(q) ρq,ε(s)] q̇(s). (16)

Now, the identity

L∗(PaAPb) = [i(ea − eb) − γ ]PaAPb (a �= b) (17)

together with PaP
′
0Pa = 0 shows that

X =
∑
a �=b

PaP
′
0Pb

i(ea − eb) − γ
(18)

solves the equation

P ′
0(q) = L∗

q(X(q)). (19)

Substituting this in Eq. (16) gives the identity

d

ds
tr[P0(q)ρq,ε(s)] = ε tr[X(q) ρ̇q,ε(s)] q̇(s). (20)

Integrating by parts the last identity gives an expression
involving ρ but no ρ̇. This allows us to use the adiabatic
theorem and replace ρ by P + O(ε). We then undo the
integration by parts to get Theorem 1.

In the theory of Lindblad operators H and �j of Eq. (5)
can be chosen independently. However, as we shall now show,
if one makes some natural assumptions about the bath, the
dephasing rate γ of Eq. (9) is constrained by the gaps of H .

To see this we turn to quantum search with dephasing
[11,13]. Grover has shown [9] that O(

√
N ) queries of an oracle

suffice to search an unstructured database of size N 
 1. The

adiabatic formulation of the problem leads to the study of a
two-level system with a small gap given by [4,14]

g2(q) = 4
(1 − q)q

N
+ (1 − 2q)2 (21)

and large velocity on the Bloch sphere

|ĝ′(q)| =
√

1

N
− 1

N2

2

g2(q)
. (22)

The time scale τ , which determines the optimal tunneling,
can be estimated by evaluating the integrand in Eq. (14) at its
maximum, q = 1/2, and taking the width to be 1/

√
N . This

gives

τ = O

(
M(1/2)

N

)
(23)

to leading order in the adiabatic approximation.
The adiabatic formulation of Grover search [2] fixes the

scaling of the minimal gap g0 ∼ 1√
N

but does not fix the scaling
of the dephasing rate γ with N . We shall now address the
issue of what physical principles determine the scaling of the
dephasing with N . To this end we consider various cases.

The regime γ � ε is outside the framework of the
adiabatic theory described here. [For the adiabatic expan-
sion and Eq. (23) to hold ε must be the smallest en-
ergy scale in the problem.] This is essentially the unitary
scenario [2,4].

The regime ε � γ � g0 is trivially consistent with the
Grover bound since T 
 γ −1 
 O(

√
N ).

Optimal scheduling recovers the Grover bound when
dephasing is comparable to the gap, γ ∼ g0. One finds
M(1/2) ∼ 1/g3

0, and from Eqs. (23) and (21) the search time

T = O

(
1

g3
0N

)
= O(

√
N ). (24)

The most interesting regime is the dominant dephasing
case: γ 
 g0. Here M ∼ γ −1/g2

0, and from Eqs. (23) and
(21) one finds

T = O(γ −1). (25)

If γ scaled as γ ∼ N−α/2, then T = O(Nα/2), which seems
to beat Grover time whenever α < 1.

The accelerated search enabled by strong dephasing is in
apparent conflict with the optimality of the Grover bound
[17,18]: Consider the joint Hamiltonian dynamics of the
system and the bath, which underlies the Lindblad evolution.
By an argument of [14] for a universal bath, the Grover
search time is optimal. How can one reconcile Eq. (25) with
this result? Before doing so, however, we want to point out
that Eq. (25) is not an artifact of perturbation theory: While
Tmin = 2ετ is valid in first order in ε, an estimate Tmin <∼ ετ ,
with τ as in Eq. (14), remains true for all ε provided γ >∼ g0.

The resolution is that a Markovian bath with γ 
 g0

cannot be universal and must be system specific: The bath
has a premonition of what the solution to the problem is.
(Formally, this “knowledge” is reflected in the dephasing in the
instantaneous eigenstates of Hq .) Lindbladians with dephasing
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rates that dominate the gaps mask resources hidden in the bath.
This can also be seen by the following argument: Dephasing
can be interpreted as the monitoring of the observable Hq .
The time-energy uncertainty principle [15] says that if Hq

is unknown, then the rate of monitoring is bounded by the
gap. The accelerated search occurs when the monitoring rate
exceeds this bound, which is only possible if the bath already
“knows” what Hq is. When Hq is known, the bath can freeze
the system in the instantaneous ground state arbitrarily fast.

Consequently, the Zeno effect [16] then allows for the speedup
of the evolution without paying a large price in tunneling.
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