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Geometry, statistics, and asymptotics of quantum pumps
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We give a pedestrian derivation of a formula of Bu¨ttiker, Pretre, and Thomas@Z. Phys. B94, 133 ~1994!#
~BPT! relating the adiabatically pumped current to theS-matrix and its~time! derivatives. We relate the charge
in BPT to Berry’s phase and the corresponding Brouwer pumping formula to curvature. As applications we
derive explicit formulas for the joint probability density of pumping and conductance when theS-matrix is
uniformly distributed; and derive a formula that describes hard pumping when theS-matrix is periodic in the
driving parameters.
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Brouwer3 and Shutenkoet al.,4 building on results of
Büttiker, Pretre, and Thomas~BPT!,5 pointed out that adia-
batic scattering theory leads to a geometric description
charge transport in mesoscopic quantum pumps. Som
these works, and certainly our own work, was motivated
experimental results of Switkeset al.6 on such pumps.

In this article we examine the formula of BPT,5 which
relates adiabatic charge transport to theS-matrix and its
~time! derivatives, in the special case of single-channel s
tering. We show that the formula admits a simple interpre
tion in terms of three basic processes at the Fermi ene
Two of these are dissipative and nonquantized. The th
integrates to zero for any cyclic variation in the system.

Next, we describe the geometric significance of BPT a
relate it to Berry’s phase.2 It follows that the pumping for-
mula of Brouwer3 can be interpreted as curvature and is f
mally identical to the adiabatic curvature.2 In spite of the
interesting geometry the topological aspects of pumping
trivial. In particular, we prove that all Chern numbers as
ciated to the Brouwer formula are identically zero.

We proceed with two applications. First we give an
ementary and explicit derivation of the joint probability de
sity for pumping and conductance. This problem was stud
in. Ref. 3. Brouwer’s results go beyond ours as he also
culates the tails of the distributions and we do not. On
other hand, parts of his results are numerical, and they
certainly not elementary. Finally, we calculate the asymp
ics of hard pumping forS-matrices that depend periodical
on two parameters. If the system transverses a circle o
dius R in parameter space, withR large, then the amount o
charge transported is orderAR, multiplied by a quasiperiodic
~oscillatory! function of R leading to ergodic behavior.

We shall use units wheree5m5\51, so the electron
charge is 21 and the quantum of conductance ise2/h
51/2p. The mutual Coulombic interaction of the electro
is disregarded.

The BPT formula: Consider a scatterer connected to le
that terminate at electron reservoirs. All the reservoirs
initially at the same chemical potential and at zero tempe
ture. The scatterer is described by its~on-shell! S-matrix,
which, in the case ofn channels is ann3n matrix param-
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etrized by the energy and other parameters associated
the adiabatic driving of the system~e.g., gate voltages an
magnetic fields!.

The BPT formula5 says that the chargedql entering the
scatterer from thel th lead due to an adiabatic variation ofS
is

dql5
i

2p
Tr~QldSS†!, ~1!

whereQl is a projection on the channels in thel th lead, and
the S-matrix is evaluated at the Fermi energy. In the spec
case of two leads, each lead carrying a single channel,

S5S r t 8

t r 8
D , Ql5S 1 0

0 0D , ~2!

wherer, (r 8) and t, (t8) are the reflection and transmissio
coefficients from the left~right! and Ql projects on the left
lead. In this case Eq.~1!, for the charge entering through th
left lead, reduces to

2pdql5 i ~ r̄ dr1 t̄ 8dt8!. ~3!

We shall present an elementary derivation of~3!.
Derivation: Every unitary 232 matrix can be expresse

in the form:

S5eigS cos~u!eia i sin~u!e2 if

i sin~u!eif cos~u!e2 ia D , ~4!

where 0<a, f,2p, 0<g,p and 0<u<p/2. In terms of
these parameters, Eq.~3! reads

2pdql52cos2~u!da1sin2~u!df2dg. ~5!

The basic strategy of our derivation of Eq.~5! is to find
processes that vary each of the parameters in turn, and
track of how much current is generated by each process
underlying assumption is that current depends only onS(kF)
and Ṡ(kF), so that processes that give rise to the sa
change in theS-matrix also give rise to the same curren
Because we do not prove this assertion, our derivation c
not be considered a complete proof.
R10 618 ©2000 The American Physical Society
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We understand the four parameters as follows.~See Figs.
1 and 2!. The parametera is associated with translations
Translating the scatterer a distancedL5da/2kF to the right
multiplies r, (r 8) by eida, (e2 ida), and leavest and t8 un-
changed. The parameterf is associated with a vector poten
tial A near the scatterer. This induces a phase shiftdf
52*A across the scatterer, and multipliest, (t8) by eidf,
(e2 idf), while leavingr andr 8 unchanged. The parameteru
determines the conductance of the system:g5utu2/2p
5sin2(u)/2p. Finally, g5(2 i /2)log detS is related, by
Krein’s spectral shift,7 to the number of electrons trapped
the scatterer. As a consequence, for any closed path in
space of Hamiltoniansrdg50.

To determine the effect of changinga we imagine a pro-
cess that changesa and leaves the other parameters fixe
namely translating the scatterer a distancedL5da/2kF to
the right. The scatterer passes through a fractionutu2 of the
kFdL/p5da/2p electrons that occupy the region of sizedL,
and pushes the remainingur u2da/2p electrons forward. Thus

2pdq52cos2~u!da. ~6!

This result can be obtained less heuristically,9 by working in
the reference frame of the moving scatterer and integra
the contribution of each wave number from 0 tokF . From
this one also sees9 that the rate of dissipation at the rese
voirs, P, is quadratic in the currentI, with a coefficient that
depends on the dispersion relation. If the dispersion rela
is quadratic, then

P52pI 2/ur ~kF!u2. ~7!

To changef, we vary the vector potential. This induce
an EMF of strength2*Ȧ5ḟ. The current is simply the
voltage times the Landauer conductanceutu2/2p.8 Integrating
over time gives

2pdq5sin2~u!df. ~8!

A current I then dissipates energy at the reservoirs at a r

P52pI 2/ut~kF!u2. ~9!

To understand the effect of changingu and g, we first
suppose our scatterer is right-left symmetric, sor 5r 8 and t
5t8. Then changes inu andg would draw equal amounts o
charge to the scatterer from the left and right leads. T

FIG. 1. Moving the scatterer changesa→a12kFdL.

FIG. 2. Applying a vector potential changesf→f2*A.
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charge that accumulates on the scatterer is given by Kre
spectral shift.7 The charge coming from the left is half this
namely:9

2pdq5
2p i

4p
dlog detS52dg. ~10!

Since everyS-matrix can be obtained by translating and ad
ing a vector potential to a right-left symmetric scatterer, t
formula ~10! applies to all possibleS-matrices. The formula
~10! applies to all possible scatterers, symmetric or not.

Combining~6!, ~8! and ~10!, gives BPT, Eq.~5!.
The effect of changingg integrates to zero on a close

loop. Changingu does not give any transport at all. Thu
only changes ina andf contribute to the net transport of
quantum pump. These are dissipative processes, with the
of energy dissipationP ~in the reservoirs! that is bounded
from below by 2pI 2. This is contrary to the assertions o
Shutenkoet al.4 who claimed that the charge transport is t
sum of a quantized nondissipative term and a dissipa
term that is not quantized.

Geometrical interpretation:A522pdq is the one-form
~vector potential! associated with Berry’s phase.2 If we de-
fine the unit spinoruc&5( t8

r ) then

A52 i ^cudc&. ~11!

The set of all spinorsuc& is a three-sphere~sinceur u21ut8u2
51), while the set of all ratiosr /t8 is the projective space
CP15C1$`%.S2. The natural map between them, name
uc&→r /t8, is called the Hopf fibration, andA is called the
‘‘global angular form’’ of this fibration.

To compute the charge transported by a closed cycleC in
parameter space, we can either integrate the one-formA
aroundC, or ~by Stokes’ theorem! integrate the exterior de
rivative ~curl! V5dA over a diskD whose boundary isC. V
is the curvature two-form of Brouwer:3

V52 i ^dcudc&52 i
dz̄∧dz

~11uzu2!2 , ~12!

wherez5r /t8. The expression2 i ^dcudc& is formally iden-
tical to the adiabatic~Berry’s! curvature that appears also
the quantum Hall effect.1

In the last expression one sees that the curvature sees
the ratioz5r /t8, and notr and t8 separately. The curvatur
V is the U(2)-invariant area form onCP1, and its integral
over all of CP1 is 2p. V is also the curvature of the Hop
fibration.

In the study of nondissipative quantum transport, Ch
numbers play a role. These are topological invariants t
equal the integral of the curvature over closed surfaces
parameter space. In the context of adiabatic scattering, h
ever, all Chern numbers are zero. The vector bundle o
parameter space is topologically trivial, and the vector (r ,t8)
gives a section of this bundle.

These geometrical constructions generalize to syst
with n incoming andm outgoing channels.9 The firstn rows
of S span ann-dimensional complex subspace ofCn1m. The
space of all such subspaces, called a Grassmannian, h
naturally defined two-form, called the Ka¨hler form.10 Up to a
constant factor, the Brouwer two-form equals the Ka¨hler



le
r

n
a

he

s-

ith
bl

o
e

a
n
p

t
ra
-

-

if
ze

ea

b
y

d
lso

eri-

a-

ent

e
-

-

.

be

t
n

ce

-
of
of
,

RAPID COMMUNICATIONS

R10 620 PRB 62J. E. AVRON, A. ELGART, G. M. GRAF, AND L. SADUN
form. In addition, there is a canonically defined line bund
over this Grassmannian, andA equals the global angula
form for this bundle.

Statistics of weak pumping: Next we consider how a ra
dom scatterer transports charge when two parameters
varied gently and cyclically. More precisely, we consider t
charge transported by moving along the circleX1
5e cos(t), X25e sin(t) in parameter space. Ife is small,
then the charge transport is close to2pe2/2pV(]1 ,]2),
evaluated at the origin, where] j are the tangent vectors a
sociated with the parametersXj . The vectors] j map to ran-
dom vectors onU(2), which we assume to be Gaussian w
covarianceC. The problem is then to understand the possi
values of the curvatureV applied to two random vectors.

To do this, we first need to understand the statistics
two-forms applied to pairs of random vectors, and to und
stand the geometry of the groupU(2).

Take two random vectors inR2, and see how much are
they span. By random vectors we mean independent, ide
cally distributed Gaussian random vectors whose com
nentsXj have the covariancêXiXj&5Cd i j . The areaA is
distributed as a two-sided exponential:

dP~A!5
1

2C
e2uAu/CdA. ~13!

This is seen as follows. If the two vectors areX andY, then
the area isX1Y22X2Y1 . X1Y2 and2X2Y1 are independen
random variables, and a calculation shows that their cha
teristic function is 1/Ak2C211. Their sum is a random vari
able with characteristic function (k2C211)21, and so expo-
nentially distributed.

We parametrize the groupU(2) by the angles~a, g, f, u!,
as in ~4!. A standard, bi-invariant metric onU(2) is

1

2
Tr~dS* ^ dS!5~dg!21cos2 u~da!21sin2 u~df!2

1~du!2. ~14!

In this metric the vectors] i are orthogonal but not orthonor
mal. Unit tangent vectors are

eg5]g , ea5
1

cosu
]a , ef5

1

sinu
]f , eu5]u . ~15!

The volume form is sin(u)cos(u)da∧dg∧df∧du. The curva-
ture two-form, Eq.~12!, is

V522 sin~u!cos~u!du∧~da1df!. ~16!

A scattering matrix is time reversal invariant if and only
t5t8. The space of time-reversal matrices is parametri
exactly as before, only now withf identically zero. The
volume form for the metric inherited fromU(2) is
cos(u)da∧dg∧du, and the curvature form is nowV
522 sin(u)cos(u)du∧da.

We are now prepared to compute the statistics of w
pumping, assuming that theS-matrix is uniformly distributed
and that the tangent vectors to the space ofS-matrices are
Gaussian random variables. This problem was studied
Brouwer,3 in the framework of random matrix theory, b
which we mean that Brouwer posits ana priori measure on
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the space ofHamiltonians. Random matrix theory is more
powerful, in that the distribution of tangent vectors is fixe
by the theory. The price one pays is that the analysis is a
far from elementary and the results are, in part, only num
cal.

For systems without time reversal symmetry, random m
trix theory posits that theS-matrix is distributed onU(2)
with a uniform measure. Since the conductanceg is g}utu2

5sin2 u we have thatdg}sinu cosudu, proportional to the
volume form: The conductanceg is therefore uniformly dis-
tributed.

A random tangent vector toU(2) is X5Xueu1Xaea
1Xfef1Xgeg , where Xj are Gaussians witĥ XjXk&
5Cd jk . The curvature associated with two random tang
vectorsX, Y is, by Eq.~16!

V~X,Y!522~XuWu2YuZu!, ~17!

where Wu5sinu Ya1cosu Yf and Zu5sinu Xa1cosu Xf .
The variablesWu andZu are independent, each with varianc
C. From Eq.~13!, the distribution of the curvature is expo
nential and independent ofutu. The joint distribution of cur-
vature, v, and conductance,g51/2putu2 is given by the
probability density

p

2C
e2uvu/2Cdvdg ~18!

with v ranging from2` to ` andg from 0 to 1/2p.
For systems with time reversal symmetry, theS-matrix is

uniformly distributed on thet5t8 submanifold, with the
metric inherited fromU(2). The tangent vectors are now
Gaussian random variables of the formX5Xueu1Xaea
1Xgeg , and the curvature is now

V~X,Y!522 sinu~XuYa2YuXa!. ~19!

Since the curvature depends onu the curvature and the con
ductance are correlated. The volume form indicates thatAg,
and notg, is uniformly distributed. This favors insulators
The joint distribution for curvature and conductance is

1

4AgC
e2uvu/2CA2pgdvd~Ag!. ~20!

This formula says that, statistically, good pumps tend to
good conductors;v/Ag, rather thanv itself, is independent
of g.

We have assumed, so far, that the varianceC is a con-
stant. There is no reason for this and it is natural to leC
itself be a random variable. Given a probability distributio
for the covariance,dm(C), one integrates the formulas~18!
and~20! overC. One sees, by inspection, that in the absen
~presence! of time-reversal symmetry,v(v/Ag) is indepen-
dent ofg. Furthermore, the distribution ofv after integrating
overg is smooth away fromv50, but has a discontinuity in
derivative~log divergence! at v50. In these qualitative fea
tures, our results agree with Brouwer’s. However, the tails
the distribution for large pumping may depend on the tail
dm(C); While ~18! and ~20! have exponentially small tails
power law tailsdm(C) will lead to power law in the tails in
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v. Since we do not determinedm(C) we can not determine
the tails. Using random matrix theory Brouwer determin
the power decay inv.3

Hard Pumping: Finally, we consider what happens
hard pumping. Here one can no longer evaluate the curva
at a point and multiply by the area. One needs to hone
integrate the curvature. Hard pumping was addressed
Shutenkoet al.4 who studied it in the context of random
matrix theory and showed, using rather involved diagra
matic techniques, that pumping scales like the root of
perimeter. Here we shall describe a complementary, elem
tary result that holds provided theS-matrix is a periodic
function of the parameters. This is the case, for exam
when the pumping is driven by two Aharonov-Bohm fluxe

With S(x,y) periodic in the driving parametersx andy, so

is the curvatureV(x,y)5(V̂mne
i (mx1ny). Since the global

angular form is also periodic,V̂0050.
The integral* uxu,RV of the curvature on a large disc o

radiusR is, to leading order,

A8pR(
V̂nm

N~n,m!3/2sinS N~n,m!R2
p

4 D , ~21!

whereN(n,m)5An21m2. The charge transported in a cyc
is proportional to the square root of the perimeter~or the
ic

,
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fourth root of the area! times a quasiperiodic function ofR.
This follows from the evaluation of the elementary integ
* uxu,Rdxdyei (nx1my), which equals a Bessel function whos
large-R asymptotic behavior isA8pR/N3 sin(NR2p/4).
From Eq.~21! one can determine the probability distributio
for charge transport,~viewed as a random variable with un
form distribution on the radiusR!. Equation~21! turns out to
be closely related to a celebrated problem in ergodic num
theory: The Gauss circle problem.11

This result does not directly apply to the pump studied
Switkeset al.,6 because the parameters they vary do not h
built in periodicity. Nevertheless, it illustrates two features
pumps that have been observed experimentally. The firs
that hard driving transports a lot of charge, with scaling th
is sublinear, as in a random process, and the second tha
directionality of hard pumping is essentially unpredictable
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