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We give a pedestrian derivation of a formula oftféker, Pretre, and Thomdg&. Phys. B94, 133(1994]
(BPT) relating the adiabatically pumped current to Simatrix and its(time) derivatives. We relate the charge
in BPT to Berry’s phase and the corresponding Brouwer pumping formula to curvature. As applications we
derive explicit formulas for the joint probability density of pumping and conductance wheS§-itiatrix is
uniformly distributed; and derive a formula that describes hard pumping whe& tinegrix is periodic in the
driving parameters.

Brouwer and Shutenkoet al.* building on results of etrized by the energy and other parameters associated with
Buttiker, Pretre, and Thoma®8PT),® pointed out that adia- the adiabatic driving of the systefe.g., gate voltages and
batic scattering theory leads to a geometric description ofmagnetic fields
charge transport in mesoscopic quantum pumps. Some of The BPT formuld says that the chargéq, entering the
these works, and certainly our own work, was motivated byscatterer from théth lead due to an adiabatic variation $f
experimental results of Switkest al® on such pumps. is

In this article we examine the formula of BPTwhich i
rglates ac_;liabatic gharge transport to @matrix and its dg=-—Tr(Q,dS9), (1)
(time) derivatives, in the special case of single-channel scat- 2
tering. We show that the formula admits a simple interpretawherte is a projection on the channels in th& lead, and
tion in terms of three basic processes at the Fermi energyne Smatrix is evaluated at the Fermi energy. In the special
Two of these are dissipative and nonquantized. The thir¢ase of two leads, each lead carrying a single channel,
integrates to zero for any cyclic variation in the system.

Next, we describe the geometric significance of BPT and (r t!
relate it to Berry’s phaselt follows that the pumping for- t or’
mula of Brouwet can be interpreted as curvature and is for-
mally identical to the adiabatic curvatufdn spite of the

(10
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wherer, (r’) andt, (t') are the reflection and transmission

interesting geometry the topological aspects of pumping ar oeff|C|ent_s from the leftright) andQ, prolegts on the left

- . ead. In this case Ed1), for the charge entering through the
trivial. In particular, we prove that all Chern numbers asso-,

. ) . left lead, reduces to
ciated to the Brouwer formula are identically zero.

We proceed wit.h.two .applications. .Fi_rst we givg an el- 27rdq|=i(r_dr+?dt’). 3)

ementary and explicit derivation of the joint probability den- o
sity for pumping and conductance. This problem was studie§Ve shall present an elementary derivation®)t
in. Ref. 3. Brouwer’s results go beyond ours as he also cal- Derivation: Every unitary X2 matrix can be expressed
culates the tails of the distributions and we do not. On thd" the form:

: )

other hand, parts of his results are numerical, and they are [ cog0)e® isin()e ¢
certainly not elementary. Finally, we calculate the asymptot- S=¢ei?| is Cia | (4)
ics of hard pumping foS-matrices that depend periodically isin(6)e'” cogh)e '

on two parameters. If the system transverses a circle of rqynere o< o $<2m, 0<y< and 0< H=<m/2. In terms of
diusRin parameter space, witR large, then the amount of i aqe parar,neters ECB) reads

charge transported is ordeR, multiplied by a quasiperiodic

(oscillatory function of R leading to ergodic behavior. 27wdq=—cog(f)da+sir(d)de—dy. (5)

We shall use units where=m=#=1, so the electron
charge is—1 and the quantum of conductance é4/h The basic strategy of our derivation of E@) is to find
=1/27. The mutual Coulombic interaction of the electrons Processes that vary each of the parameters in turn, and keep
is disregarded. track of how much current is generated by each process. An

The BPT formula: Consider a scatterer connected to leadgnderlying assumption is that current depends only(ke)
that terminate at electron reservoirs. All the reservoirs arand S(kg), so that processes that give rise to the same
initially at the same chemical potential and at zero temperachange in theSmatrix also give rise to the same current.
ture. The scatterer is described by (tn-shel) Smatrix, = Because we do not prove this assertion, our derivation can-
which, in the case oh channels is amXn matrix param- not be considered a complete proof.
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/‘\_“, """""""""" . charge that accumulates on the scatterer is given by Krein’s
" ' spectral shiff. The charge coming from the left is half this,

U dL N namely?
| —

FIG. 1. Moving the scatterer changas- a+ 2kgdL.

2i
27dq= Edlog detS= —dv. (10

We understand the four parameters as follo{@ge Figs.
1 and 2. The parametewr is associated with translations:
Translating the scatterer a distargtle= da/2kr to the right
multipliesr, (r') by €9, (e7'9%), and leaveg andt’ un-
changed. The parametéris associated with a vector poten-
tial A near the scatterer. This induces a phase ghift
=—[A across the scatterer, and multipliegt’) by e'9¢,
(e '9%), while leavingr andr’ unchanged. The parameter

Since evenySmatrix can be obtained by translating and add-
ing a vector potential to a right-left symmetric scatterer, the
formula (10) applies to all possibl&matrices. The formula
(10) applies to all possible scatterers, symmetric or not.
Combining(6), (8) and(10), gives BPT, Eq(5).
The effect of changingy integrates to zero on a closed
loop. Changingf does not give any transport at all. Thus,
k only changes irx and ¢ contribute to the net transport of a
determines the conductance of the systegy: |t|*/2m quantum pump. These are dissipative processes, with the rate

=si_r12’(0)/27r. Finally, y=(—i/2)logdetS is related, by ¢ onergy dissipatiorP (in the reservoirsthat is bounded
Krein’s spectral shiff,to the number of electrons trapped in from below by 2rl2. This is contrary to the assertions of

the scatterer. As a consequence, for any closed path in tI@nutenkoet al* who claimed that the charge transport is the

spzflrcedof Hamﬂtorrl]lani;jy: Of hanai . . sum of a quantized nondissipative term and a dissipative
o determine the effect of changingwe imagine a pro- . that is not quantized.

cess that changes and leaves the other parameters fixed, Geometrical interpretationd= — 27dq is the one-form
namgly translating the scatterer a distanide=da/2kg to (vector potential associated with Berry's phaddf we de-
the right. The scatterer passes through a fradtiphof the fine the unit spinoty)=(',) then
kedL/7=da/27 electrons that occupy the region of sidle P v

A= —i(yldy). 11

and pushes the remainifig2d /27 electrons forward. Thus
2mdq=—cog(f)da. (6)  The set of all spinorgy) is a three-spherésince|r|?+|t'|?

) ) o o =1), while the set of all ratios/t’ is the projective space
This result can be obtained less heuristicdlby working in CP'=C+{o}=S2. The natural map between them, namely
the reference frame of the moving scatterer and integratinglﬂ>_)r/tr, is called the Hopf fibration, andl is called the
the contribution of each wave number from Okp. From “global angular form” of this fibration.
this one also se@ghat the rate of dissipation at the reser- To compute the charge transported by a closed ogdle
voirs, P, is quadratic in the current with a coefficient that parameter space, we can either integrate the one-fdrm
erends on the dispersion relation. If the dispersion relatiogroundc, or (by Stokes’ theoremintegrate the exterior de-
is quadratic, then rivative (curl) Q=d.4 over a diskD whose boundary i€. Q

is the curvature two-form of Brouwer:
P=2712%/|r(kg)|?. (7)
) _ dzdz

To changeg, we vary the vector potential. This induces Q=—i(dy|dy)=—i RENERE (12)
an EMF of strength— f[A=¢. The current is simply the

voltage times the Landauer conductafi¢®2a.8 Integrating ~ Wherez=r/t’. The expression-i(dy|dy) is formally iden-
over time gives tical to the adiabati¢Berry’s) curvature that appears also in

the quantum Hall effeck.
27dqg=sir?(6)d¢. (8) In the last expression one sees that the curvature sees only
the ratioz=r/t’, and notr andt’ separately. The curvature
A current! then dissipates energy at the reservoirs at a raté? is the U(2)-invariant area form o', and its integral
over all of CP! is 27. ) is also the curvature of the Hopf
P=271%/|t(kg)|%. 9) fibration.
In the study of nondissipative quantum transport, Chern
To understand the effect of changimgand y, we first ~humbers play a role. These are topological invariants that
suppose our scatterer is right-left symmetricysor’ andt ~ €dual the integral of the curvature over closed surfaces in
—t’. Then changes if andy would draw equal amounts of Parameter space. In the context of adiabatic scattering, how-

charge to the scatterer from the left and right leads. Th&Ver, al Chern numbers are zero. The vector bundle over
parameter space is topologically trivial, and the vectot'{

gives a section of this bundle.

A(x) . . .
‘/¥‘ These geometrlcal constructions generallze to systems

with n incoming andm outgoing channel$.The firstn rows
of Sspan am-dimensional complex subspace@¥f ™. The
space of all such subspaces, called a Grassmannian, has a

naturally defined two-form, called the Kker form°Up to a
FIG. 2. Applying a vector potential changés— ¢— [A. constant factor, the Brouwer two-form equals thehkea
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form. In addition, there is a canonically defined line bundlethe space oHamiltonians Random matrix theory is more

over this Grassmannian, and equals the global angular powerful, in that the distribution of tangent vectors is fixed

form for this bundle. by the theory. The price one pays is that the analysis is also
Statistics of weak pumping: Next we consider how a ran-far from elementary and the results are, in part, only numeri-

dom scatterer transports charge when two parameters acal.

varied gently and cyclically. More precisely, we consider the For systems without time reversal symmetry, random ma-

charge transported by moving along the circh§;  trix theory posits that th&smatrix is distributed onJ(2)

=e€cos(r), X,=e€sin(r) in parameter space. i is small,  with a uniform measure. Since the conductagds g|t|?

then the charge transport is close tore?/2m Q0 (dy1,d5), =sin’  we have thadgesin @ coséds, proportional to the

evaluated at the origin, wheig are the tangent vectors as- volume form: The conductanagis therefore uniformly dis-

sociated with the parameteXs. The vectorsy; map to ran-  tributed.

dom vectors oJ (2), which we assume to be Gaussian with A random tangent vector tdJ(2) is X=Xze,+X.e,

covarianceC. The problem is then to understand the possiblet+ X e4+X,e,, where X; are Gaussians with{X;X)

values of the curvatur€ applied to two random vectors. =CJdj. The curvature associated with two random tangent
To do this, we first need to understand the statistics ofrectorsX, Y is, by Eq.(16)

two-forms applied to pairs of random vectors, and to under-

stand the geometry of the groly(2). Q(X,Y)=—2(XWy—YZy), 17)
Take two random vectors iR?, and see how much area ) )

they span. By random vectors we mean independent, identynere Wy=sin#Y,+cosfY, and Z,=sinfX,+cosfX,.

cally distributed Gaussian random vectors whose compol h€ variablesV, andZ,, are independent, each with variance

nentsX; have the covariancéX;X;)=Cs;;. The areaA is C. From Eq.(13), the distribution of the curvature is expo-
distributed as a two-sided expon]ential: ! nential and independent ¢f. The joint distribution of cur-

vature, w, and conductanceg=1/27|t|? is given by the
1 probability density
dP(A)= —=e IAICdA. (13
2C
a
This is seen as follows. If the two vectors atendY, then %e_l‘”‘mdwdg (18
the area isX1Y,—X,Y. X;Y, and —X,Y, are independent
random variables, and a calculation shows that their charagith » ranging from—o to < andg from 0 to 1/2r.

teristic function is 1{/k?C?+1. Their sum is a random vari- For systems with time reversal symmetry, ®&enatrix is
able with characteristic functiorkfC?+1) %, and so expo- uniformly distributed on thet=t" submanifold, with the
nentially distributed. metric inherited fromU(2). The tangent vectors are now
We parametrize the group(2) by the anglesa, v, ¢, ),  Gaussian random variables of the for¥=X,e,+ X,.€e,
as in(4). A standard, bi-invariant metric od(2) is +X,e,, and the curvature is now
1 — _92gqj _
5 THAS ©dS) = (d9)%+cog 0(da)>+sir? A(dg)? DX, Y)==2sin6(XpY =Y gXo). (19
) Since the curvature depends @nhe curvature and the con-
+(do)“. (14 ductance are correlated. The volume form indicates {igat

and notg, is uniformly distributed. This favors insulators.

In this metric the vectorg; are orthogonal but not orthonor- s 2 ET ‘
The joint distribution for curvature and conductance is

mal. Unit tangent vectors are

1 1 1

_(9¢, 65:(9(9. (15) 4\/§C

e,=d,, e,=——d,, €,=—
Y T cosh ¢ ¢ sing

e~ 1@l’2C\279¢ 4, d(\/g). (20)

The volume form is sirf)cos@@)dalldydd¢de. The curva-

ture two-form, Eq.(12), is This formula says that, statistically, good pumps tend to be

good conductorsp/ /g, rather thanw itself, is independent
Q=-2sin 6)cog 6)do0(da+dd). (16 ©fg. o
We have assumed, so far, that the varia@ces a con-

A scattering matrix is time reversal invariant if and only if stant. There is no reason for this and it is natural toQet
t=t’. The space of time-reversal matrices is parametrizedself be a random variable. Given a probability distribution
exactly as before, only now witlp identically zero. The for the covariancedu(C), one integrates the formul&s8)
volume form for the metric inherited fromU(2) is and(20) overC. One sees, by inspection, that in the absence
cos@)dalldydd, and the curvature form is now() (presenceof time-reversal symmetryy(w/+\/g) is indepen-
= —2 sin(¢)cos@)d6da. dent ofg. Furthermore, the distribution @ after integrating

We are now prepared to compute the statistics of weakverg is smooth away fronw =0, but has a discontinuity in
pumping, assuming that tf@matrix is uniformly distributed derivative(log divergenceat w=0. In these qualitative fea-
and that the tangent vectors to the spacesofatrices are tures, our results agree with Brouwer’s. However, the tails of
Gaussian random variables. This problem was studied bthe distribution for large pumping may depend on the tail of
Brouwer? in the framework of random matrix theory, by du(C); While (18) and(20) have exponentially small tails,
which we mean that Brouwer posits arpriori measure on power law tailsdu(C) will lead to power law in the tails in
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w. Since we do not determinw(C) we can not determine fourth root of the areatimes a quasiperiodic function &.
the tails. Using random matrix theory Brouwer determinedThis follows from the evaluation of the elementary integral
the power decay im.? S x<rdxdyé™*m) which equals a Bessel function whose
Hard Pumping: Finally, we consider what happens forjagrgeR asymptotic behavior is\87R/N? sin(NR—/4).
hard pumping. Here one can no longer evaluate the curvatulig.om Eq.(21) one can determine the probability distribution
at a point and multiply by the area. One needs to honestlyy charge transportviewed as a random variable with uni-
integrate the Eurvature. Hard pumping was addressed by gistribution on the radiu). Equation(21) turns out to
Shut_enkoet al” who studied it in the context of ra_ndom be closely related to a celebrated problem in ergodic number
matrix theory and showed, using rather involved d'agram'theory: The Gauss circle probleth.

ma'Fic techniques, that pumpin_g scales like the root of the This result does not directly apply to the pump studied by
perimeter. Here we shall de_scnbe a comple.mentary,. el?me%_witkeset al.® because the parameters they vary do not have
tary result that holds provided th&matrix is a periodic ?

function of the parameters. This is the case, for examplet,’u”t in periodicity. Nevertheless, it illustrates two features of

when the pumping is driven by two Aharonov-Bohm fluxes, PUMPS that have been observed experimentally. The first is

With S(x,y) periodic in the driving parametersandy, so that hard driving transports a lot of charge, with scaling that
’ ' is sublinear, as in a random process, and the second that the

is the curvaturd)(x,y)=EQTne'(mX+“V). Since the global  gjrectionality of hard pumping is essentially unpredictable.
angular form is also periodi€)y,=0. o
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