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I study the width of the Wannier ladder states, i.e, Bloch electrons in external homogeneous 
field. For periodic potentials with a finite number of gaps, a formula for the width is obtained 
showing that the width vanishes exponentially fast with the field in accordance with Zener 
tunneling. The case of infinitely many gaps is studied qualitatively, and it is argued that 
although the width decreases exponentially “on the average,” the detailed bahavior is very 
complicated. In particular the width oscillates over different orders of magnitude as the field 
changes slightly. The oscillations are a consequence of a resonance phenomenon. 

1. THE PROBLEM 

The Wannier ladder (also referred to as “Stark ladder” or “Wannier-Stark 
ladder”) (26,271 is a ladder of resonances for the one dimensional Bloch electron in 
a homogeneous electric’ field f :* 

Hf = p* + V(x) - fx, V(x + 2x) = V(x), s >o, 

. d (1.1) 

p=-tdx* 

The field gives the particle a uniform velocity over the Brillouin zone: I$ =J Since 
k + 1 is identified with k by Bragg reflection (the Brillouin zone is a torus) the 
motion appears periodic and suggests bound states.3 A simple tunneling argument 
says, however, that Hf supports no bound states, so the above argument indicates at 
best resonances for (1.1). The behavior of Hf under the shift x -+ x + 2n then says 
that these form ladders parallel to the real energy axis, and the distance between the 
rungs in any one ladder is 2x$ 

* Work supported in part by USNSF MCS-78-01885. 
I Another possible interpretation of the Hamiltonian is for neutrons in crystals under a gravitational 

field. A discussion of gravitational interference effects for neutrons is given in Ref. 1281 and references 
therein. 

2 The units are 2m = h = a/2x = 1, a the lattice spacing. The unit of charge is e* = nh*/ma and the 
unit of force xh*/ma3. 

’ It is instructive to contrast (I. I) with H = p + V(x) - fx. H is unitarily equivalent top (see footnote 
(5)) and has no resonances although it has the same symmetry properties as (I. I ). The catch is that 
p + V(x) has no gaps in the spectrum and does not Bragg scatter. 
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The question of existence of the Wannier ladder of resonances has attracted some 
attention [3, 7, 14, 20, 21, 30, 3 11. Although from a rigorous point of view this is still 
an open problem, considerable progress has been made, and the stand I shall take 
here, which is suggested by the current status of the problem, is that the ladders exist 
although a proof is still lacking.J 

The problem I address is calculating the lifetime of the Wannier ladder. Relatively 
few works have dealt directly with this question. The work of Berezhkovski and 
Ovchinikov [8] is the one closest to the one given here, but does not discuss the 
complicated f - 0 structure. I also feel that the treatment given here is simpler and 
more transparent. Finally, I do not replace the homogeneous field potential by a 
staircase which (81 does. In [3] the width is calculated for a soluble model. There is 
an error in this work which is corrected here in an appendix. More importantly, 
however, the soluble model involves a nonlocal periodic potential with sharp 
momentum cutoffs, and as a consequence the tunneling mechanisms may, in prin- 
ciple, be irrelevant to Hamiltonians with local periodic potentials. In ]7] rigorous 
estimates are given for eCirH v for times of orders of many periods of oscillations 
which suggest that the width is at most linear inffor small fields. Somewhat stronger 
results are described in [20]. One question, which [ 7, 201 leave open, is whether the 
width is exponentially small, as is the case in other tunneling phenomena [ 6. 13, 22 ]. 
There is numerical evidence [ 121 that for a Kronig-Penney model with step potential, 
mimicking the homogeneous field, which levels off out of the “crystal,” the Wannier 
ladder has indeed exponentially small width. 

It may be worthwhile to explain the physics behind the mathematical difficulty of 
calculating the width. The potential V(X) - fx is shown in Fig. 1.1. A localized state 
has to tunnel through a distance of order of l/‘to get to the region where, had it been 
a classical particle, it could sail through to infinity. The classical action associated 
with such tunneling is of order of I/f suggesting a width r- e-“/r The difficulty 
with this argument is that it disregards the fact that at each and every bump of the 

FIG. 1.1. Periodic plus a weak linear potential. 

4 From the work of Herbst and Howland [ 141 it follows that if V(X) is, e.g., a trigonometric 
polynomial, certain matrix elements of the resolvent of H, are meromorphic functions of the energy. The 
poles are the Wannier ladder. No Wannier ladder means that the function is entire which seems unlikely. 
Existence is of course weaker than observable as the above result of Herbst-Howland does not preclude 

the possibility that the resonances are extremely broad. 
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periodic potential the particle both reflects and transmits. Going through many 
bumps is a complicated interference phenomenon. For example, it is easy to arrange 
for n bumps to transmit better than a single bump. Moreover, since a quantum 
particle reflects from a bump even if classically it does not, the number of relevant 
bumps may exceed 0(1/f). 

Another aspect of the difficulty is that in the limit off-+ 0 the localized Wannier 
state disappears. For f = 0 there are only nonnormalizable Bloch waves. The 
following toy model illustrates what happens in a simpler setting. Figure 1.2a 
describes an attractive one dimensional “atom” in an electric field. Figure 1.2b 
describes a repulsive one dimensional atom in an electric field. In Fig. 1.2a there is a 
bound state for f = 0 which turns into a resonance for f > 0. The width of the 
resonance is r-f 2/3e-“if be cause the classical action for tunneling is proportional 
to l/f: In Fig. 1.2b there is a resonance for f f 0 which becomes an extended state as 
f + 0. The action for tunneling through the barrier is essentially a constant and 
r-f 2’3. The lifetime is a power of the field. Is the lifetime of the Wannier ladder 
more like Fig. 1.2a or like Fig. 1.2b? 

There is, of course, a tremendous literature in semiconductor hysics, starting with 
Zener [ 32 ] on tunneling between bands. I shall not attempt to reference this extensive 
body of knowledge, let alone review it. The reader may consult the review of 
Duke [ 1 I] and the extensive bibliography it gives. Zener tunneling is related to the 
Wannier ladder width via, e.g., the “tilted band” picture (Fig. 1.3). (The reader who is 
uncomfortable with this picture would do best to skip the next paragraph. No use of 
tilted bands is made again in this paper.) 

FIG. 1.2a. Tunneling of a bound state in an electric field. 

b 

FIG. 1.2b. Tunneling of a resonance state for a repulsive potential in an electric field. 
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FIG. 1.3. The tilted band picture for the Zener tunneling of electrons between bands. 

The Wannier ladder states are localized in an interval of order A&/f, AE the band 
width, and acquire their width by tunneling through an interval of order En/f with E, 
the gap size. For short times this describes the leaking from the original band. 
However, for two bands the electron will eventually leak to the original band: The 
lifetime is infinite. To correct for this, infinitely many bands have to be considered 
which make the analysis much harder. Nevertheless, already at this stage one can see 
how a sensitivity to f may come about: There will, in general, be a very high band 
with a Wannier state in resonance with the first band so something special happens. 
Which band it is depends on the field f in a sensitive way. In any case, as far as the 
literature on Zener tunneling goes, there is only little direct contact with the Wannier 
ladder problem. 

In Section 2, I shall describe which kind of periodic potentials lead to a tractable 
Hamiltonian. As I shall explain, the natural candidates such as the Kronig-Penney or 
the Mathieu potential (cos(x)) lead to an intractable Hamiltonian. In Section 3, I 
analyse the simplest class of such models, and obtain a formula for the width of the 
Wannier states, which essentially vindicates the intuition based on Zener tunneling. In 
Section 4, a qualitative analysis extends the treatment of Section 3 to more 
complicated models and cos x in particular. The conclusion is that f + 0 behavior is 
extremely complicated in an intrinsic way. In particular, it depends on certain 
“rationality” conditions on the field fi and varies over many scales as f changes 
slightly. Section 4 is the main part of this work. Section 5 is the conclusions and a 
summary. In an appendix, I give details on an explicitly soluble model with nonlocal 
periodic potential, and correct some errors in 131. This model has certain perculiar 
features, but does support the main point of this work, namely, the intricacy of the 
f-t 0 limit, and the large oscillations of the Wannier states lifetime. 

2. CHOOSING V 

The purpose of this section is to motivate the choice of periodic potentials V such 
that the analysis of H is simple. As I shall argue V(x) = cos(x) or the Kronig-Penney 
model lead to intractable Hamiltonians. 

The simple choices are periodic potentials with a finite number of gaps [ 18 1. This 
shall now be explained. 

It is natural to work in a representation that diagonalizes the Bloch Hamiltonian 
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H, and uses the Bloch waves In, k) as a basis. This is known as te crystal momentum 
or Adams representation and its formalism has been described in a basic review 
article by Blount [9]. Borrowing from [9] the formula for the position operator, x, in 
this representation one finds that H, takes the form 

H, = -if4 + c,(k) - fX,,(k), 

-f<k<;. 
(2.1) 

I-f,;)’ IS t e h B’ll rr ouin zone. E,(k) are the band functions, and in (2.1) a choice of 
gauge is made so that the intraband interaction of x, X,,(k), vanishes identically (the 
gauge freedom is related to ] nk) --t eimck) 1 nk) with p(k) periodic of period one).’ 

Setting X,,(k) = 0 in (2.1) gives (real) Wannier ladders as eigenvalues: 

Ej,n = 2njf + (E,), j = 0, f l,..., 

(E,) = ~~~,, c,(k) dk, 
(2.2) 

(F,) --t rz* as n + co. 

Depending on whetherfis rational or not, the (approximate) eigenvalues in (2.2) will 
not (will) be dense one the energy axis. The difficulty is that there is no method to 
compute how such eigenvalues move into the complex when the X,,,, interaction is 
switched on (a small divisor problem [ 19]).6 The available method, Fermi Golden 
Rule, applies to eigenvalues embedded in a continuous spectrum [25]. We shall now 
choose periodic potentials V(x), such that this is the case. 

Finite gap potentials are V(x) such that the Bloch Hamiltonian 

HB = P* + V(x) (2.3) 

has only a finite number of gaps in the spectrum. An example is Lames potential 

V(x) = m(m + l)(tK/2n)%nZ(Kx) (2.4) 

with K E I:” d&l - t2 sin’ o)-I’*. If m is a positive integer, the number of gaps is m 
[ 181. Finite gaps potentials are exceptional. “Most” periodic potentials, like cos(x) 
and the Kronig-Penney have all their gaps open [ 18, 241. As we shall see, an 

’ This is imprecise. A gauge may be chosen so that X,,(k) is k-independent. However. because 
1 X,,(k) dk (mod 2n) is gauge invariant, it is not always possible to make the constant vanish by gauge 

transformation. This subtlety is of no consequence for the sequel. I am indebted to J. Zak for this 
remark. See also Ref. 133 1. 

6 This is not precise. There are methods of accelerated convergence. associated with Kolmogorov. 

Arnold and Moser, that handle small divisors. A beautiful application of these techniques to quantum 
mechanics has been made by E. Dinaburg and Y. Sinai in Funckcional. Anal. i Priloien. 9 (1975), 8, for 
the almost periodic Schrodinger. However, there is, as yet, no application that I am aware of for a 

resonance equation. If a KAM approach to the Wannier ladder problem was to be made, there is little 
doubt that diophantine properties of the field would play an important role (f has to be badly approx- 
imated by rationals). This provides yet another indication of the curious dependence on 1: 
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m-gap potential in the X,, = 0 approximation will lead to m-Wannier ladders 
embedded in a continuous spectrum-as desired. 

For an isolated band, s,(k) and the Bloch waves are periodic in k with period 1. 
For this reason, Eq. (2.1) has been solved with periodic boundary conditions in k 
with period 1 to give Eq. (2.2). When two bands, s,-,(k) and c,(k), are not separated 
by a gap (but are still separated from e,- 2(k) and en+ ,(k)), it is convenient to 
combine them to a single band E,(k) over a doubled Brillouin zone -1 < k < 1. (For 
the isolated bands, say, en+*(k), keep the old Brillouin zone - i < k < $.) E,(k) and 
the associated Bloch waves have period 2 and so do the relvant boundary conditions 
in Eq. (2.1). In this manner, one finds different Brillouin zones for different bands. In 
particular, for an m-gap potential, where the first m-gaps are open and all other gaps 
are closed, there are m Brillouin zones - f < k < f and one infinite Brillouin zone 
-co<k<+oo: 

I$=--ifd,+c,(k)-flfXn,, l<l, n<m+ 1. (2.5) 

e,(k + 1) = c,(k) for n = l,..., m but c,+,(k) - k* as k-r 03. The wave function 
Y = (y,(k),..., y,,,(k), y,,,+,(k)) satisfies yn(k + 1) = v,(k) for all 1 < n < m and the 
norm is 

(Yl Y)= c [‘I’* I w,W* dk + I.=’ I vmt ,(k)l* dk. I!>, --l/2 ” -02 

X,, operates as follows: 

(Xn, v,),(k) = X,,(k) v,(k), n,I#m+ 1. 

K,m+~V/m+A,W= ? x,.,+,(k+j)y/,+,(k+j), 
jzz -00 

(X,+,,.~i/n)m+I(k)=X,+,.,(k)~,(k), 

X,,(k) = 43k). 

(2.6) 

(2.7) 

In addition 

X,,(k + 1) = X,,(k), 1 <n, I<m, 
(2.8) 

X n.m+,(k)+O, (kl+ 0~). 

The second assertion in (2.8) follows from the observation 

lx, ffBj = -2ip, 

X n.m+ ,(k) = + 2i(n, k I PI m + 1, k)l[E,(k) - em+ ,&)I. 
(2.9) 
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Now, the Bloch wave of the nth band In, k) is concentrated, in p-space, around 
p - fn and decays exponentially fast away from these points. Similarly, for large k 
the 1 m + 1, k) Bloch wave is concentrated in p space about p - &(k + m + 1) and 
decays exponentially away from these points. It follows that the matrix element in 
Eq. (2.9) is an overlap of exponentially small tails and so decays exponentially fast as 
Jk] + co. Note also that the denominator increases like k2. The fast decay of X,.,, , 
for large k will play an important role in Section 3. 

Now, the approximation X,,,(k) = 0 gives m-Wannier ladders embedded in a 
colztinuous spectrum which arises from -ifdk + c,+,(k), --03 < k < co. The width 
can therefore be calculated, in principle at least, by the Fermi Golden Rule. This we 
do in the next section. In the simplest case’ m = 1 calculating the width, to leading 
order in x reduces to an integral. 

3. ONE WANNIER LADDER 

We need a slight generalization of the Fermi Golden Rule. In its simplest setting 
the Fermi Golden Rule describes how one eigenvalue, embedded in the continuous 
spectrum, dissolves into a resonance. The situation at hand is complicated by the 
following two features. First, there are infinitely many such eigenvalues and the 
imaginary part results from a parallel shift of a whole ladder. Second, the distance 
between eigenvalues becomes small as the perturbation becomes small. More 
precisely, both the level spacing and the coupling to the continuum are proportional 
to the external fieldJ It turns out that there is a setting for the Fermi Golden Rule 
that can accommodate these features. It is associated with what is known as Livsic 
matrix and is described in detail in [ 161. In Eq. (3.1) to (3.4) below a brief 
recapitulation of this scheme is given, 

A comment on background might be useful. Resonances, even in the simplest 
settings, such as typical textbook examples, are often not understood on a rigorous 
level and some gained this status only recently [6]. One difficulty is what a resonance 
actually means. One natural definition-a state which eventually decays exponen- 
tially-turns out to be empty in most cases (whenever H is bounded below) and even 
if not, is often extremely hard to verify in concrete examples [34]. The route adopted 
here is via complex poles of the analytic continuation of certain matrix elements of 
the resolvent to the nonphysical sheet. Of course the physical content of such a 
definition is not a priori clear and it also suffers from the ambiguity of which matrix 
elements are to be chosen for the purpose of continuation. The virtues are that it is an 
excellent working tool and indeed most of the recent progress (even calculational!) 
relies on it. For a review the reader should consult Volume 4 of the Reed-Simon 
series and the special issue of the International Journal of Quantum Chemistry, 
Volume XIV, 1978. Here resonances are defined as the analytic continuation of the 

’ It is known that if M = 0, and the periodic potential has no gaps. then V(x) = cow; see Ref. 1 18 1. 
Clearly, there is no Wannier ladder in this case. 
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resolvent restricted to a fixed band subspace. In the one-gap case, write H, as a 2 X 2 
matrix of operators: 

(3.1) 

H, = -ifdk + c(k), - + < k < f and H, = -ifd, + g(p), -co < p < co. 

In the standard Fermi Golden Rule situation, H, in (3.1) is a number and not an 
operator with discrete spectrum. The analysis is, however, similar: 

R(E)= (H-E)-‘- (3.2) 

We shall look at poles of analytic continuations of R,(E). Since [ 16 1 

R,(E)= [H, -E- (JX,,)(H,-E)-‘(fX,,)l-‘, 

poles of R i(E) are “eigenvalues” of 

(3.3) 

h(E) = H, - K(E), 

K(E) = (fl,,W, - E)-‘WL)~ 

i.e., [h(E) - E] y(k) = 0, ty(k + 1) = u/(k). One verifies’ 

(H, - El-‘(P, P’) = +fe;‘(p) e,(p’) &P - ~‘1, 

ImE>O, 

Ep - 1.’ a(t) dt 
-0 

(3.4) 

(3.5) 

h(E) has no eigenvalues in the upper half plane.’ 
The analytic continuation of h(E) to the lower half plane requires only the analytic 

continuation of K(E). Formally, the analytic continuation is achieved by taking (3.5) 
for the kernel of (H, - E)-’ in K(E) even though it does not have the meaning of the 
resolvent of H, in the lower half plane. K(E) has kernel 

K(E)(k, k’) = ifx X,,(k + m) e;‘(k + m) e,(k’ + n) 
mn 

X X,,(k’ + n) B(k + m - k’ - n). (3.6) 

’ Note that -ifd, + F(p), F(p) real, is unitarily equivalent to -i/d, through U = exp(i/f) ,i 8(p) dp. 

the latter is diagonalized by Fourier transform. This is one way to derive (3.5). 
’ This is a consequence of the selfadjointness of H,. 
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For Im E > 0 all the terms with large k + m decay exponentially and the convergence 
of the sum in (3.6) follows “by inspection.” In continuing to Im E < 0 the e;’ term in 
(3.6) grows exponentially. Therefore, the sum in Eq. (3.6) converges only if X,, and 
XC, decay (at least) exponentially. This, however, was established in the previous 
section. With an exponential falloff for X,, one establishes that K(E) continues to 
Im > -cf with some c > 0. If, however, X,, decay faster than exponential Im E will 
continue to, say Im E > -c independent off: 

Note that h(E) has the nice feature that the original problem of embedded eigen- 
values, (3.1), has been converted to one of isolated eigenvalues perturbed by the 
nonselfadjoint operator K(E). The nonselfadjointness of K(E) is responsible for the 
possibility of complex eigenvalues. Moreover, one can now resort to the standard, 
time independent perturbation theory. For K(E) = 0 h(E) has the real eigenvalues 
given in Eq. (2.2). 

First order perturbation theory gives the Fermi Golden Rule 

AE cx -if (.lil dp dq iY(p - q)X,,(p)X,,(q) e(i’nsr91’c”-r’t’Jd’ 
(5, 

=-f ‘cc 2* _)- 
00 

&j dP dq g,(P) g,(q) 

2 f 
- x P - P 1’ ds g,(p) g,(q) dr, dq, . s (3.7) 

Since the second term in (3.7) is manifestly real 

ImE=-f jy dq g,(q) ’ < 0. 
a3 

(3.8) 

It is now clear from (3.8) and the equation for g,(q) that I-= - 2 Im E vanishes 
exponentially fast as f tends to zero. To actually calculate r to leading orders in f 
once 8(q) - c(q) and X,,(q) are given, one may use the method of stationary phase. 
Since in this work no attempt is made to establish the detailed properties of the bands 
of one-gap potentials, I stop short of such a calculation. The following remark, 
however, may be useful. As is well known, the method of stationary phase is sensitive 
to the. behavior near the stationary point which, in the present case, is the one of band 
crossing: K(t,) = &(tO). For many periodic potentials and cos(x) in particular, the 
bands are branches of one, multisheeted analytic function and band crossings occur 
at square-root branch points [ 171. For this reason it appears reasonable to assume 
W(P) - E(P) = ((l/4) E; + (E,/%) P ) ’ ‘I’. This is in fact the dispersion originally 
taken by Zener. However, I want to emphasize that there is no reason why this 
should be true for a one-gap potential. These are very special, and the general 
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arguments given in [ 171 do not apply. For all we know, the band crossing may even 
be a point of analyticity: 

B(P) - E(P) - E, + P2/2b p > 0. 

In this particular case, one finds 

1-- cj-“3 jAi[&,(2p/f2)““]12 

- cf’exp - $$*fifi 
(3.9) 

Of course, it is also possible, in principle at least, that the behavior near crossing is 
neither of the above. For this reason, Eq. (3.9) should be taken as an illustration only. 
In Ref. [lo] there is an extensive discussion of various tunneling formulas obtained 
by making different assumptions on the dispersion. They would all lead to 
I- - Af” exp(-D/f) with different constants A, a, and D depending on the model. For 
our purposes, the explicit form of these various constants is of secondary importance. 

4. WANNIER LADDER INTERACTIONS 

In the previous section periodic potentials with a single gap in the band spectrum 
were shown to give one Wannier ladder whose width is exponentially small with j 
This section deals with m such ladders. The new feature that arises for m > 2 is the 
interaction of ladders. As f changes the ladders slide past each other so that on 
intervals (l/f, l/f + const) there is at least one near crossing point. The tendency to 
avoid crossing leads to a complicated f -+ 0 behavior. 

The m-gaps periodic potentials give m-Wannier ladders. Mimicking the analysis in 
Section 3 gives the eigenvalue equation 

p(E) - q W(k) = 0, rV(k + 1) = Ye)* 

where v(k) = (y/,(k),..., v,,,(k)) and h(E) in the m x m matrix 

(4.1) 

[h(E)lj, = Jj,[-ifdk + ej(k)] -fljj,(k) -flj,(H, - W’flc,, j, IE l,..., m. (4.2) 

Viewing the last term in (4.2) as higher order suggests considering first 

h,(E) = -ifdk + A(k), 
(4.3) 

In analysing (4.3) it is useful to describe the ladder interaction in a canonical way. 
Let U(k) be the unitary transformation that diagonalizes A(k). h, takes the form 

4, = 3-4 + A,@, f) - fl,(k f)- (4.4) 
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-l/f 
m=2 

FIG. 4.1. Interacting (dashed line) and noninteracting (solid lines) ladders in the finite band approx- 

imation. 

where nJk,f) is a diagonal matrix and X, = iv-‘(k) d,U(k) is hermitian. 
Multiplying U(k) by a diagonal matrix one can always arrange for X, to vanish on 
the diagonal.5 

X,(k) vanishes identically if [,4(k), A(k’)] = 0. In this case h, can be readily 
diagonalized and gives intersecting curves, as in Fig. 4.1. The asymptotic slopes of 
the curves, as f + 0, is given by (sj). X, = 0 is therefore a situation where suitably 
“rotated” ladders do not interact at all. From this point of view X, is the “true” 
interladder interaction. Of course X, # 0 is atypical. With X, # 0 the eigenvalues tend 
to avoid crossings, lo and the qualitative spectrum is shown in the figure in dashed 
lines. It follows that each individual eigenvalue has an oscillatory component in l/f. 
For one eigenvalue, and m = 2, the picture is schematically as in Fig. 4.2. 

For m-Wannier ladders, the behavior becomes increasingly more complicated. 
Figure 4.3 describes schematically m = 3. A somewhat unusual feature of this 
problem is that ladders coming from arbitrarily high energy bands can not be 
neglected even though the coupling to such bands is weak, because as long as the 
coupling is not exactly zero, it will affect the behavior near crossing. This peculiar 
sensitivity is, of course, due to resonance. 

It seems more or less clear that the change in qualitative properties due to ladder 
interactions for h, have analogs in h(E). For tixedfl h(E) has resonances with width 
fj + co [ 14 1. Typically, levels coming from higher bands tend to have short lifetimes. 
But, near crossings there is mixing of levels which leads to mixing of the lifetimes. 

To calculate the lifetime an estimate for the wave function is needed. Let /w) be a 
normalized eigenvector of h(E) with eigenvalue E. Clearly 

= - Im(v I fX,,(H,. - El - ‘PC, I w). 
(4.5) 

Taking eigenvalues of ho as approximations to the exact eigenvectors gives an 
estimate for the lifetime. 

I0 A precise statement due to Wigner and van-Neumann 1291 is that for n x N selfadjoint matrices, 
those with two-fold degeneracy have codimension 3. The corresponding result in the nonselfadjoint case 

which is more relevant here is that the codimension is 2 15). 
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FIG. 4.2. The dependence on the electric field S of an interacting ladder energy in a two band 
approximation. 

E/f 

-I/f 

FIG. 4.3. The dependence on the electric field f  of an interacting ladder energy in a three band 
approximation. 

When X, = 0 the eigenfunctions of (4.4) are 

i exp - - 
G! 

.k 
0 

[/ij(k, f> - (Aj(k, f>) - 2Ol”) * 

,4,(k,f) -+ cj(k) as f + 0 and n is an integer. This situation is similar to the one 
encountered in Section 3, because of the absence of ladder interaction. One finds that 
each ladder has an exponentially small width, i.e., rj - e-‘i’f Since Dj # D, for j # k 
the lifetimes are of different orders of magnitudes in the sense that rj/rk diverges to 
infinity (or zero) as f -+ 0. 

What happens when XI # O? X, leads to mixing of the eigenfunctions and conse- 
quently to mixing of the lifetimes. 

For the sake of orientation consider what happens when complex eigenvalues of a 
2 X 2 matrix couple near crossings: 

M(t) = t y ( 
X 
ie” 

j . (4.7) 
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t is a real variable playing in (4.7) the role of (l/f). t = 0 is the point of near 
crossing. E is small and plays the role of the width. ” The two widths E and en, n > 1, 
are of different orders of magnitude as expected of the noninteracting lifetimes in the 
original problem. The interlevel coupling is hermitian, as X, is. The eigenvalues are 

+(t + ic + ic”) f t[(t + ie - ie”)2 + 4 )X/2]“2. (4.8) 

Suppose now that X becomes small with E. For t of order unity Eq. (4.8) gives 
imaginary parts of order E and of order IXI’s” (E” if 1x1’ < en-‘). In the terminology 
used above, the two lifetimes are on different scales. Near crossing, ItI < (IX], E), both 
imaginary parts in Eq. (4.8) are of order E if 2 (XI > E (and of order E and IX12/c if 
2 1x1 < E). The time scale for the decay of the more stable eigenvalue (l/e)” or 
(IXl’e)-’ shortens to E-’ (or to ~/1X1’). Note that if E > 2 IX/ the imaginary parts of 
(4.8) do not cross at f = 0 and the real parts do while if E < 2 IX\ it is the other way 
round. The situation is summarized in Fig. 4.4. 

One way to translate these results to the problem at hand is to estimate the mixings 
of the wave functions (4.6) due to X,, and plug in Eq. (3.5) to obtain the lifetime. 
However, since I am after qualitative results only it is possible to take a short cut. 
Identify E and E” with the rj of the two ladders and X with the Zener coupling 
between the two ladders. Indeed, the overlap between two crossing Wannier states 
due to the coupling X, is 

.I/2 I .-l/2 
xIj,(k’) dk’ exp;f IA,(k) - A I(k) - (n,i) + (A I) - 2rt~i.f + hm,f) dk, (4.9) 

0 

defining X in Eq. (4.7). Since the two levels are near crossing 

(~j) + 2~njf N (~0 + Znn,f (4.10) 

and the phase in (4.9) is proportional to the (band gap)/’ X2 is related to the Zener 
tunneling between thej and 1 bands. (Compare Eq. (3.8).) 

What does this imply for two Wannier ladders? There are two cases: 

(a) r2 4 1x1 when Zener tunneling between the two bands is fast while leaking 
to infinity of the second ladder is slow. (r, > r, is assumed.) 

(b) 1x1 << I-,. (This is the normal situation.) 

In case (a) the behavior of the imaginary part of the energy is shown schematically 
in Fig. 4.5. Thus a Wannier ladder that started with a narrow width, say,” IXl’r,, 
will, upon crossing with the second ladder, acquire its width r,. In the complex 
energy plane the ladder performs a “Virginia reel.” Since there is crossing at every 

” Of course E is a function of I in the original problem, but here it is convenient to regard them as 
independent variables. 

‘* This has the natural interpretation of the width being the product of probabilities of tunneling to the 
second band and then to the continuum. 
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FIG. 4.4. Interlevel interaction near “crossing.” When the coupling is strong relative to the 
imaginary parts (the two upper figures). the levels avoid crossing in the real part but the lifetimes cross. 

When the coupling is weak relative to the imaginary parts, it is the lifetimes that avoid crossing while 
the real parts cross. 

-f Inr 

Y--uv-L 

-l/f 

FIG. 4.5. The behavior of the lifetime for two interacting ladders as functions of the field f in the 
case that the two bands are strongly coupled to each other but weakly coupled to the rest of the 
spectrum. Note that the overall exponential decrease of the lifetime with f has been factored out. 
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--I/f 

FIG. 4.6. The same as in Fig. 4.5 except that now the two bands are weakly coupled to each other 
and one of them is strongly coupled to the continuum. 

interval (I/‘, l/f + 0( 1)) the lifetime will fluctuate between T, and r,. Although both 
ri and r, are small the fluctuations are large in the sense that r,/Tz + 0. 

In (b) the picture is different, and is shown schematically in Fig. 4.6. The ladder 
has width of order, say,12 IXI’T,, away from crossings. But, in a small interval of 
size proportional to JXJ (related to the Zener tunneling) around the crossing point the 
width increases and is of order IX/‘/T,. (r, < 1 is assumed.) This differs from the 
one in (a) in that as f becomes smaller the size of the intervals where the width is 
large shrinks fast to zero. However, in both cases near the crossing the width changes 
by many orders of magnitudes (a factor of (r,)2 in (b) and a factor of /X/* in (a)). 

This picture can now be generalized to m-ladders. As long as levels cross in pairs 
and there are no simultaneous crossings of three or more, the behavior near the 
crossing point is as if there are only the two relevant levels. The behavior of the 
width, for one level, is shown schematically in Fig. 4.7. 

Thus a Wannier level that started with a long lifetime will, upon crossing with a 
“wider” level k, acquire a shorter lifetime. The larger the number of gaps or ladders, 
the larger the available k’s, and the more frequent the crossing. 

Since r, + 03 as m does, while the coupling to high bands decreases with m. the 
interactions between the ladders effectively stop for m > m, with I-m0 of order one, 
say. However, m, increases as f becomes small, which implies that in the f + 0 limit 
there are essentially infinitely many interacting ladders. The spikes in Fig. 4.7 will 
presumablv be evervwhere dense aithough the total measure under them ma>, be quite 
small. 

FIG. 4.7. The schematic behavior of a Wannier state lifetime as a function of the field j’ when the 
field is small. After an overall exponential behavior is factored out one finds a complicated behavior 
ranging over many scales. 
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This suggests that for a typical periodic potential, such as the Mathieu 
V(X) = cos x, where there are infinitely many gaps, a Wannier ladder state has width 
that is sensitive tof: The width is a complicated function offin an essential way: It 
has Cantor-like behavior, 

Finally, I point out that the absense of scale, typical to “Cantor-like” behavior, is 
not uncommon in solid state physics. Other examples are Bloch electrons in magnetic 
fields [ 15 ] and almost periodic potentials [ 1, 21. 

5. CONCLUSIONS AND SUMMARY 

Qualitative arguments suggest that the lifetime of the Wannier ladder may have an 
intrinsically complicated behavior for small fields: The widths change dramatically as 
f changes slightly. This results from resonances between low and high bands. The 
analysis has, at its present stage, limited quantitative power. 

As is well known, the Wannier ladder has been a tantalizing experimental problem 
1301. The common attitude is that this is due to technical reasons having to do with 
the difficulty in realizing the idealization embodied in the one electron Hamiltonian 
(e.g., collision with phonons, impurities, many body effects, etc., may not be 
neglected). It has been suggested by some, and J. Zak in particular, that the problem 
may be one of principle, namely, that even the idealization in Eq. (1.1) may not have 
sufftciently long-lived resonances [ 3 11. ” For example, if the lifetime decreases 
linearly (or slower) with f the resolution of an individual level may be poor. 

The present work was partly motivated by a talk given by Eva Andrei at Caltech, 
in which she described a new experimental approach based in part on the following 
observation: In superlattices 1231, the ratio of band gaps to band widths can be made 
large compared to typical values in semiconductors. This should give the Wannier 
ladder states a longer lifetime. A second virtue is that the Brillouin zone in 
superlattices is very small, so with moderate fields one has the possibility that the 
electron may wrap around the Brillouin zone for many times before it scatters. 
Finally, the period potential is produced via an optical grating which causes the 
relevant Schrodinger equations to separate and gives a one dimensional problem. 

This spurred me to investigate afresh whether the width of the ladder in one 
dimension is given, as the folklore says, by a Zener type formula and so is exponen- 
tially small or whether it may be so wide for Zak’s criticism to apply. I should 
emphasize, however, that there does not appear to be a convincing argument, 
(3.4, 7, 201 notwithstanding, for the width to be linear with the field. 

For special periodic potentials which I discussed in Section 3, the behavior of the 
width is calculated and found to be essentially as predicted by the Zener argument, 
i.e., exponentially small. However, for typical periodic potentials, say, cos x, due to 
interactions of ladders coming from high energy band the width oscillates wildly as 

” More accurately, Zak pointed out that existing derivations of the Wannier ladders were inadequate. 
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function of the field. Thef-t 0 behavior is so bizarre that each individual level essen- 
tially covers presumably an exponentially narrow strip through wild oscillations. 

It should be stressed that only the one dimensional problem has been treated here. 
In quantum mechanics, spectral properties are sensitive to dimensionality so it is not 
obvious how, if at all, the one dimensional results transfer to three. Of course, the 
experiments with grating, sketched above, are one dimensional, but for most solid 
state applications this is not the case. +e a_dditi_onal complication in higher 
dimensions is that the semiclassical orbit k(t) =ft + k, may or may not cover the 
Brillouin zone ergodically according to the rationality of the directionz 

As is well known, a Bloch electron in homogeneous magnetic field exhibits 
sensitive dependence on B having to do with rationality of the flux through a unit cell 
[ 10, 15, 3 11. Here a vaguely related phenomenon takes place in one dimension and 
homogeneous electric field. The lifetime of the Wannier states is sensitive to the field. 

On the day this paper was sent to the printer, I received a letter from V. Grecchi 
which describes the results of numerical computations which seem to agree with the 
picture proposed in Section 4. Grecchi, together with E. Zironi, considered the 
following model: A finite one dimensional Kronig-Penny crystal (with attractive 
delta functions) and a step-like electric field applied to the crystal only: Namely, for 
a crystal of length L the potential is zero to the left of the crystal and is j2 to its 
right. 

In this model it is straightforward to calculate the transfer matrix for each unit cell. 
The transfer matrix for the whole crystal is then calculated numerically to yield the 
reflection coefficient. The resonances are defined as complex poles in the analytic 
continuation of the relection coefficient to complex energies. By considering a finite 
crystal and defining resonances this way Grecchi and Zironi achieve in fact a more 
realistic model than the one presented here (an infinite crystal and resonances as 
certain poles of the resolvent). It is therefore reassuring that both models seem to 
agree on the essential features. 

As f changes slightly (dflf N l/15), G recchi and .Zironi find changes in three 
orders of magnitude in J’. The plot of -f In Z-(f) as a function off reveals a bump 
and a step in the particular range of parameters they communicated to me. The step 
is presumably a consequence of a do-si-do of a narrow and a wide resonance (i.e., an 
exchange of widths) while the bump forms when the two resonances advance and 
retire as in a minuet. 

APPENDIX: A SOLUBLE MODEL 

Here I shall describe a soluble mode1 for the Wannier ladder with a nonlocal 
periodic potential V. The model was described first in [3] and is close in spirit to the 
finite gap potentials. Because of the nonlocal nature of V the situation here is 
different from that treated in the paper. The reason for the inclusion is to correct 
certain errors in [3]. 
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FIGURE A.1 

Let 

H, = p2/2m - fx, (A.11 

H=H,+oV, 64.2) 

where in momentum space V has kernel 

VP,P’)=&P-P’- l)Xor(P’)+~(P-P’+ 1)x-l.,(P’). (A-3) 

One verities that V= Vt and commutes with translation x+x + 271. The 
corresponding Bloch Hamiltonian has one gap in its spectrum. and the band 
spectrum is shown schematically in Fig. A. 1. The anomalous second band is a conse- 
quence of nonlocality. The resolvent for H, has kernel 

R,(E) = (H, - E)-‘(p. p’) = +ieF’(p) eJp’) B(p - p’), (A.41 

h-+/f) > 0, 

e,(p) = exp -i (Ep - p”/6m). 

Notice that under the complex translation x + x + a 

H,= T,HT,‘=H,-fu+o{e~‘“T..,~,, +eiaT,x-,,,), (A.51 

where Th is the translation p+ p + K. Equation (A-5) is relevant in that we shall 
look for resonances in the translation analytic sense, i.e., eigenvalues of H, for 
complex a but independent of u [ 141 for, say, Im a > 0 (for real a, H, has no eigen- 
values, of course). Schrodinger’s equation for the eigenvalues of H, is 

V,(P) = 4?‘(E) V’“‘V,(P), (A.61 

W,(P) = 0, P < -1, (A.6i) 

q,(P) = P jp [K; ‘(p’) eC’“1 (o,(p’ + 1) dp’, -1 <p<o, (A.6ii) 
.‘-, 
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P,(P) = cp,(O) + P 1’ ~Q;'(P') @I CP,(P' - 1) dp', 
-0 

rp,(P) = VA1 >3 1 < p, 

0 < p < 1, (A.6iii) 

(A.6iv) 

where 

(O(P) = e,(p) V(P), 
K,(p) = ei '(P> e& + 11, 
Q,(P) f e; '(~1 e,(p - l>- 

t=ESaf, 

j3 = -b/f. (A.7) 

If we choose Im a > -Im(E/f), I&) --) 0 as p --) 00 exponentially. Except for this 
boundary condition that dictates a minimal choice of Im a, the equations are a- 
independent since the square brackets in (A.6ii, iii) are. This is the notion of trans- 
lation analytic resonance. Differentiating (A.6ii) and substituting (A.6iii) and then 
differentiating again results in 

p”(p) + (d’nz(P! ) p’(p) -/3’(o(p) = 0, -1 < p < 0. (AA) 

This is the harmonic oscillator is disguise since 

V,(P) = LKE- 1 )/K,(P)1 “2 Y(s) 

gives 

2mvssp+f, 

(A.91 

hV(s)+[l-s2+ih] Y(s)=O, h s fJ2mv’. (A. 10) 

The limit f -+ 0 is therefore the semiclassical limit ZI + 0. 
The boundary condition, at p = -1, for Eq. (A.lO) is incorporated in the integral 

equation (A.6ii), which is a Dirichlet boundary condition. This gives 

Y(s) = YoW2) Y,(s) + YeW2) Y,(s), 

D = 1/2mv. 
(A.1 1) 

YO,, are the odd, even solutions of (A.lO). Now that Eq. (A.1 1) and (A.9) give (p(p) 
on -1 < p < 0, we use Eq. (A.6ii) to get q(p) on the interval 0 < p < 1 by differen- 
tiating 

MP + 1) = K,(P) c@(P), -1 <p<o. (A.12) 
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This can be rewritten as 

V'(P) = P&&J + 1) P(P + 11, -1 <p<o. (A.12’) 

Equation (A. 12’) gives the second boundary condition to make the differential 
equation (A. 10) a decent eigenvalue problem, by substituting p = -1. This relates 
(o/(-l) and o(O). Since ~(0) = 2Y,(D/2) Y,(D/2), Eq. (A. 12’) at p = -1 reads 

s -DlZ 
(A.13) 

Equation (A. 13) is an explicit equation for the resonance energies E. Clearly, if E 
solves (A. 13) so does E + 271f, giving the requisite ladder. 

To calculate E in the limit f + 0 we can, by (A.lO), use WKB to evaluate the rhs 
of (A.13). This gives 

i(1 + D/2 + ifi)“* 
sin(f/fi) (f” (1 + t2 - iA)“’ dt 

(A.14) 

So for r= -2 Im E we find 

exp I’/2f = R(h, D), (A.15) 

R(h, D) = (1 + 0’ - iz1)‘12 
I 

sinf l’D (1 + t2 - ifi)” dt 
-0 

We find 

N 2(1 t D2) 
cash (20) cos(2rp/h) ’ 

qz2jDdwdx, 
0 

tgh-*(e)>R> 1 (A.16) 

so r>, 0 as it should. Moreover, since h is proportional to f the width oscillates 
between 0 and cf with period l/f (Fig. A.2). This behavior is reminiscent of (although 
simpler than) the behavior discussed in Sections 4 and 5 for local potentials. 

FIGURE A.2 
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