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The quantized Hall conductance in a plateau is related to the index of a Fredholm
operator. In this paper we describe the generic “phase diagram” of Fredholm
indices associated with bounded and Toeplitz operators. We discuss the possible
relevance of our results to the phase diagram of disordered integer quantum Hall
systems. ©2001 American Institute of PhysicgDOI: 10.1063/1.1331317

The Hall conductance of integer quantum Hall systems is described mathematically by the
index of Fredholm operatorgé-or precise definitions, see belgvn this paper we investigate the
phase diagram of the Fredholm index for a few classes of operators. For the algebra of bounded
operators, little can be said beyond the fact that the phase diagrams can be arbitrarily complicated.
But for the algebra of Toeplitz operators, and other related classes of operators, we establish a kind
of a Gibbs phase ruleTypical of our results is the statement that if the system is governed by two
parameters, then one should expect jumps by one at phase boundaries and jumps by up to 2 at
triple points, while jumps by more than two should never be observed.

We relate this behavior to experimental results, conjectures and open problems that arise in
the context of the quantum Hall effe@@HE).?

In Sec. | we define Fredholm operators and their indices, and explore the different sorts of
phase diagrams that can arise. In Sec. Il we recall how Fredholm indices are related to the
conductance of Quantum Hall systems. In Sec. Ill we consider phase diagrams for general
bounded operators. In Sec. IV we describe the phase diagram for linear combination of shift
operators, and in Sec. V we consider general Toeplitz operators. In Sec. VI we discuss the phase
diagrams of soluble models related to the quantum Hall effect, and how they might be modified by
disorder. We also discuss the relevance of Toeplitz operators to the quantum Hall effect and
present some open problems.

I. FREDHOLM INDICES

A. Basic notions

The following is a brief description of Fredholm operators. For more details, see Refs. 3-5.
Definition 1: A bounded operatdf on a separable Hilbert space is Fredholm if there exists a
bounded operatd8 such that I-FB and 1- BF are compact. The Fredholm index is defined by

Index F)=dim Ker(F)—dim Ker(FT). (1)

The simplest example of a Fredholm operator with nonzero index is the unilateral shift
operator: Lete,,e; ,e,,... be thecanonical basis for the Hilbert spali&N), and let the operator

a act by
e,_1 Iif n>0,
a(ey) = . 2
(€n) 0 if n=0. @
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The reason for denoting the unilateral shift operatoahy its similarity to the harmonic oscillator
lowering operator. The adjoint & acts by

a'(e))=ens1- )

Since 1=aa'=a'a+|ey)(ey|, a is Fredholm. The kernel d is one dimensional and the kernel
of a' is zero dimensional. Thus Index(=1 and Indexa") = —1.

Although neither the dimension of KErnor that of Kef=" is stable under deformations Bf
the ingtsaxis stable. For any compact operaty for any bounded operat®, and fore sufficiently
small™

Index F) = Index F + eB+C). (4)

The following theorem is standard.
Theorem 1: If Aq,...A, are Fredholm operators, then the prodAgh,---A, is also Fred-
holm, and Index A;---A,) ==, Index(A;).
If F andF’ are Fredholm operators on the same Hilbert space, then there is a continuous path
of Fredholm operators frorfk to F’ if and only if Index(F)=Index(F"). (By continuous, we
mean relative to the operator noyrRut another way, the path components of Fred(the space
of Fredholm operators od, are indexed by the integers. Theéh path component is precisely the
set of Fredholm operators of index*

B. Phase diagrams

Our main concern in this paper is the following problem: Suppose one interpolates between
Fredholm operators with different indices. What can one say about the way the indices change?
Another way of phrasing this is: What is the phase diagram of Fredholm indices?

The answer to this question depends on the choice of the embedding space. In the space of
bounded operators, the “phases”—each labeled by its index—are open sets. But the boundary
between phases, as we shall explain, is rather wild: A point on the boundary of one phase is also
on the boundary oévery othemphase. This behavior is difficult to visualize.

Another class of embedding spaces that we consider is associated with Toeplitz operators with
various regularity assumptions on a class of functions. Here, at least if the functions are suffi-
ciently smooth, the boundaries between phases have a simple structure and the phase diagrams
satisfy simple rules that have the flavor of Gibbs' phase Tulgpical of our results is the
statement that under appropriate conditions, phases whose indices differ by one have a common
boundary whose codimension is one, and phases whose indices differ by two meet on a set of
codimension two, etc. Figure 1 is an example of one of the phase diagrams we obtain.

IIl. THE HALL CONDUCTANCE AS A FREDHOLM INDEX

Theories of the quantum Hall effect are roughly of two kinds: those that focus on the bulk of
the Hall and those that focus on the eddewas pointed out by Ref. 6 that the bulk-edge duality
is an illustration of thénolographic principle In either approach, the quantized Hall conductance
can be related to a Fredholm index.

A. Theories of the bulk

It is common knowledge that the Hall conductance can be identified with a Chern nimber.
For noninteracting electrons in two dimensions, this result is a special case of the fact that the Hall
conductance is a Fredholm index. Since this is not common knowledge, we recall how Chern
numbers and Fredholm indices are related.

For noninteracting electrons in two dimensions with the Fermi energy in a gap2TKN
showed that the Hall conductance for Landau Hamiltonians pétiiodic potential, is related to a
Chern numbef. The (magnetig Brillouin zone associated with the periodicity plays a role in this
theory. Because of this, the interpretation of the Hall conductance as a Chern number does not
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FIG. 1. A phase diagram for the Fredholm indexFof a2+ c,a+ cq.

carry over to random or even quasiperiodic potentials nor to “irrational magnetic fields,” all of
which have na(classical Brillouin zone. Although the quantization of the Hall conductance can
be established in these cases by a limiting argurétite interpretation as a Chern number does
not survive.

Bellissard!® in a work that had impact on noncommutative geomé&tri?, showed that the
Hall conductance witlergodic potential, be it periodic, quasiperiodic or random, and real mag-
netic field, rational or not, is a Fredholm index. This result was derived in Ref. 13 without using
noncommutative geometry.

More precisely, consider th@nfinite dimensionagl spectral projectiorP on the states below
the Fermi energ¥er for the one particle Hamiltonian in the plane. LUdtbe the multiplication
operatore'?, where# is the usual polar angle in the plarié.is a singular gauge transformation
that introduces an Aharonov—Bohm flux tube at the origin of the Euclidean plane. The Hall
conductance is the Fredholm index®E P thought of as an operator on the rangePot* Since
the Fredholm index does not need a Brillouin zone, this approach offers a natural framework that
accounts for the quantization and stability of the Hall conductance.

B. Theories of the edge

Finite quantum Hall systems have chiral edge curréht8Consider the case that the bound-
ary is a circle of circumferenck. The dispersion relation of the edge states is approximately
linear in a small neighborhood of the Fermi energy and the Hamiltonian for a single edge channel,
with velocity vg, is

.UF

H=—i T(?g . (5)
Now, the projectiorP is associated with the occupied edge staged™? with m=m,. Introduc-
ing a flux tube into the system is associated with the unithrye'? and send$i—UHUT. This
leads to the spectral flow of the edge stafeg.P is the unilateral shift operat@ and the number
of edge states that cross the Fermi energy is Iilg=1. By an argument of Halperinthis is
also the Hall conductance.

An extension of this idea to Harper models with an edge is described in Ref. 17.
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lll. THE PHASE DIAGRAM FOR BOUNDED OPERATORS

We begin with the space of bounded operators with the topology defined by the operator
norm, and we wish to understand the phase diagram of a generic family of such operators. As we
shall explain, the phase diagram in the entire space is quite wild: Any point on the boundary of the
“index=k" phase is also on the boundary of every other phase.

To understand this bizarre behavior, recall that the zero opefatuch is not a Fredholm
operatoy is on the boundary of every phase: Zero is the limiteas0, of ea", with a of Eq. (2),
for anyn. The point of the theorem is that similar behavior occurs at all boundary points.

Theorem 2: Let U,, be the set of Fredholm operators of indexEvery point on the boundary
of U, is also on the boundary &f,, for every integem.

Proof: Let A be a(not Fredholm operator on the boundary &f,,. Givene>0, we must find
an operator irlJ ,, within a distancee of A.

Suppose that the kernel and cokerneloére infinite dimensional, and that there is a gap in
the spectrum ofATA at zero.(If this is not the case, we may pertufbby an arbitrarily small
amount to make it sb.Now let B be a unitary map from the kernel &f to the cokernel. LeP
(P"), be the orthogonal projection onto k&) [coker(A)], and leta be a shift operator on
ker(A). For eachm=0, A(e) =A+ eBa™P has a bounded right inverse

AT ! P’+1(aT)mBTP’ (6)
P +AAT L7 € '

It follows that the cokernel ofA(€) is empty. It is easy to see that the kernel A&fe) is m
dimensional hence Inde&(€))=m. Similarly, A+ eB(a")™P has index—m. |

IV. LINEAR COMBINATIONS OF SHIFTS

In this section and the next we show that there are interesting and simple “generic” phase
diagrams of Fredholm indices in some finite-dimensional spaces, and in some infinite-dimensional
spaces with sufficiently fine topologies. We shall also see how control is lost as the space is
enlarged and the topology is coarsened.

A. Shift by one

We begin by considering linear combinations of the shift operatand the identity operator
1. That is, we consider the operator

A=cja+tcy,

wherec; andc, are constants.

Theorem 3: If |c,|#]co|, thenA is Fredholm. The index oh is 1 if |c,|>]|co| and zero if
lcil<|col. If |ci|=|col|, thenA is not Fredholm.

Proof: First supposécy|>|c,|. ThenA is invertible:

1.1 -1 o (-1 n
A t=co}(1+(ci/c)a) 1= —rr—a,
n=0 CO

as the sum converges absolutely. THulas neither kernel nor cokernel, and has index zero.

If |ci|>|col, then the kernel ofA is one dimensional, namely all multiples ¢f/)
=37_oZ0en, Wherezy=—cy/c,. Notice how the norm ofi) goes to infinity agzy| —1. How-
ever, A" has no kernel, since for any unit vect@), [|AT|#)||=|c;a|¢)+Co| ¢)|=|C1a'| )|
—|icol @) =|c1l—]|co|. Thus the index oA is 1.

If |c4]=|co|, thenA is at the boundary between index 1 and index O, and so cannot be
Fredholm. |
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B. Finite linear combinations of shifts

Next we consider linear combinations ofJa?,... up tosome fixeda". That is, we consider
operators of the form

A=cpa"+c,_ja" 1+ +cp. 7
This is closely related to the polynomial
p(z)=cpz"+-+-+co. 8)

Theorem 4: If none of the roots op lie on the unit circle, ther is Fredholm, and the index
of A equals the number of roots pfinside the unit circle, counted with multiplicity. If any of the
roots ofp lie on the unit circle, the is not Fredholm.

Proof: The polynomialp(z) factorizes asp(z):ckl'[!;l(z— ;), wherek is the degree op
(typically k=n, but it may happen that,=0). But thenAzckH!‘:1(a— ;). If none of the roots
Z; lie on the unit circle, then each term in the product is Fredholm, so the product is Fredholm, and
the index of the product is the sum of the indices of the factors. By Theorem 3, this exactly equals
the number of rootg; inside the unit circle.

If any of the roots lie on the unit circle, then a small perturbation can push those roots in or
out, yielding Fredholm operators with different indices. This borderline operator therefore cannot
be Fredholm. |

The last theorem easily generalizes to linear combination of left shifts and right shifts. The
index of an operator

A=c,a"+---+cjatcotc_jal+--+c_p(ahm (9)

equals the number of roots of

n

P(2)= > ¢? (10)

inside the unit circle, minus the degree of the polezat0 (that ism, unlessc_,,=0). This
follows from the fact that

A=(_2_ cia”m)(aT)m. (12)

Since there is no qualitative difference between combinations of left shifts and combinations
of both left and right shifts, we restrict our attention to left shifts only, and consider families of
operators of the forn(7).

Theorem 5: In the space of complex linear combinations af,1,.,a", almost every operator
is Fredholm. For everk=n, the points where the index can jump kyby which we mean the
common boundaries of regions of Fredholm operators whose indices diffler isya set of real
codimensiork.

In the space of real linear combinations o#,1,.,a", almost every operator is Fredholm. For
everyk=n, the points where the index jumps lyis a stratified space, the largest stratum of
which has real codimensidiik+ 1)/2|, where| x| denotes the integer part &f

Proof: Our parameter space is the space of coefficientsor equivalently the space of
polynomials of degreesn. This is eitherR"** or C"*1, depending on whether we allow real or
complex coefficients. In either case, the Sgtof Fredholm operators of indekis identical to the
set of polynomials withk roots inside the unit circle and the remaining-k roots outside(If
¢,=0, we say there is a root at infinity; &,=c,_,=0, there is a double root at infinity, and so
on. Counting these roots at infinity, there are always exactlgots in all) The boundary ofJ
is the set of polynomials with at moktroots inside the unit circle, at most-k outside the unit
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circle, and at least one root on the unit cird8trictly speaking, the zero polynomial is also on this
boundary. This is of such high codimension that it has no effect on the phase portrait we are
developing. We consider the common boundarydf andU,. . If k<k’, a nonvanishing poly-
nomial is on the boundary of botd, andU,, if it has at mostk roots inside the unit circle and

at mostn—k’ roots outside. It must therefore have at ledst k roots on the unit circle.

If we are working with complex coefficients, this is a set of codimenibrn k. The roots
themselves, together with an overall scale can be used to parametrize the space of polynomi-
als. For each root, being on the unit circle is codimension 1, while being inside or outside are open
conditions. Since the roots are independent, plakingk roots on the unit circle is codimension
k' —k.

If we are working with real coefficients, the roots are not independent, as nonreal roots come
in complex conjugate pairs. Thus, the common boundaty odndU,, breaks into several strata,
depending on how many real roots and how many complex conjugate pairs lie on the unit circle.
If k"—k is even, the biggest stratum consists of havikg—(k)/2 pairs, and has codimension
(k"—Kk)/2. If kK" —k is odd, the biggest stratum consists of havikg-{ k—1)/2 pairs and one real
root on the unit circle, and has codimensidd  1—k)/2. |

Theorem 5 is illustrated in Fig. 1, where the phase portrait is showm#fe2 with real
coefficients, withc, fixed to equal 1. The points above the parabcja c§/4 have complex
conjugate roots, while points below have real roots. Notice that the transition from index 2 to
index O occurs at an isolated point when the roots are real, but on an interval when the roots come
in complex-conjugate pairs.

It is clear that an almost identical theorem applies to linear combinations of left shiftsalp to
and right shifts up tog")™. The results are essentially independent @indm (their only effect
being to limit the size of possible jumps e m). We can therefore extend the results to the space
of all (finite) linear combinations of left and right shifts, which is topologized as the union over all
n andm of the spaces considered above. Our result, restated for that space, is

Theorem 6: In the space of finite complex linear combinations of left and right shifts of
arbitrary degree, almost every operator is Fredholm. For every inkegér the points where the
index can jump by (by which we mean the common boundaries of regions of Fredholm opera-
tors whose indices differ bl) is a set of real codimensidn

If we restrict the coefficients to be real, then, for eviesyn, the points where the index jumps
by k is a stratified space, the largest stratum of which has real codimdr&iori)/2].

V. TOEPLITZ OPERATORS

Although Theorem 6 refers to an infinite-dimensional space, this space is still extremely
small—each point is &inite linear combination of shifts. In this section we consid#inite linear
combinations of shifts. This is equivalent to studying Toeplitz operators.

Definition 2: The Hardy spacéd is the subspace df?(S') consisting of functions whose
Fourier transforms have no negative frequency terms. Equivalently, if weldii@'") a basis of
Fourier modes,=e'"?, where the integen ranges from— to «, thenH is the closed linear
span ofeg,eq,€5,... .

We think of St as sitting in the complex plane, with=e'’. Now let f(z) be a bounded,
measurable function o', and letP be the orthogonal projection from?(St) to H. If |y)

e H, then|fy) (pointwise produdtis in L%(S'), andP|fy)eH. We define the operatdr; by

Tl ) =Plf ). 12

Definition 3: An operator of the form(12) is called a Toeplitz operator. We call a Toeplitz
operatorT; continuous if the underlying functiofis continuous, and apply the terms “differen-
tiable,” “smooth,” and “analytic” similarly.

Remark:Toeplitz operators can be represented by semi-infinite matrices that have constant
entries on diagonals, and the various classes we have defined correspond to the decay away from
the main diagonal.
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Notice that

T €yrm If N+m=0, 13
e,= )
m™ |0 otherwise, (13

soTe, _is simply a shift bym, a right shift if m>0 and a left shift fm<0. All our results about
shifts can therefore be understood in the context of Toeplitz operators. Theorem 5 refers to
operatorsT;, wheref is a polynomial inz™* of limited degree. Theorem 6 considers polynomials
or arbitrary degree iz andz™ . We will see that the results carry over to analytic functions on an
annulus aroun&?, and to a lesser extent @ Toeplitz operators, but with results that weaken as
k is decreased.

Here are some standard results about Toeplitz operators. For details, see Ref. 4.

Theorem 7: A C! Toeplitz operatofT; is Fredholm if and only iff is everywhere nonzero on
the unit circle. In that case the index ©f is minus the winding number df around the origin,
namely

-1 df

Index T¢) = —Winding(f )= o | (14
S

Given the first half of the theorem, the equality of index and winding number is easy to
understand. We simply deforiinto a function of the fornf(z)=2z", while keepingf nonzero on
all of St throughout the deformatiofihis is always possible, see e.g., Ref).1& the process of
deformation, neither the index df; nor the winding number of can change, as they are topo-
logical invariants. Since the winding number Bf is n, and sinceT,»=(a")" (if n=0, a "
otherwise, which has index—n, the result follows.

We now consider function on S* that can be analytically continuddithout singularities
to an annulusy<|z|<r,, where the radiir,<1 andr,>1 are fixed. This is equivalent to

requiring that the Fourier coefﬁcienfa decay exponentially fast, i.e., that the sum

e}

2 [falrg+rd) (15

n=—

converges. For now we do not impose any reality constraints or other symmetries on the coeffi-
cientsf,,. This space of functions is a Banach space, with norm given by the sup norm on the
annulus. This norm is stronger than any Sobolev norm on the circle itself.

The analysis of the corresponding Toeplitz operators is straightforward and similar to the
proof of Theorem 5. Sincé has no poles in the annulus, we just have to keep track of the zeroes
of f. For the index ofT; to change, a zero df must cross the unit circle. For the index to jump
fromk tok’, |k—k’| zeroes must cross simultaneously. In the absence of symmetry, the locations
of the zeroes are independent and can be freely varied, so this is a codimgnsid-event.

If we impose a reality conditionf (z) =f(z), then zeroes appear only on the real axis or in
complex conjugate pairs. In that case, changing the index by 2 is merely a codimension-1 event.
Combining these observations we obtain the following theorem.

Theorem 8: In the space of Toeplitz operators that are analytic (fix@d) annulus containing
St, almost every operator is Fredholm. For every intekferl, the points where the index can
jump byk is a set of real codimensida

If we impose a reality conditiofi(z) = f(z) then, for everyjk=<n, the points where the index
jumps byk is a stratified space, the largest stratum of which has real codimeri&iorn)/2)|.

Finally we consider Toeplitz operators that are not necessarily analytic, but are intneds
differentiable, and we use tH@' norm. Our result is the following.
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Theorem 9: In the space of ToeplitE' operators, almost every operator is Fredholm. For
every integerk with 1<k=<2|+1, the points where the index can jump hyis a set of real
codimensiork. For every integek=2| + 1, the points where the index can jump kys a set of
real codimension 2+ 1.

In other words, our familiar results hold up to codimensidr-2, at which point we lose all
control of the change in index.

Proof: As long asf is everywhere nonzerdl; is Fredholm. To get a change in index,
therefore, we need one or more points whigrand possibly some derivatives bivith respect to
6, vanish. Suppose then that for some ane f(6,)=f'(6y)=---=f(""1(6,)=0 for somen
<I, but that thenth derivativef("(6,)+0. This is a codimensionr2-1 event, since we are
setting the real and imaginary partsrof/ariables to zero, but have a 1-parameter choice of points
where this can occur. Without loss of generality, we suppose thanthislerivative is real and
positive. By making &C'-small perturbation of, we can make the value éfhighly oscillatory
near 6,, thereby wrapping around the origin a number of times. However, sin€&-small
perturbation does not change thil derivative by much, the sign of the real partfofan change
at mostn times neard,, so the argument of can only increase or decrease vy or less. The
difference between these two extremes iigr2 or a change in winding number of

To change the index by an integer, therefore, we must have the function vanish to various
orders at several points, with the sum of the orders of vanishing adding Tthe generic event
is for f (but notf’) to vanish atm different points—this is a codimensian event, analogous to
havingm zeroes of a polynomial cross the unit circle simultaneouslgnatifferent points. All
other scenarios have higher codimension and are analogous to having two or more zeroes of the
zeroes crossing the unit circle at the same point.

The situation is different, however, when the functioand the first derivatives all vanish at
a pointé,. Then the higher-order derivatives are not protected f@rsmall perturbations and,
by making such a perturbation, we can chafhgeto a function that is identically zero on a small
neighborhood o= #,. By making a further small perturbation, we can médke&rap around the
origin as many times as we like neéas 6,. More specifically, iff is zero on an interval of size
5, then, for smalle, T(6) = f(6) + ee’N? will wrap around the origin approximateN 8/27 times
neard,. By pickingN as larggpositive or negativeas we wish, we can obtain arbitrarily positive
or negative indices. As long as we takesN ™', this perturbation will remain small in the'
norm. |

The results of this section can be extended, with minor modifications, to the algebra of matrix
valued Toeplitz operatctsvhere the index is related to the winding of the determinant of a matrix.

VI. QUANTUM HALL SYSTEMS

A. Phase diagrams of soluble models

Phase diagrams of the quantum Hall system describe the dependence of the Hall conductance
on parameters such as the magnetic figlénd the Fermi energie. There are three idealized
models where the phase diagram can be computed explicitly: The Landau Hamiltonian in the
Euclidean plane, whose phase diagram is shown in Fig. 2; The Landau Hamiltonian for the
hyperbolic plane, whose phase diagram is shown in Fig. 3 and Harper models in thé®Slane,
whose phase diagram is associated with the Hofstadter butterfly, shown in Fig. 4 for the case of a
tight binding model on a square lattice.

These are not models of Toeplitz operators, and none of these models are generic, especially
insofar as all of them have symmetries. However, we consider the extent to which they follow the
generic phase rules gémooth, complexToeplitz operators anyway. Where these rules are not
followed, we consider how a small generic perturbation might restore the rules.

The phase diagram for the Euclidean plane, Fig. 2 satisfies the generic phase rules away from
the lineB=0. On the lineB=0, however, the index takes an infinitely large jump, while at the
origin infinitely many phases meet. Both are forbidden by the phase rules.
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B

FIG. 2. The phase diagram for the Landau Hamiltonian in the Euclidean plane. The shaded wedge contains infinitely many,
thinner and thinner, wedges, with indices that gatte and accumulate at thg axis.

The phase diagram in the hyperbolic plane, Fig. 3, satisfies the generic phase rules outside the
shaded parabolic region. In the shaded region, the operator is not Fredholm and the index is not
defined. This is contrary to the phase rules since not being Fredholm is expected to be a codi-
mension 1 event.

The phase diagram of the Harper model, Fig. 4, is in serious conflict with the phase rule for
(smooth, complex Toeplitz operators: It is knowff, that for a full measure of values of the
magnetic field(irrational, of coursg the spectrum is a Cantor set. Since the boundary between
phases is contained in the spectrum, this suggests that any point on the boundary between any two
phases can also be on the boundary between infinitely many other phases. This is the sort of
behavior we observed for bounded operators with no restrictions. However, even in this wildness
there is some regularity. For example, the center of the figure is on the boundary of all phases with
odd indices while Theorem 2 allows for even indices as well.

B

FIG. 3. The phase diagram for the Landau Hamiltonian in the hyperbolic plane. In the shaded parabolic region the operator
is not Fredholm and the index is not defined.
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Flux
w

0
Energy

FIG. 4. The phase diagram for the Harper model associated with tight binding model on a square lattice the plane. Every
point on the boundary between two phases appears to be a point of accumulation of infinitely many phases. Figure taken,
with permission, from Ref. 31.

Remark:To see how Fig. 4 is obtained, we recall that for a tight-binding model withgfax
through a unit cell, the Hall conductanae, associated with thgth gap,(provided all gaps below
it are open satisfies the diophantine equafich

poj=j modq. (16)

A similar equation holds for gaps counted from above. In the Harper model it is KAdhat all
gaps except possibly for the central gap, are open.

Finally, consider the phase diagram of the Harper model with a disordered potential. This is
not soluble in the same sense that the previous models are, but there are numerical results for it.
Figure 5, which we borrowed from Ref. 23, shows the phase diagram for a split Landau level in
the Harper model with disorder. More precisely, the diagram describes a Harper model with
fractional flux £ through a unit cell.

Without disorder the conductaneeof each isolated band satisfies the Diophantine equation
similar to Eq.(16), except that for a split Landau bapdandq are interchanged. For flukthe
Diophantine equation fixes the conductances-@2) of the bands at the flanks andl at the
center. Zero disorder is, of course, not generic, and, indeed, there are bandssoaxisevhere
the index is not defined, something that the phase rules for Toeplitz forbid. Under perturbation the
diagram should deform so that these bands where the index is not defined disappear. This is indeed
the case. The diagram in Ref. 23 is obtained by drawiiges emanating from each band where
n is its Hall conductance.

In summary, the wild character of the phase diagram of the Harper model is tamed by disorder
and one finds, remarkably, a phase diagram compatible with the phase rules for Toeplitz operators.
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disorder

FIG. 5. The phase diagram for the Hall conductance of a split Landau level in Harper model with disorder after Ref. 23.

B. Perturbations of Landau Hamiltonians

Motivated by the effect of disorder on the Harper model phase portrait, we next consider the
effect of perturbations on the phase portraits of Landau Hamiltonians. Such perturbations will
modify the phase diagram near phase boundaries. As a consequence one expects a phase diagram
to be qualitatively modified near points of accumulation of phases, even if the perturbation is
small.

Figures 2 and 3 satisfy the phase rules in the region of large magnetic fields, but fail to do so
for small magnetic fields. We now examine how the two figures might be modified to satisfy the
phase rules everywhere.

The phase diagram of the Landau Hamiltonian in the plane, Fig. 2, will be significantly
modified near the lin=0 which, by symmetry, must lie in a region with index 0. A schematic
phase diagram that is generic and close to the Landau phase diagram is shown in Fig. 6.

The phase diagram in Fig. 3 has a region of full measure, the shaded parabola, where the
operator is not Fredholm. This is nongeneric, and unstable. A perturbation might produce a phase
diagram like Fig. 7. Note that the two perturbed diagrams, Figs. 6 and 7 are topologically iden-
tical.

How do the phase diagrams, Figs. 6 and 7, compare with what one finds in experiments on the
quantum Hall effect? For large magnetic fields one finds phase diagrams that resemble both Figs.

B

FIG. 6. A phase diagram that satisfies the phase rules of Toeplitz operators and is a perturbation of the phase diagram of
Landau Hamiltonian in the plane.
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E

B

FIG. 7. A phase diagram that satisfies the rules of Toeplitz operators and is a perturbation of the phase diagram of Landau
Hamiltonian in the hyperbolic plane.

2 and 6 and satisfy the phase rules. For weak magnetic fields one observes a transition to an
insulating phase. The emergence of an insulating phaise index 0 for small magnetic fields is

in agreement with the phase rule and Fig. 6. However, some experfthems numerical
simulation€® have been interpreted as giving evidence to direct transitions from a Hall conduc-
tance of 2 and 3 to the insulating phase. Taken literally, such transitions would violate the phase
rule. However, these results may merely indicate thatBfemall, the phase boundaries of Fig. 6

are too closely spaced to be distinguished numerically and experimentally.

C. Toeplitz operators

The main gap in our analysis is that we have not established a direct relation between the
algebra of Toeplitz operators, where our phase rules are proven, and the class of operators relevant
to (disorderedl quantum Hall systems.

At the minimum, Toeplitz operators serve as a natural mathematical laboratory. However,
there is a more direct justification for considering Toeplitz operators. The most elementary para-
digm for a quantum Hall system is the Landau Hamiltonian, in which case one has the following.

Theorem 10:Let P be a projection on the lowest Landau levelify and letU be the gauge
transformation associated with an Aharonov—Bohm flux tube at the origin. PhHP, acting on
the range ofP, differs from a Toeplitz operator by a compact operator.

Proof: A basis for the lowest Landau level is

1
D —

152
e 1472 n=o0. (17)
n!

As a consequence
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(m+1/2)! 1
<n|U|m>:5n,m+lm!—\/m~5n,m+l 1_% . (18)
|

In this case, a compact perturbation®UP is not only a Toeplitz operator; it is a simple
shift. However, if the flux tube is placed at a different point, or if the magnetic field is spread out
over a finite region, then we obtain a more general Toeplitz operat®t.isf a projection on a
higher Landau level, the same results hold but the calculation is more involveds H projection
onto multiple Landau levels, theRUP is a compact perturbation of a direct sum of Toeplitz
operators, one for each Landau level.

This is not to say that Toeplitz operators apply directly to all systems, only that they apply to
many. There are basic models whé&®& P fails to be Toeplitz. Indeed, an elementary model for
localization is a random multiplication operator, i.el=V,, on |(Z%). This is a caricature of
strong disorder. The eigenfunctions are now concentrated at lattice points. The projéction
(below a Fermi energyis

P=2 [n)Xnl, (19

where the sum is over a random set of lattice points wWith(n)<E, in Z%. PUP is now a
multiplication by a phase. It is an invertible operator and has Fredholm index zero. It is, however,
not Toeplitz.

D. Open problems

It is tempting to directly study the index d®UP, for spectral projection$ and unitary
operatordJ, rather than rely on generic results based on Toeplitz operators. There are, however,
several technical obstacles. The first is tR&i P is thought of as acting on Rand® which is a
Hilbert space in its own right. This means that a deformation of the parameters of the system leads
to a deformation of the space RanBe In contrast, our strategy so far is formulated on a fixed
space. The second obstacle is that our results depend on continuity properties while spectral
projections tend to have bad continuity properties that come from a discontinuity at the Fermi
energy.

To overcome the first problem one can repl&dP by an operatoF defined on the entire
Hilbert space with coinciding index. There is large arbitrariness in chodsingut a natural
choice is

F=PUP+P, =PUP+P?=1+P(U—-1)P, (20)

whereP, =1-P.
To overcome the second problem one may want to repfaty a Fermi function. That is,
replaceP by a smooth version

P(B.B.EF)= (21)

exp(B(H(B)—Eg))+1°

In that case, howeveP? is no longer equal t®, and the different expressions fBrin Eq. (20)
are no longer equivalent. For each choice, it would be interesting to derive a phase portrait for
index (F) as the temperature, Fermi energy, magnetic field and degree of randomness are varied.

E. Concluding remark

In this paper we explored what can be said about generic phase diagrams of indices of
Fredholm operators. We did not use the fact that the Fredholm operators relevant to the quantum
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Hall effect are of the fornP UP, with P a spectral projection of an ergodic ScHirger operator.
Rather, we considered the index of several natural cladssesalgebragsof operators. The weak-

ness of this strategy is that we cannot say much that is definitive about quantum Hall systems. In
its defense, we recall that replacing the particular by the generic proved to be useful in quantum
physics in the hands of Wigner, von Neuman, and DySoff Whether it will turn out to be useful

for quantum Hall effect remains to be seen.
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