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Semiclassical Analysis and the Magnetization of the Hofstadter Model
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The magnetization and the de Haas–van Alphen oscillations of Bloch electrons are calculated near
commensurate magnetic fluxes. Two phases that appear in the quantization of mixed systems—the
Berry phase and a phase first discovered by Wilkinson—play a key role in the theory.
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FIG. 1 (color online). The de Haas–van Alphen oscillations
of the magnetization as a function of the chemical potential in
the Hofstadter model for flux � � 40=121, compared with the
limiting envelopes and their averages, and the gap magnetiza-
tion for � ! 1=3. The two insets are details of the left and
in the semiclassical dynamics of Bloch electrons under center envelopes.
The magnetization of a free electron gas was calculated
by Landau in 1930 in the early days of quantum mechan-
ics [1]. Considerable efforts have since been devoted to
extending these results to Bloch electrons. Most of the
progress made was in the region of weak magnetic fields
[2,3] where the flux � through a unit cell is small. This is
adequate for most solid state applications. There is, how-
ever, also considerable interest in a better understanding
of phenomena that have to do with commensuration in
condensed matter physics [4–8]. This is the case when �
is close to a rational number. The magnetization of Bloch
electrons near rational fluxes, other than � � 0, re-
mained an open challenge which we solve here. The
difficulty lies in the delicate spectral properties resulting
from commensuration [5].

The problem of magnetization near fractional flux
becomes tractable by an idea that goes back to
Wilkinson [8]. Namely, that near a rational flux the
Hamiltonian can be understood as the semiclassical
quantization of a mixed system: In mixed systems
some, but not all, degrees of freedom may be treated
semiclassically. As a consequence the ‘‘classical
Hamiltonian’’ is matrix (or operator) valued. Pauli and
Dirac equations for a spinning electron in a slowly vary-
ing potential, the Born-Oppenheimer theory of mole-
cules, and the Hofstadter model near rational flux [8]
are examples of mixed systems. In the Hofstadter model
the role of the Planck constant is played by the deviation
from a nearby rational

h � �� p=q: (1)

Littlejohn and Flynn [9] developed an elegant geomet-
ric formalism for the quantization of mixed systems.
They show that in order �h the quantization of mixed
systems gives rise to two phases: One is the Berry phase
[10] and the other is a phase that is sometimes known
as the ‘‘no-name phase’’ [11] and sometimes as the
Wilkinson-Rammal (WR) phase [12]. For both phases
to appear, the classical Hamiltonian must have nontrivial
commutation properties in both coordinates and mo-
menta. These phases play a central role in determining
the magnetization; see, e.g., Eq. (25) below.

Our results are closely related to recent progress made
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slowly varying electric and magnetic fields [12]. When
one goes beyond the leading order expressed by Peierls
substitution [2,12] one finds that the Berry phase and the
WR phase play a role in the dynamics. This led [12] to
identify the WR term with the magnetization of a wave
packet. Although related, the notions of wave packet vs
thermodynamic magnetization, expressed in Eq. (25), are
distinct; for example, wave packet magnetization is not
defined in the gaps, while the thermodynamic magneti-
zation and, of course, the de Haas–van Alphen oscilla-
tions have a nontrivial dependence on the chemical
potential also in the gaps.

Figure 1 shows the zero temperature magnetization at
� � 1=�3� �1=40��. The complexity of the magnetiza-
tion is due to the multiplicity of scales: The big scale is
determined by the denominator q � 3, and the small
scale by h. On the small scale one sees the rapid
de Haas–van Alphen oscillations. On the big scales one
sees continuous features: the linear pieces in the (big)
gaps, the envelopes of the de Haas–van Alphen oscilla-
tions, and their mean. Our theory of magnetization ac-
counts for all these features.

While the amplitude of the oscillation is determined
solely by the leading terms in the semiclassical expan-
sion, the mean magnetization requires knowledge of the
terms beyond leading order, thus depending on the fine
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details of the spectrum. Intriguingly, it is the latter quan-
tity which is stable against perturbations. Finite tempera-
tures larger than the typical eigenvalue spacing wash out
the de Haas–van Alphen oscillations of the small scale
but leave intact the mean magnetization. Semiclassical
approximations that retain only the leading order yield no
magnetization at all at finite temperatures.

Let us start by describing the semiclassical quantiza-
tion of mixed systems [9]. The classical Hamiltonian,
H �x; k�, is a Hermitian matrix which depends on x and k.
We denote by "j�x; k� its jth band of eigenvalues and by
juj�x; k�i the corresponding eigenvectors. We also assume
that bands do not cross. (In the Hofstadter model, this is
guaranteed by Chambers relation.) The corresponding
quantum Hamiltonian is H �x̂x; k̂k� with �x̂x; k̂k� � i �h.

Let S�E;H;�� denote the classical action associated
with a closed orbit of energy E of a classical Hamiltonian
function H, with phase space area form �. Since phase
space is two dimensional the action is the area enclosed
by the orbit. Note that H, unlike H , is a scalar valued
function. The Bohr-Sommerfeld quantization rule in
mixed systems says that the semiclassical approximation
of the eigenvalue En is given by

S�En;H �h; � �h� � h�n� �m�; n 2 Z; (2)

where �m is the Maslov index of the orbit [13]. H �h has an
expansion in powers of �h, H �h � H�0� � �hH�1� � � � � .
Peierls substitution sets H�0�

j �x; k� � "j�x; k�, and the
next order is [9]

H�1�
j �x; k� � Imh@xujj�H � "j�j@kuji�x; k�: (3)

The expansion � �h � ��0� � �h��1� � � � � begins with the
canonical form ��0�j � dk ^ dx and the subleading term is
the Berry curvature form

��1�j � 2!�x; k�dk ^ dx;

!�x; k� � Imh@xujj@kuji�x; k�: (4)

This formulation is manifestly gauge invariant (inde-
pendent of the choice of phases for juji) and preserves the
symmetry properties of H , which is useful when one
wants to correctly count the dimension of the Hilbert
space of the quantized operator, as we now proceed to
explain.

Suppose that H is periodic in both x and k up to gauge
transformations and hence describes (classical) motion on
a phase space torus T . H�0�

j , H�1�
j , and ��1�j are all well-

defined functions on T . The Chern number of the jth
band is the integer

Cj �
1

�

Z
T
!jdk ^ dx: (5)

It follows from Eqs. (2) and (4) that the dimension of the
Hilbert space associated with the jth band is
186801-2
jT j

h
� Cj; (6)

where jT j denotes the area of T . Since the dimension of
the Hilbert space is necessarily an integer, quantization
on the torus is possible only for certain values of h.
Equation (6) goes beyond the classical Weyl law which
determines only the leading, jT j=h, behavior. The Chern
numbers shift states between the spaces of different bands
since

P
Cj � 0 [14].

The �h corrections to the action can be moved from the
left-hand side of the Bohr-Sommerfeld relation to the
right-hand side, where they acquire an interpretation as
two additional phases:

Sj�E� � h�n� �m � �j�E��;

�2��j�E� � �B
j �E� � �

WR
j �E�; (7)

where Sj�E� � S�E; "j; dk ^ dx�. �B
j �E� is the Berry

phase [10],

�B
j �E� � 2

Z
!j��E� "j�dk ^ dx; (8)

and �WR
j �E� is the Wilkinson-Rammal phase

�WR
j �E� � �

Z
H�1�
j ��E� "j�dk ^ dx: (9)

It is noteworthy that the WR phase need not vanish at
band edges.

Let us now recall some basic facts about the Hofstadter
model [5,8]. When the magnetic flux � is a rational
number p=q, the model is represented by [8]

H �x; k� � e2�ixU � e2�ikV � H:c:; (10)

where U and V are the q� q matrices

U �

0
BBBBB@

0 1 � � � 0

. .
. . .

.

. .
.

1

1 0

1
CCCCCA;

V �

0
BBBBB@

1

e2�ip=q

. .
.

e2�i�q�1�p=q

1
CCCCCA: (11)

The magnetic bands of the Hofstadter Hamiltonian at
� � p=q are given by "j�x; k� on the Brillouin zone

BZ � fx; kj0 � x � 1; 0 � k � 1=qg: (12)

Evidently, H �x; k� is periodic with period 1 in both
variables. Moreover, H is periodic with smaller periods
up to unitary transformations:
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H �x; k� � GH �x� 1=q; k�Gy � TH �x; k� 1=q�Ty:

(13)

G is a gauge transformation (a diagonal unitary) and T is
a shift. This makes the band dispersion functions "j�x; k�
periodic with periods 1=q in each variable and with q
periods in T � BZ.

The spectrum of the Hofstadter model for other values
of � is obtained by setting �x̂x; k̂k� � i �h in H with �h given
by Eq. (1). BZ is the minimal torus on which H may be
quantized. The dimension of the Hilbert space associated
with it is then 1

qh� Cj. Since the band functions are q
periodic on BZ, the number of distinct eigenvalues is of
order 1=�q2h�. The semiclassical approximation is valid
provided this number is large; i.e., q2 �h� 1.

We now turn to the magnetization of the model. Recall
that the Hofstadter model approximates the Schrödinger
equation in two dual limits: When the magnetic field is
weak relative to the periodic potential and also in the
opposite limit where the magnetic field dominates all
other interactions. The two limits have related but differ-
ent thermodynamics. For the sake of concreteness we
consider the tight-binding interpretation. The magnetiza-
tion of the ‘‘split Landau level’’ follows from the duality
transformation of [15].

The thermodynamic potential per lattice site of the
Hofstadter model for rational flux and zero temperature
is [15]

�� ;�� �
Z
BZ
dk ^ dxTr� �H ��; (14)

where x� � x��x�. When  is in a spectral gap, the
thermodynamic potential can be written as a sum of the
potential of the occupied bands, � �

P
<�<.

The magnetization per unit area m is

m� ;�� � �

	
@�
@�



 
: (15)

(To translate the magnetization to ordinary units one
needs to divide our dimensionless magnetization by the
unit of quantum flux.) The magnetization in the gaps can
likewise be expressed as a sum of the magnetization of
the occupied bands

m� ;�� �
X
<

m<���; (16)

where the magnetization of a full band is, as we see below
(see also [15]),

mj� ;�� � �
1

2�

Z
BZ
�2� � "j�!j �H�1��dk ^ dx:

(17)

The term proportional to  is the Chern number of the
band. It follows that the magnetization as a function of  
has quantized slopes in the gaps.
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The envelope of the de Haas–van Alphen oscillations
of the jth band, as we show below, is given by

Lj� ;�� � hmij� ;�� � �mj� ;��: (18)

hmij� ;�� is the natural restriction of Eq. (17) to a
partially filled band; i.e.,

hmij� ;�� � �
1

2�

Z
BZ
�� � "j�

� �2� � "j�!j �H
�1�
j �dk ^ dx: (19)

It describes the mean value of the magnetization, aver-
aged over the de Haas–van Alphen oscillations.

The width of the envelope is given in terms of the
classical action associated with "j:

�mj� � �
q
2

Sj� �

S0j� �
: (20)

1
q S

0� � is proportional to the density of states. Since the
density of states in two dimensions diverges logarithmi-
cally near the separatrix, the width �m shrinks to zero
logarithmically there. Near the bottom of the band Sj
vanishes linearly while the density of states approaches a
positive value. This shows that �m vanishes linearly at
band edges. These properties characterize the universal
liplike shape of the envelopes.

We conclude with an outline of the derivation of
Eqs. (18)–(20). Consider the zero temperature thermody-
namic potential associated with one fixed band j. It
follows from the Chambers relation [16] and the square
symmetry of the Hofstadter Hamiltonian that for all
energies except the separatrix, the level sets of "j�x; k�
are deformed circles, and therefore �m � 1=2. All spec-
tral quantities below refer to the same band, and we may
therefore suppress the index j without risk of confusion.

Suppose that is such that n spectral points of the split
jth band are occupied. Recall that each spectral point is
q-fold degenerate and that, by Eq. (6), nq � 1

qh� C.
Suppose for definiteness that  is below the separatrix.
By the Bohr-Sommerfeld rule the thermodynamic poten-
tial is (to order �h2)

���;  � � qh
	
 n�

Xn�1

‘�0

S�1f�‘� 1=2� ��E‘��hg


:

(21)

The overall factor qh comes from the degeneracy per unit
area of each eigenvalue. Approximating the sum with the
second Euler-Maclaurin sum formula gives (again to
order �h2)

���;  � � q nh� q
Z nh

0
dxS�1fx� h��S�1�x��g:

(22)

Taking a derivative with respect to � is the same as
186801-3
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taking a derivative with respect to h. The magnetization
is therefore given (to order �h) by

m��;  � � �qnf � S�1��n� ��h�g � q
Z  

��E�dE

� qn
	
En � En�1

2
� 



�q

Z  
��E�dE; (23)

where the E integration is over the jth band energies
below  .

The first term describes the de Haas–van Alphen os-
cillations: It vanishes in the middle of each spectral gap
�En�1; En� and reaches its maximum magnitude at the
band edges. �m� � is half the variation of m across a
spectral gap. Therefore

�m��;  � � qn
En � En�1

2
���!
h!0

qS� �
2S0� �

: (24)

The first term in Eq. (23) has zero average over the gap,
while the second term is nearly constant. The mean
magnetization is therefore

hmi��;  � � �
q
2�

Z  
��B�E� � �WR�E��dE: (25)

The Berry phase contributes

q
Z  

�B�E�dE � 2
Z
BZ
!dk ^ dx

Z  
��E� "�dE

� 2
Z
BZ
� � "�!�� � "�dk ^ dx:

The WR phase contributes

q
Z  

�WR�E�dE � �
Z
BZ
dk ^ dxH�1�

Z  
dE��E� "�

� �
Z
BZ
H�1���E� "�dk ^ dx:

Together, they add up to give Eq. (19).
Finally, let us present a streamlined derivation of the

rules for band splitting [8]. Consider, for example,

� �
1

q� 1
n

�
n

qn� 1
�

1

q
� h; h �

1

q�qn� 1�
;

with q odd and n even. We demonstrate the following
splitting rule: Of the q bands associated with the flux 1=q,
the center band splits into n� 1 subbands and the rest
into n subbands, together accounting for the qn� 1 band
associated with the flux �. The Diophantine equation of
[17] at flux 1=q bands implies that the Chern number of
the center band is 1� q, and all other bands have Chern
number 1. Recalling that the area of the Brillouin zone is
1=q, Eq. (6) gives that the center band splits into q�n� 1�
levels and the other bands split into qn levels each. We
recall also that the band dispersion functions have q
periods in the Brillouin zone, and therefore there are
186801-4
only qn� 1 distinct levels, each q-fold degenerate. (The
levels are broadened into bands by tunneling, which we
do not discuss. This does not modify the counting of
dimensions.) This example illustrates the algorithm
which generates the hierarchical structure of the
Hofstadter butterfly.
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