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Piezoelectricity: Quantized Charge Transport Driven by Adiabatic Deformations
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We study the (zero temperature) quantum piezoelectric response of Harper-like models with brok
inversion symmetry. The charge transport in these models is related to topological invariants (Che
numbers). We show that there are arbitrarily small periodic modulations of the atomic positions th
lead to nonzero charge transport. [S0031-9007(96)02168-0]
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The Harper model is a tight-binding quantum Hami
tonian describing the dynamics of noninteracting electro
on a two-dimensional lattice in the presence of magne
fields. It is known to have interesting Hall transport prop
erties. Here we study the electric response of Harper-l
models to adiabatic changes in the hopping amplitud
Changes in the hopping amplitudes have a natural int
pretation as elastic deformation of the underlying lattic
The Harper model is piezoelectric if such deformatio
drive electron transport.

Let us first summarize the central findings: (1) Harpe
like models with broken time reversal and broken inve
sion symmetry have, in general, nontrivial piezoelectr
response. (2) Appropriateperiodic modulations of the
atomic positions givenontrivial integral charge transport
given by Chern integers. This implies that an ac dri
ing has a response with a dc component. (3) There
arbitrarily small periodic deformations that transport inte
gral (and nonzero) charges over macroscopic distanc
These periodic cycles trap level crossings in param
ter space.

These results are new for Harper-like models. O
may, however, ask in what way they add to the theo
of piezoelectricity from a general perspective. It is a
observation of King-Smith and Vanderbilt [1] that piezo
electricity is related to the adiabatic curvature and Berry
phase [2]. More precisely, it is related to the difference
Zak’s phases of band functions [3]. This puts piezoele
tricity in one basket with the Hall conductance [4,5] an
a collection of other transport phenomena [6–12], all
which have quantum mechanical geometric significan
The most impressive applications of the theory of Kin
Smith and Vanderbilt have been the calculations of t
piezoelectric coefficients of certain materials [1,13]. O
the other hand, the results of this theory concerning t
Chern numbers associated to piezoelectricity were rat
weak. The only examples known were those associa
with the translation of the entire crystal which are in
sense trivial. The Harper model illustrates how know
edge about degeneracies and level crossings translate
a choice of interesting periodic deformations and intere
ing Chern numbers.
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We shall focus on a family of Harper models
Hs$t, $k, h, fd, which arises from tight binding models
associated with a two-dimensional triangular lattic
Each site of the lattice has a coordination number
and the basic plaquettes are triangles. Each up trian
in the lattice is surrounded by three down neighbors a
vice versa. The magnetic flux through the up triangl
is fy2 1 h and fy2 2 h through the down triangles
f ­ 2ppyq, with p, q relative primes, andjhj # py2
is a measure of the asymmetry in the fluxes throu
the upydown triangles in units where the quantum
flux is 2p. The hopping amplitudes associated with th
three basic vectors of the triangular lattice aretj [ 4,
j ­ 1, 2, 3. The corresponding Harper model is≥
Hs$t, $k, h, fdC

¥
snd ­

≥
t1 1 t3yneify2

¥
xCsn 1 1d

1 2t2 cossnf 1 k2dCsnd

1

≥
t1 1 t3ȳneify2

¥
x̄Csn 2 1d . (1)

x ­ expsik1d, yn ­ expisnf 1 k2 2 hd, Csn 1 qd ­
Csnd [ C, and x̄, ȳn are the complex conjugates o
x, yn. $k are Bloch momenta with rangesjk1j # pyq,
jk2j # p . The model was introduced in [14] who studie
the Hofstadter spectrum in the case$t ­ s1, 1, 1d.

The class of models in Eq. (1) is the simplest amo
Harper-like models with interesting piezoelectric r
sponse. The simpler versions of the Harper model a
in particular, the classical Harper model on the recta
gular lattice and its generalizations [15], do not have
interesting adiabatic piezoelectric response. The rea
for this is that inversion symmetry needs to be broke
This is a fact about piezoelectricity that goes back to t
brothers Curie [16]. Inversion symmetry is broken
h fi 0 mod p. Inversion symmetry is preserved in th
classical Harper model and the generalizations stud
in [15].

Let jcs$t, $k, hdl be a normalized Bloch state of th
Harper model in Eq. (1). Consider a closed loopg ,
43 in the space of hopping amplitudes. Wheng is
traversed adiabatically (this, of course, subsumes that
gap remains open), the chargeQsg, k2, hd transported
© 1997 The American Physical Society 511
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from 2` to ` in the k1 direction for fixedk2 channel
for each full band is given by [7,10]

Qsg, k2, hd ­
1
p

Im
Z pyq

2pyq
dk1

Z
g

ø
≠c

≠k1
j $=tc

¿
? d$t .

(2)

The charge, if well defined, is an integer—a Che
number. The total charge transported by the system
the sum over the relevantk2 channels and the occupie
bands. When the system is an infinite two-dimensio
crystal then all thek2 channels are relevant. On the oth
hand, for a strip of finite width with (possibly twisted
periodic boundary conditions, only a discrete set of valu
of k2 contributes. For reasons that shall become cl
later, finite strips are the more interesting case.

The difficulties in studying Chern numbers of mod
Hamiltonians [4,10,12,17] (and this one is no exce
tion) are as follows: First, one needs to establish t
the Chern numbers are well defined. For the probl
at hand, this means that one needs to isolate a rang
parametersk2, h and f for which the gaps surrounding
an energy band remain open when$t and k1 run over
their full range. Second, the Chern number may be w
defined but zero, a case that is not very interesting
transport. For this not to be the case, the surface of in
gration in Eq. (2) must be protected against contracti
For certain transport properties such as those conside
e.g., in [4,10,11], the surface of integration had su
a protection built in. This is not the case here. T
cycle of deformations,g, is a closed orbit in the three
dimensional space of deformations, and such an orbit
be contracted to a point. If during this contraction t
integrand in Eq. (2) remains continuous, the Chern nu
ber is zero. So, for the Chern number to be nonzero,
orbit of deformationsg must trap level crossing. Finally,
one needs to worry about global questions:Qsg, k2, hd
must be well defined forall of the relevantk2 channels
and must not sum up to zero. It turns out that the Har
model is rich enough so that everything actually ha
pens there; there are good orbits and parameters w
one finds nonzero quantized transport, but also bad o
where various bad things happen.

The Bloch Hamiltonian, Eq. (1), is a homogeneo
function of $t of order 1:Hs$t, $k, h, fd ­ j$tjHst̂, $k, h, fd.
The eigenvectors are independent ofj$tj, and the length
of $t therefore does not contribute to Eq. (2). We sh
henceforth takêt to be on the unit sphere. The thre
additional continuous parameters$k andh are angular vari-
ables. Equation (1) depends on five continuous parame
st̂, $k, hd. The five-dimensional parameter space is top
logically the product of a two sphere and a three torus.

To get one’s hands on the Chern numbers for t
model, one needs, as we have seen, to have g
control over level crossings. One can use symme
considerations to reduce the study of crossings from
full range of the parameters to a part of the parame
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space. Indeed, there are three linear transformations
the parameters which are implemented by either unita
or antiunitary transformations. These are

hkj ! kj 1 2pyqj, hh ! 2h, $k ! 2 $kj,

hk1 ! h 2 k1 2 k2 1 f1 2 s21dqgfy4, t1 $ t3j . (3)
As a consequence of this, the spectral analysis

Hst̂, $k, h, fd can be restricted to the range
2pyq # kj , pyq , 0 # h , py2 , t3 # t1 . (4)

We shall taket1 andt2 to be our coordinates on the spher
of deformations. For the sake of concreteness, we restr
ourselves to the positive quadranttj $ 0, j ­ 1, 2, 3 and
to the ground state of Eq. (1). We shall call the point o
the unit sphere withtj ­ 1 “the jth pole.”

Let G be the set of points where the lowest eigenvalu
of Eq. (1) is degenerate. ByGsk2 ­ cd we shall denote
the restriction ofG to the subspace with fixed channe
k2 ­ c and byGsk2 ­ c, h ­ dd we denote the restric-
tion to a fixed channel and asymmetry, etc. Recall th
the von Neumann-Wigner rule [18] says that a comple
Hermitian matrix which depends ond parameters has,
generically, eigenvalue crossings on a manifold ofd 2 3
dimensions. One therefore expectsG to be two-
dimensional surfaces,Gsk2 ­ cd to be one-dimensional
curves andGsk2 ­ c, h ­ dd to be isolated points. We
shall see that this is a good guide to the behavior of th
set of level crossings away from special points, e.g., th
poles. For a generic point oft̂, the von Neumann-Wigner
rule says thatGst̂d is a discrete set of points in$k ≠ h

space. At the poles we shall find, instead, thatGstj ­ 1d
is a two-dimensional surface. Of course, the poles a
special points, and there the failure of von Neumann
Wigner is no source of concern.

At the poles Eq. (1) can be diagonalized by hand
At the 2-pole the Hamiltonian is already in a diagona
form. At the 1-pole it is diagonalized by plane wave
and at the 3-pole by plane waves up to an appropria
gauge transformation. The restrictions ofG to the poles,
Gstj ­ 1d, can be determined explicitly. More precisely
Gstj ­ 1d is the 2D set of points that obey

k1 ­ s1 1 s21dqdfy4 , for j ­ 1 ;

k2 ­ 2f1 1 s21dqgfy4 , for j ­ 2 ; (5)

k1 ­ 2k2 1 h 1 f1 2 s21dqgfy4 , for j ­ 3 .
The degeneracies at the 1-pole and the 3-pole are rela
by symmetry, Eq. (3).

Let us now consider the special casesq ­ 1, 2, 3: The
caseq ­ 1 corresponds tof ­ 0 and is trivial; the Bloch
Hamiltonian has one eigenvalue, no crossing, and
charge transport. The caseq ­ 2 (or equivalently,f ­
p) is already interesting. The Bloch Hamiltonian, Eq. (1
reduces to the basic paradigm for Chern numbers—Be
spin 1y2 Hamiltonian:
st2 cosk2ds3 1 st1 cosk1ds1 1 ft3 cossk1 1 k2 2 hdgs2 ,

(6)
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with sj the Pauli matrices. Since the matrix is tracele
levels cross when it vanishes. This gives Eq. (5) and is
of Gskjd, provided thatkj fi py2. At these special points
Gsk2 ­ py2d is the two great circlest1 ­ 0 and t3 ­ 0;
similarly, Gsk1 ­ py2d is the two great circlest2 ­ 0
andt3 ­ 0. If k1 ­ k2 ­ h ­ py2, then the whole unit
spherejt̂j ­ 1 belongs toG.

Now that the set of level crossings is known, we c
describe the Chern numbers. By the general princip
mentioned before, interesting Chern numbers arise w
the orbit in deformation spaceg traps level crossings
Let gj denote a small closed orbit around thejth pole.
For k2 fi py2 these orbits trap level crossings and a
such that the Chern number, Eq. (2), is well defined. T
charge transport can be computed by a formula of [10,

Qsg1, k2, hd ­ 7sgnscosk2d sgnfsinsk2 2 hdg ,

Qsg2, k2, hd ­ 0 , (7)

Qsg3, k2, hd ­ 6sgnscosk2d sgnssinhd .
The overall sign depends on the orientation ofgj and is
opposite for the topybottom bands. The Chern numbe
change (discontinuously) onG so the direction of charge
transport can be flipped by tuningk2 andh.

For k2 ­ py2, the Chern numberQsg2, k2, hd is not
well defined since there are level crossings on the sur
of integration. Thetotal charge transport is a well define
integer if k2 ­ py2 is not an allowed channel, and is i
defined if this channel is allowed. For finite stripswith
periodic boundary conditions, odd strips havek2 fi py2
and the total charge transport is integral. Even str
and also the infinite two-dimensional lattice, include t
k2 ­ py2 channel and do not have a well-defined (tot
Chern number. For finite strips where the channelk2 ­
py2 is excluded, the total transport can be read
from Eq. (7). In particular, with maximal breaking o
inversion symmetry,h ­ py2, an orbit of deformations
g1 about the 1-pole, transports#hk2 channelsj charges in
the ground state. The total charge transport is, theref
a nonzero integer for any strip (where the number
k2 channels is finite) and can be arbitrarily large. Th
shows that summation over thek2 channels does no
cancel in general: in this case, they add. In contr
for an orbit of deformationsg3 around the 3-pole, the
total charge transport is61 for all odd strips. This is
because the allowed values ofk2 are equally spaced an
then

P
sgnscosk2d ­ 61.

We see from this the following: (1) The Harper mode
Eq. (1), has nontrivial piezoelectric response. (2) For
propriate values of parameters and orbits, the charge tr
port is given by nonzero Chern integers. (3) The Ch
numbers can sum to nonzero integers when summa
over channels is taken. (4) Integer transport occurs a
for arbitrarily small deformationsg.

One may criticize theq ­ 2 example of piezoelectric
response as being too special in that the deformationg

that give charge transport are about points in param
s,
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space where two hopping amplitudes vanish. This is
rare event, analogous to multicriticality. Can one ha
piezoelectric transport also if all hopping amplitude
remain positive? As we shall see, this happens for
Harper model withq ­ 3. The price we shall pay is
that the analysis of the set of level crossing is mo
complicated, and part of it relies on detailed numeric
analysis.

For q ­ 3, the model is described by a3 3 3 matrix
with the characteristic polynomial

E3 2 3E ­ 2hst̂, $k, hd ­ t3
1 cos3k1 1 t3

2 cos3k2

2 t3
3 cosf3sk1 1 k2 2 hdg 1 3t1t2t3 cosshd .

(8)

Equation (8) is a strong version of Chamber’s relation: t
coefficients ofE are not only independent of$k, but also
of t̂ and h. Therefore the band edges are at extrema
h in the entire five-dimensional parameter space. The
of curves where the first gap closes forq ­ 3 is obtained
whenE ­ 21 andh ­ 1.

The strategy we use to get hold of the degeneracy s
faceG is the following: At the 1-pole, Eq. (5) gives a two
dimensional planar piece ofG. (This two-dimensional
plane projects to a line in Fig. 1.) The lineGst1 ­ 1, h ­
0d turns out to be a line of self-intersection ofG. One
two-dimensional piece is given in Eq. (5). The intersec
ing two-dimensional piece can be obtained as follow

FIG. 1. Curves on which the first gap closes forq ­ 3. The
vertical axis is the asymmetry fluxh. The horizontal plane is
the positive quadrant in the plane0 # t1, t2 # 1, t2

1 1 t2
2 # 1.

The hatched region is this positive quadrant ath ­ py9. The
two vertical lines att2 ­ 0 correspond to the gap closure i
Eq. (5). The tonguelike curve is the line of gap closure atk2 ­
2py18. It links with a small circleg in the hatched plane,
centered atst1 ­ 0.355, t2 ­ 0.446d. A periodic deformation
along g transports a unit of charge. The curve in the pla
h ­ 0 is the line of gap closure fork2 ­ 2py3.
513
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Pick any point onGst1 ­ 1, h ­ 0d and expandh in pow-
ers oft2 and require thath ­ 1 to every order. If we now
usek2 andt2 as the parametric representation ofG we find

k1 ­ sins3k2dt3
2y3 1 sins3k2dt5

2 1 ... ;

t1 ­ 1 2 t2
2 1 coss3k2dt3

2 1 ... ; (9)

h ­ 2 sins3k2dt2 2 sins6k2dt2
2y2 1 ... .

In this parametric representation,t2 is small andk2 is
arbitrary. This gives us a thin strip ofG, which intersects
that of Eq. (5). We can extend this strip using the fa
that the tangent plane toG is the kernel of the Hessian o
h. In other words, withk2 fixed, the curve of degeneracy
Gsk2d, may be described as the solution of an ordina
differential equation: the velocity in parameter space
given by the kernel of the Hessian ofh. Near the 3-pole,
Gsk2d is given by (9) and (3).

Several curves describing degeneracies are show
the figure. We choset1 and t2 as our coordinates on̂t
restricted to the positive quadrant,0 # tj # 1. Let us de-
note byGc the degeneracy surface with the poles excis
The tonguelike curves in Fig. 1 areGcsk2 ­ 2py18d and
Gcsk2 ­ 2py3d. By the von Neumann-Wigner rule on
expects these to be one-dimensional curves, and ind
they are. For the orbit of deformationg shown in this
figure, that is, a small circle centered att1 ­ 0.355, t2 ­
0.446, the charge transport isQsg, 2py18, py9d ­ 61
(the sign depends on the orientation on whichg is tra-
versed). This gives an example where a Chern numbe
nonzero for a small orbit of deformations that lies entire
in the positive quadrant of hopping amplitudes.

For q ­ 2, we have seen that Chern numbers for t
infinite crystal included channels with ill-defined Che
numbers. One may wonder if this is also the case
q ­ 3. The answer is no. Forq ­ 3, all sufficiently
small pathsgj around the poles have well-defined Che
numbers for all k2 channels, and some of these a
nonzero. It is easy to verify this forh ­ py2 where one
can check that all ofG is at the poles. More is true;G is,
in fact, restricted to the poles for allpy6 , h # py2.
One way to see this is by analysis at the vicinity
the pointt̂ ­ 1y

p
3s1, 1, 1d, $k ­ 2py18s1, 1d, h ­ py6.

One finds thath attains its maximum value onGc at
this point. Further study shows that, in fact, for a
h fi 0 modp a sufficiently small orbitgj about the
j-pole avoidsG. The Chern numbers for these orbi
gj are all well defined, and by numerical integratio
we foundQsgj , k2, hd ­ 61, 0, 71 for j ­ 1, 2, 3 pole,
respectively, for allk2 channels andh fi 0.

In conclusion, we have described a method for a
lyzing the Chern numbers that arise in inversion asymm
ric Harper models and have found explicit situations w
nonzero quantized piezoelectric response. In all th
cases nonzero transport occurs for arbitrarily small orb
and this can happen also when all the hopping amplitu
are positive.
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