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Piezoelectricity: Quantized Charge Transport Driven by Adiabatic Deformations
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We study the (zero temperature) quantum piezoelectric response of Harper-like models with broken
inversion symmetry. The charge transport in these models is related to topological invariants (Chern
numbers). We show that there are arbitrarily small periodic modulations of the atomic positions that
lead to nonzero charge transport. [S0031-9007(96)02168-0]

PACS numbers: 72.10.Bg, 77.65.—j

The Harper model is a tight-binding quantum Hamil- We shall focus on a family of Harper models,
tonian describing the dynamics of noninteracting electrony(?,lz,n,(ﬁ), which arises from tight binding models
on a two-dimensional lattice in the presence of magnetiassociated with a two-dimensional triangular lattice.
fields. Itis known to have interesting Hall transport prop-Each site of the lattice has a coordination number six
erties. Here we study the electric response of Harper-likend the basic plaquettes are triangles. Each up triangle
models to adiabatic changes in the hopping amplitudesn the lattice is surrounded by three down neighbors and
Changes in the hopping amplitudes have a natural intefsice versa. The magnetic flux through the up triangles
pretation as elastic deformation of the underlying latticeis ¢ /2 + n and ¢/2 — 7 through the down triangles.
The Harper model is piezoelectric if such deformationsg = 27 p /g, with p, ¢ relative primes, andn| = 7 /2
drive electron transport. is a measure of the asymmetry in the fluxes through

Let us first summarize the central findings: (1) Harperthe up/down triangles in units where the quantum of
like models with broken time reversal and broken inver-flux is 277. The hopping amplitudes associated with the
sion symmetry have, in general, nontrivial piezoelectricthree basic vectors of the triangular lattice aje= IR,
response. (2) Appropriatperiodic modulations of the j = 1,2,3. The corresponding Harper model is
atomic positions givenontrivial integral charge transport > > . id/2
given by Chern integers. This implies that an ac driv-<H(t’k’77’(1’)\P>(n)_<t1 + r3yne’? >xq'(" +1)
ing has a response with a dc component. (3) There are
arbitrarily small periodic deformations that transport inte-
%;_Lal (and r_10n_zero) charges over macroscopic distances. +<t1 n tgynei¢/2>X\P(n . Q)

ese periodic cycles trap level crossings in parame-
ter space. x = expliki), y, = expi(n¢ + ko — ), ¥(n + q) =

These results are new for Harper-like models. OnéV(n) € C, and %,y, are the complex conjugates of
may, however, ask in what way they add to the theory,y,. k are Bloch momenta with rangds,| = 7 /g,
of piezoelectricity from a general perspective. It is anlk;| = 7. The model was introduced in [14] who studied
observation of King-Smith and Vanderbilt [1] that piezo- the Hofstadter spectrum in the case- (1,1, 1).
electricity is related to the adiabatic curvature and Berry’s The class of models in Eg. (1) is the simplest among
phase [2]. More precisely, it is related to the difference ofHarper-like models with interesting piezoelectric re-
Zak's phases of band functions [3]. This puts piezoelecsponse. The simpler versions of the Harper model and,
tricity in one basket with the Hall conductance [4,5] andin particular, the classical Harper model on the rectan-
a collection of other transport phenomena [6—12], all ofgular lattice and its generalizations [15], do not have an
which have quantum mechanical geometric significancenteresting adiabatic piezoelectric response. The reason
The most impressive applications of the theory of King-for this is that inversion symmetry needs to be broken.
Smith and Vanderbilt have been the calculations of thélhis is a fact about piezoelectricity that goes back to the
piezoelectric coefficients of certain materials [1,13]. Onbrothers Curie [16]. Inversion symmetry is broken if
the other hand, the results of this theory concerning they # 0 mod 7. Inversion symmetry is preserved in the
Chern numbers associated to piezoelectricity were rathedlassical Harper model and the generalizations studied
weak. The only examples known were those associateith [15]. R
with the translation of the entire crystal which are in a Let |4(7, k, n)) be a normalized Bloch state of the
sense trivial. The Harper model illustrates how knowl-Harper model in Eq. (1). Consider a closed loppC
edge about degeneracies and level crossings translatesIR?® in the space of hopping amplitudes. Whenis
a choice of interesting periodic deformations and interesttraversed adiabatically (this, of course, subsumes that the
ing Chern numbers. gap remains open), the charg®(y, k,, n) transported

+ 21, codng + ky)V(n)
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from — to o in the k; direction for fixedk, channel space. Indeed, there are three linear transformations of

for each full band is given by [7,10] the parameters which are implemented by either unitary
1 7/q oy = . or antiunitary transformations. These are
O(y.k2,m) = —Im ]W/q dki ]y<a—kl|Vt¢> di {k; — k;j +2w/q), {n— —m.k — —k,

2 {ki—n—k —k+[1 - (=D1¢/4tn <15} (3)
The charge, if well defined, is an integer—a Chern As a consequence of this, the spectral analysis of

number. The total charge transported by the system iﬁ](i,];, 1, ¢) can be restricted to the range
the sum over the relevart channels and the occupied 7/, < ki<m/qg, 0=q<m/2, 5=t. (4

bands. When the system is an infinite two-dimensiona{,\,e shall take; ands, to be our coordinates on the sphere

crystal then all the, channels are relevant. On the other ot geformations. For the sake of concreteness, we restrict
hand, for a strip of finite width with (possibly twisted) ,rselves to the positive quadramt= 0, j = 1,2,3 and

periodic boundary conditions, only a discrete set of valueg, ihe ground state of Eq. (1). We shall call the point on
of k, contributes. For reasons that shall become clealrhe unit sphere with;, = 1 “the jth pole.”
! .

later, finite strips are the more interesting case. Let I' be the set of points where the lowest eigenvalue
The difficulties in studying Chern numbers of model Eq. (1) is degenerate. BJ(k, = ¢) we shall denote

Hamiltonians [4,10,12,17] (and this one is N0 €XCePyhe regtriction of ' to the subspace with fixed channel

tion) are as follows: First, one needs to establish tha}z2 — ¢ and byT'(k, = ¢, 7 = d) we denote the restric-

the Chern numbers are well defined. For the problemjoy, g 5 fixed channel and asymmetry, etc. Recall that
at hand, this means that one needs to isolate a range g

i . e von Neumann-Wigner rule [18] says that a complex
parametersc, 7 and ¢ for which the gaps surrounding ermitian matrix which depends ot parameters has,
an energy band remain open wherand k; run over

) enerically, eigenvalue crossings on a manifoldiof 3
their full range. Second, the Chern number may be welljensions. One therefore expec to be two-

defined but zero, a case that is not very interesting. folimensional surfaces(k, = ¢) to be one-dimensional
transport. For this not to be the case, the surface of intes;es andl'(k, = ¢,n = d) to be isolated points. We
gration in Eq. (2) must be protected against contractiongp || see that this is a good guide to the behavior of the
For certain transport properties such as those consideregdy; of evel crossings away from special points, e.g., the
e.g. in [4,10,11], the surface of integration had suchy,es For a generic point 6f the von Neumann-Wigner

a protection built in. This is not the case here. TheruIe says thal(7) is a discrete set of points ih ® n

cycle of deformationsy, is a closed orbit in the three- (.. A ihe poles we shall find, instead, tRét: = 1)
dimensional space of deformations, and such an orbit Caii)a two-dimensional surface. Of course thej poles are

.b? contr(;aqteg to; point. It dur;_ng this ;;r:)ntcr;ctlon thespecial points, and there the failure of von Neumann-
integrand in Eq. (2) remains continuous, the Chern numWigner is No source of concern.

ber is zero. So, for the Chern number to be nonzero, the At the poles Eq. (1) can be diagonalized by hand.

orbit of deformationsy must trap level crqssingFinaIIy, At the 2-pole the Hamiltonian is already in a diagonal
one needs to worry about global questiogiy. k2, 1) form. At the 1-pole it is diagonalized by plane waves

must be well defined foall of the relevantk, channels and at the 3-pole by plane waves up to an appropriate

and must not sum up to zero. It turns out that the Harpeéauge transformation. The restrictionsloto the poles,
model is rich enough so that everything actually hap—F .

pens there; there are good orbits and parameters whefe(tf i 1),_can be determmeq explicitly. More precisely,
. X tj = 1) is the 2D set of points that obey
one finds nonzero quantized transport, but also bad ones .
: : ki =1+ (=DNe¢/4, forj=1;
where various bad things happen.
The Bloch Hamiltonian, Eg. (1), is a homogeneous k, = —[1 + (—1)/]¢/4, for j = 2; 5)
function of ¢ of order 1:H(t,k,n, @) = |t|H(Z, k, , ). ki = ko + 1+ [1 = (—1)9]h/4, for j = 3.

The eigenvectors are independent|df and the length .
of 7 therefore does not contribute to Eq. (2). We shaIIThe degeneracies at the 1-pole and the 3-pole are related
by symmetry, Eq. (3).

henceforth take’ to be on the unit sphere. The three Let us now consider the special cases- 1,2, 3: The

additional continuous paramete&rgndn are angular vari- caseq — 1 corresponds tgb — 0 and is trivial; the Bloch
ables. Equatlop (l)fjepequ on five continuous pa.rameteﬁamiltonian has one eigenvalue, no crossing, and no
I(tk 1;”) Il'he f|\(/je-d|mfen3|onal Earameger sEace is topo-Charge transport. The cage= 2 (or equivalently,¢ =
ogically the product of a two sphere and a three torus. ..y is5jready interesting. The Bloch Hamiltonian, Eq. (1)

To get one’s hands on the Chern numbers for thigey,ces to the basic paradigm for Chern numbers—Berry
model, one needs, as we have seen, to have go in 1/2 Hamiltonian:

control over level crossings. One can use symmetry B
considerations to reduce the study of crossings from thell2 COSk2)ars + (1 coski) oy + 13 costky + k2 — m)]orz,

full range of the parameters to a part of the parameter (6)
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with ¢; the Pauli matrices. Since the matrix is tracelessspace where two hopping amplitudes vanish. This is a
levels cross when it vanishes. This gives Eq. (5) and is allare event, analogous to multicriticality. Can one have
of I'(k;), provided thak; # /2. Atthese special points piezoelectric transport also if all hopping amplitudes
I'(k, = 7 /2) is the two great circleg; = 0 and#z; = 0;  remain positive? As we shall see, this happens for the
similarly, I'(k; = 7 /2) is the two great circles, = 0  Harper model withg = 3. The price we shall pay is
ands; = 0. If k; = k, = n = 7 /2, then the whole unit that the analysis of the set of level crossing is more
sphereli| = 1 belongs tal". complicated, and part of it relies on detailed numerical
Now that the set of level crossings is known, we cananalysis.
describe the Chern numbers. By the general principles For ¢ = 3, the model is described by X 3 matrix
mentioned before, interesting Chern numbers arise whewith the characteristic polynomial
the orbit in deformation space traps level crossings. p3 _ 3p 2h(
Let y; denote a small closed orbit around tjie pole.
For k, # /2 these orbits trap level crossings and are — 13c043(ky + ko — 1)] + 3t11t3c09n).
such that the Chern number, Eq. (2), is well defined. The (8)
charge transport can be computed by a formula of [10,19

O(y1,k2, m) = Fsgn(cosk,) sgn[sin(k, — n)],

?,k,m) = £ cos3k; + £ cos3k,

I]:'quation (8) is a strong version of Chamber’s relation: the
coefficients ofE are not only independent @f, but also

O(y2, ka,m) = 0, (") of 7 and n. Therefore the band edges are at extrema of
O(y3,ka, m) = *sgn(cosk,)sgn(sinyg). h in the entire five—dimensional parameter space. _The set
The overall sign depends on the orientatiomefand is ~ Of curves where the first gap closes fpr= 3 is obtained
opposite for the tofbottom bands. The Chern numbersWhenE = —1andh = 1.
change (discontinuously) ofi so the direction of charge ~ The strategy we use to get hold of the degeneracy sur-
transport can be flipped by tunirig and 7. facel is the following: At the 1-pole, Eqg. (5) gives a two-

For k, = 7 /2, the Chern numbe@(y», k», 7) is not dimensiorjal pIanar_ pigce _df. (This t_wo-dimensional
well defined since there are level crossings on the surfaddlane projects to aline in Fig. 1.) The lidds; = 1,7 =
of integration. Theotal charge transport is a well defined 0) turns out to be a line of self-intersection bf One
integer ifk, = /2 is not an allowed channel, and is ill two-dimensional piece is given in Eq. (5). The intersect-
defined if this channel is allowed. For finite stripgth  iNg two-dimensional piece can be obtained as follows.
periodic boundary conditionsodd strips have, # 7 /2
and the total charge transport is integral. Even strips,
and also the infinite two-dimensional lattice, include the
k, = 7 /2 channel and do not have a well-defined (total) 0.
Chern number. For finite strips where the chanpel=
/2 is excluded, the total transport can be read off
from Eg. (7). In particular, with maximal breaking of
inversion symmetryy = 7 /2, an orbit of deformations n
v, about the 1-pole, transpori$k, channels} charges in
the ground state. The total charge transport is, therefore,
a nonzero integer for any strip (where the number of
k, channels is finite) and can be arbitrarily large. This
shows that summation over thle channels does not
cancel in general: in this case, they add. In contrast,
for an orbit of deformationsy; around the 3-pole, the
total charge transport i1 for all odd strips. This is
because the allowed values bf are equally spaced and
then sgn(cosk;) = *1.

We see from this the following: (1) The Harper model,
Eq. (:.L)’ has nontrivial piezoelectric response. (2) For APEiG. 1. Curves on which the first gap closes for= 3. The
propriate values of parameters and orbits, the charge ranggrtical axis is the asymmetry fluy. The horizontal plane is
port is given by nonzero Chern integers. (3) The Cheriihe positive quadrant in the plae< #,, < 1,1 + 5 < 1.
numbers can sum to nonzero integers when summatiorhe hatched region is this positive quadrantjat= 7 /9. The
over channels is taken. (4) Integer transport occurs alsivo vertical lines atr, = 0 correspond to the gap closure in

for arbitrarily small deformations Eqg. (5). The tonguelike curve is the line of gap closuré,at
One mav criticize the; — 2 ex;’alm le of piezoelectric —/18. It links with a small circley in the hatched plane,
Yy & p p centered afz; = 0.355,1, = 0.446). A periodic deformation

response as being too special in that the deformatons ajong y transports a unit of charge. The curve in the plane
that give charge transport are about points in parametej = 0 is the line of gap closure fot, = — /3.
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In this parametric representation, is small andk, is

arbitrary. This gives us a thin strip &f, which intersects

that of Eq. (5). We can extend this strip using the fact

that the tangent plane 0 is the kernel of the Hessian of

h. In other words, withk, fixed, the curve of degeneracy,

I'(k2), may be described as the solution of an ordinary *Electronic address: avron@physics.technion.ac.il
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