
y the
e
unded

licated.
a kind
two
to 2 at

rise in

rts of
to the
eneral
f shift
phase

ed by
ct and

3–5.
ts a
by

shift

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 42, NUMBER 1 JANUARY 2001

Downloade
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The quantized Hall conductance in a plateau is related to the index of a Fredholm
operator. In this paper we describe the generic ‘‘phase diagram’’ of Fredholm
indices associated with bounded and Toeplitz operators. We discuss the possible
relevance of our results to the phase diagram of disordered integer quantum Hall
systems. ©2001 American Institute of Physics.@DOI: 10.1063/1.1331317#

The Hall conductance of integer quantum Hall systems is described mathematically b
index of Fredholm operators.~For precise definitions, see below.! In this paper we investigate th
phase diagram of the Fredholm index for a few classes of operators. For the algebra of bo
operators, little can be said beyond the fact that the phase diagrams can be arbitrarily comp
But for the algebra of Toeplitz operators, and other related classes of operators, we establish
of a Gibbs phase rule.1 Typical of our results is the statement that if the system is governed by
parameters, then one should expect jumps by one at phase boundaries and jumps by up
triple points, while jumps by more than two should never be observed.

We relate this behavior to experimental results, conjectures and open problems that a
the context of the quantum Hall effect~QHE!.2

In Sec. I we define Fredholm operators and their indices, and explore the different so
phase diagrams that can arise. In Sec. II we recall how Fredholm indices are related
conductance of Quantum Hall systems. In Sec. III we consider phase diagrams for g
bounded operators. In Sec. IV we describe the phase diagram for linear combination o
operators, and in Sec. V we consider general Toeplitz operators. In Sec. VI we discuss the
diagrams of soluble models related to the quantum Hall effect, and how they might be modifi
disorder. We also discuss the relevance of Toeplitz operators to the quantum Hall effe
present some open problems.

I. FREDHOLM INDICES

A. Basic notions

The following is a brief description of Fredholm operators. For more details, see Refs.
Definition 1:A bounded operatorF on a separable Hilbert space is Fredholm if there exis

bounded operatorB such that 12FB and 12BF are compact. The Fredholm index is defined

Index~F !5dim Ker~F !2dim Ker~F†!. ~1!

The simplest example of a Fredholm operator with nonzero index is the unilateral
operator: Lete0 ,e1 ,e2 ,... be thecanonical basis for the Hilbert spacel 2(N), and let the operator
a act by

a~en!5H en21 if n.0,

0 if n50.
~2!

a!On leave from the Department of Mathematics, University of Texas, Austin, TX 78712.
10022-2488/2001/42(1)/1/14/$18.00 © 2001 American Institute of Physics

d 18 Jan 2001  to 128.139.197.31.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.



r

el

s path

e

tween
ange?

pace of
undary
is also

rs with
suffi-
iagrams

ommon
set of

lk of
ity
ce

ber.
e Hall

Chern

N

is
es not

2 J. Math. Phys., Vol. 42, No. 1, January 2001 J. E. Avron and L. Sadun

Downloade
The reason for denoting the unilateral shift operator bya is its similarity to the harmonic oscillato
lowering operator. The adjoint ofa acts by

a†~en!5en11 . ~3!

Since 15aa†5a†a1ue0&^e0u, a is Fredholm. The kernel ofa is one dimensional and the kern
of a† is zero dimensional. Thus Index(a)51 and Index(a†)521.

Although neither the dimension of KerF nor that of KerF† is stable under deformations ofF,
the indexis stable. For any compact operatorC, for any bounded operatorB, and fore sufficiently
small:4,5

Index~F !5Index~F1eB1C!. ~4!

The following theorem is standard.
Theorem 1: If A1 ,...An are Fredholm operators, then the productA1A2¯An is also Fred-

holm, and Index (A1¯An)5( i 51
n Index(Ai).

If F andF8 are Fredholm operators on the same Hilbert space, then there is a continuou
of Fredholm operators fromF to F8 if and only if Index(F)5Index(F8). ~By continuous, we
mean relative to the operator norm.! Put another way, the path components of Fred(H), the space
of Fredholm operators onH, are indexed by the integers. Thenth path component is precisely th
set of Fredholm operators of indexn.4

B. Phase diagrams

Our main concern in this paper is the following problem: Suppose one interpolates be
Fredholm operators with different indices. What can one say about the way the indices ch
Another way of phrasing this is: What is the phase diagram of Fredholm indices?

The answer to this question depends on the choice of the embedding space. In the s
bounded operators, the ‘‘phases’’—each labeled by its index—are open sets. But the bo
between phases, as we shall explain, is rather wild: A point on the boundary of one phase
on the boundary ofevery otherphase. This behavior is difficult to visualize.

Another class of embedding spaces that we consider is associated with Toeplitz operato
various regularity assumptions on a class of functions. Here, at least if the functions are
ciently smooth, the boundaries between phases have a simple structure and the phase d
satisfy simple rules that have the flavor of Gibbs’ phase rule.1 Typical of our results is the
statement that under appropriate conditions, phases whose indices differ by one have a c
boundary whose codimension is one, and phases whose indices differ by two meet on a
codimension two, etc. Figure 1 is an example of one of the phase diagrams we obtain.

II. THE HALL CONDUCTANCE AS A FREDHOLM INDEX

Theories of the quantum Hall effect are roughly of two kinds: those that focus on the bu
the Hall and those that focus on the edge.2 It was pointed out by Ref. 6 that the bulk-edge dual
is an illustration of theholographic principle. In either approach, the quantized Hall conductan
can be related to a Fredholm index.

A. Theories of the bulk

It is common knowledge that the Hall conductance can be identified with a Chern num7

For noninteracting electrons in two dimensions, this result is a special case of the fact that th
conductance is a Fredholm index. Since this is not common knowledge, we recall how
numbers and Fredholm indices are related.

For noninteracting electrons in two dimensions with the Fermi energy in a gap, TK2,
showed that the Hall conductance for Landau Hamiltonians withperiodicpotential, is related to a
Chern number.8 The ~magnetic! Brillouin zone associated with the periodicity plays a role in th
theory. Because of this, the interpretation of the Hall conductance as a Chern number do
d 18 Jan 2001  to 128.139.197.31.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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carry over to random or even quasiperiodic potentials nor to ‘‘irrational magnetic fields,’’ a
which have no~classical! Brillouin zone. Although the quantization of the Hall conductance c
be established in these cases by a limiting argument,9,7 the interpretation as a Chern number do
not survive.

Bellissard,10 in a work that had impact on noncommutative geometry,11,12 showed that the
Hall conductance withergodic potential, be it periodic, quasiperiodic or random, and real m
netic field, rational or not, is a Fredholm index. This result was derived in Ref. 13 without u
noncommutative geometry.

More precisely, consider the~infinite dimensional! spectral projectionP on the states below
the Fermi energyEF for the one particle Hamiltonian in the plane. LetU be the multiplication
operatoreiu, whereu is the usual polar angle in the plane.U is a singular gauge transformatio
that introduces an Aharonov–Bohm flux tube at the origin of the Euclidean plane. The
conductance is the Fredholm index ofPUP thought of as an operator on the range ofP.14 Since
the Fredholm index does not need a Brillouin zone, this approach offers a natural framewo
accounts for the quantization and stability of the Hall conductance.

B. Theories of the edge

Finite quantum Hall systems have chiral edge currents.15,16 Consider the case that the boun
ary is a circle of circumferenceL. The dispersion relation of the edge states is approxima
linear in a small neighborhood of the Fermi energy and the Hamiltonian for a single edge ch
with velocity vF , is

H52 i
vF

L
]u . ~5!

Now, the projectionP is associated with the occupied edge states,e2 imu with m>m0 . Introduc-
ing a flux tube into the system is associated with the unitaryU5eiu and sendsH→UHU†. This
leads to the spectral flow of the edge states.PUP is the unilateral shift operatora and the number
of edge states that cross the Fermi energy is IndexPUP51. By an argument of Halperin15 this is
also the Hall conductance.

An extension of this idea to Harper models with an edge is described in Ref. 17.

FIG. 1. A phase diagram for the Fredholm index ofF5a21c1a1c0 .
d 18 Jan 2001  to 128.139.197.31.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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III. THE PHASE DIAGRAM FOR BOUNDED OPERATORS

We begin with the space of bounded operators with the topology defined by the op
norm, and we wish to understand the phase diagram of a generic family of such operators.
shall explain, the phase diagram in the entire space is quite wild: Any point on the boundary
‘‘index5k’’ phase is also on the boundary of every other phase.

To understand this bizarre behavior, recall that the zero operator~which is not a Fredholm
operator! is on the boundary of every phase: Zero is the limit, as«→0, of «an, with a of Eq. ~2!,
for any n. The point of the theorem is that similar behavior occurs at all boundary points.

Theorem 2: Let Un be the set of Fredholm operators of indexn. Every point on the boundary
of Un is also on the boundary ofUm , for every integerm.

Proof: Let A be a~not Fredholm! operator on the boundary ofUn . Givene.0, we must find
an operator inUm within a distancee of A.

Suppose that the kernel and cokernel ofA are infinite dimensional, and that there is a gap
the spectrum ofA†A at zero.~If this is not the case, we may perturbA by an arbitrarily small
amount to make it so.! Now let B be a unitary map from the kernel ofA to the cokernel. LetP
(P8), be the orthogonal projection onto ker(A) @coker(A)#, and let a be a shift operator on
ker(A). For eachm>0, A(e)5A1eBamP has a bounded right inverse

A†
1

P81AA† P'8 1
1

e
~a†!mB†P8. ~6!

It follows that the cokernel ofA(e) is empty. It is easy to see that the kernel ofA(e) is m
dimensional hence Index(A(e))5m. Similarly, A1eB(a†)mP has index2m. j

IV. LINEAR COMBINATIONS OF SHIFTS

In this section and the next we show that there are interesting and simple ‘‘generic’’ p
diagrams of Fredholm indices in some finite-dimensional spaces, and in some infinite-dimen
spaces with sufficiently fine topologies. We shall also see how control is lost as the sp
enlarged and the topology is coarsened.

A. Shift by one

We begin by considering linear combinations of the shift operatora and the identity operato
1. That is, we consider the operator

A5c1a1c0 ,

wherec1 andc0 are constants.
Theorem 3: If uc1uÞuc0u, thenA is Fredholm. The index ofA is 1 if uc1u.uc0u and zero if

uc1u,uc0u. If uc1u5uc0u, thenA is not Fredholm.
Proof: First supposeuc0u.uc1u. ThenA is invertible:

A215c0
21~11~c1 /c0!a!215 (

n50

`
~21!nc1

n

c0
n11 an,

as the sum converges absolutely. ThusA has neither kernel nor cokernel, and has index zero
If uc1u.uc0u, then the kernel ofA is one dimensional, namely all multiples ofuc&

5(n50
` z0

nen , wherez052c0 /c1 . Notice how the norm ofuc& goes to infinity asuz0u→1. How-
ever, A† has no kernel, since for any unit vectoruf&, iA†uf&i5i c̄1a†uf&1 c̄0uf&i>i c̄1a†uf&i
2i c̄0uf&i5uc1u2uc0u. Thus the index ofA is 1.

If uc1u5uc0u, then A is at the boundary between index 1 and index 0, and so canno
Fredholm. j
d 18 Jan 2001  to 128.139.197.31.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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B. Finite linear combinations of shifts

Next we consider linear combinations of 1,a,a2,... up tosome fixedan. That is, we consider
operators of the form

A5cnan1cn21an211¯1c0 . ~7!

This is closely related to the polynomial

p~z!5cnzn1¯1c0 . ~8!

Theorem 4: If none of the roots ofp lie on the unit circle, thenA is Fredholm, and the index
of A equals the number of roots ofp inside the unit circle, counted with multiplicity. If any of th
roots ofp lie on the unit circle, thenA is not Fredholm.

Proof: The polynomialp(z) factorizes asp(z)5ck) i 51
k (z2z i), wherek is the degree ofp

~typically k5n, but it may happen thatcn50!. But thenA5ck) i 51
k (a2z i). If none of the roots

z i lie on the unit circle, then each term in the product is Fredholm, so the product is Fredholm
the index of the product is the sum of the indices of the factors. By Theorem 3, this exactly e
the number of rootsz i inside the unit circle.

If any of the roots lie on the unit circle, then a small perturbation can push those roots
out, yielding Fredholm operators with different indices. This borderline operator therefore c
be Fredholm. j

The last theorem easily generalizes to linear combination of left shifts and right shifts
index of an operator

A5cnan1¯1c1a1c01c21a†1¯1c2m~a†!m ~9!

equals the number of roots of

p~z!5 (
i 52m

n

ciz
i ~10!

inside the unit circle, minus the degree of the pole atz50 ~that is m, unlessc2m50!. This
follows from the fact that

A5S (
i 52m

n

cia
i 1mD ~a†!m. ~11!

Since there is no qualitative difference between combinations of left shifts and combina
of both left and right shifts, we restrict our attention to left shifts only, and consider familie
operators of the form~7!.

Theorem 5: In the space of complex linear combinations of 1,a,...,an, almost every operato
is Fredholm. For everyk<n, the points where the index can jump byk ~by which we mean the
common boundaries of regions of Fredholm operators whose indices differ byk! is a set of real
codimensionk.

In the space of real linear combinations of 1,a,...,an, almost every operator is Fredholm. F
every k<n, the points where the index jumps byk is a stratified space, the largest stratum
which has real codimensionb(k11)/2c, wherebxc denotes the integer part ofx.

Proof: Our parameter space is the space of coefficientsci , or equivalently the space o
polynomials of degree<n. This is eitherRn11 or Cn11, depending on whether we allow real o
complex coefficients. In either case, the setUk of Fredholm operators of indexk is identical to the
set of polynomials withk roots inside the unit circle and the remainingn2k roots outside.~If
cn50, we say there is a root at infinity; ifcn5cn2150, there is a double root at infinity, and s
on. Counting these roots at infinity, there are always exactlyn roots in all.! The boundary ofUk

is the set of polynomials with at mostk roots inside the unit circle, at mostn2k outside the unit
d 18 Jan 2001  to 128.139.197.31.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.



is
e are

mi-
open

n

come
,
circle.
n
l

2 to
s come

to

ace
r all

of

era-

s

mely

tz
-

nstant
ay from

6 J. Math. Phys., Vol. 42, No. 1, January 2001 J. E. Avron and L. Sadun

Downloade
circle, and at least one root on the unit circle.~Strictly speaking, the zero polynomial is also on th
boundary. This is of such high codimension that it has no effect on the phase portrait w
developing.! We consider the common boundary ofUk andUk8 . If k,k8, a nonvanishing poly-
nomial is on the boundary of bothUk andUk8 if it has at mostk roots inside the unit circle and
at mostn2k8 roots outside. It must therefore have at leastk82k roots on the unit circle.

If we are working with complex coefficients, this is a set of codimensionk82k. The roots
themselves, together with an overall scalecn , can be used to parametrize the space of polyno
als. For each root, being on the unit circle is codimension 1, while being inside or outside are
conditions. Since the roots are independent, placingk82k roots on the unit circle is codimensio
k82k.

If we are working with real coefficients, the roots are not independent, as nonreal roots
in complex conjugate pairs. Thus, the common boundary ofUk andUk8 breaks into several strata
depending on how many real roots and how many complex conjugate pairs lie on the unit
If k82k is even, the biggest stratum consists of having (k82k)/2 pairs, and has codimensio
(k82k)/2. If k82k is odd, the biggest stratum consists of having (k82k21)/2 pairs and one rea
root on the unit circle, and has codimension (k8112k)/2. j

Theorem 5 is illustrated in Fig. 1, where the phase portrait is shown forn52 with real
coefficients, withc2 fixed to equal 1. The points above the parabolac05c1

2/4 have complex
conjugate roots, while points below have real roots. Notice that the transition from index
index 0 occurs at an isolated point when the roots are real, but on an interval when the root
in complex-conjugate pairs.

It is clear that an almost identical theorem applies to linear combinations of left shifts upan

and right shifts up to (a†)m. The results are essentially independent ofn andm ~their only effect
being to limit the size of possible jumps ton1m!. We can therefore extend the results to the sp
of all ~finite! linear combinations of left and right shifts, which is topologized as the union ove
n andm of the spaces considered above. Our result, restated for that space, is

Theorem 6: In the space of finite complex linear combinations of left and right shifts
arbitrary degree, almost every operator is Fredholm. For every integerk>1, the points where the
index can jump byk ~by which we mean the common boundaries of regions of Fredholm op
tors whose indices differ byk! is a set of real codimensionk.

If we restrict the coefficients to be real, then, for everyk<n, the points where the index jump
by k is a stratified space, the largest stratum of which has real codimensionb(k11)/2c.

V. TOEPLITZ OPERATORS

Although Theorem 6 refers to an infinite-dimensional space, this space is still extre
small—each point is afinite linear combination of shifts. In this section we considerinfinite linear
combinations of shifts. This is equivalent to studying Toeplitz operators.

Definition 2: The Hardy spaceH is the subspace ofL2(S1) consisting of functions whose
Fourier transforms have no negative frequency terms. Equivalently, if we giveL2(S1) a basis of
Fourier modesen5einu, where the integern ranges from2` to `, thenH is the closed linear
span ofe0 ,e1 ,e2 ,... .

We think of S1 as sitting in the complex plane, withz5eiu. Now let f (z) be a bounded,
measurable function onS1, and let P be the orthogonal projection fromL2(S1) to H. If uc&
PH, thenu f c& ~pointwise product! is in L2(S1), andPu f c&PH. We define the operatorTf by

Tf uc&5Pu f c&. ~12!

Definition 3: An operator of the form~12! is called a Toeplitz operator. We call a Toepli
operatorTf continuous if the underlying functionf is continuous, and apply the terms ‘‘differen
tiable,’’ ‘‘smooth,’’ and ‘‘analytic’’ similarly.

Remark:Toeplitz operators can be represented by semi-infinite matrices that have co
entries on diagonals, and the various classes we have defined correspond to the decay aw
the main diagonal.
d 18 Jan 2001  to 128.139.197.31.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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Notice that

Tem
en5H en1m if n1m>0,

0 otherwise,
~13!

so Tem
is simply a shift bym, a right shift if m.0 and a left shift ifm,0. All our results about

shifts can therefore be understood in the context of Toeplitz operators. Theorem 5 ref
operatorsTf , wheref is a polynomial inz21 of limited degree. Theorem 6 considers polynomia
or arbitrary degree inz andz21. We will see that the results carry over to analytic functions on
annulus aroundS1, and to a lesser extent toCk Toeplitz operators, but with results that weaken
k is decreased.

Here are some standard results about Toeplitz operators. For details, see Ref. 4.
Theorem 7: A C1 Toeplitz operatorTf is Fredholm if and only iff is everywhere nonzero on

the unit circle. In that case the index ofTf is minus the winding number off around the origin,
namely

Index~Tf !52Winding~ f !5
21

2p i ES1

d f

f
. ~14!

Given the first half of the theorem, the equality of index and winding number is eas
understand. We simply deformf to a function of the formf (z)5zn, while keepingf nonzero on
all of S1 throughout the deformation~this is always possible, see e.g., Ref. 18!. In the process of
deformation, neither the index ofTf nor the winding number off can change, as they are top
logical invariants. Since the winding number ofzn is n, and sinceTzn5(a†)n ~if n>0, a2n

otherwise!, which has index2n, the result follows.
We now consider functionsf on S1 that can be analytically continued~without singularities!

to an annulusr 0<uzu<r 1 , where the radiir 0,1 and r 1.1 are fixed. This is equivalent to
requiring that the Fourier coefficientsf̂ n decay exponentially fast, i.e., that the sum

(
n52`

`

u f̂ nu~r 0
n1r 1

n! ~15!

converges. For now we do not impose any reality constraints or other symmetries on the
cients f̂ n . This space of functions is a Banach space, with norm given by the sup norm o
annulus. This norm is stronger than any Sobolev norm on the circle itself.

The analysis of the corresponding Toeplitz operators is straightforward and similar t
proof of Theorem 5. Sincef has no poles in the annulus, we just have to keep track of the ze
of f . For the index ofTf to change, a zero off must cross the unit circle. For the index to jum
from k to k8, uk2k8u zeroes must cross simultaneously. In the absence of symmetry, the loc
of the zeroes are independent and can be freely varied, so this is a codimension-uk2k8u event.

If we impose a reality condition:f ( z̄)5 f (z), then zeroes appear only on the real axis or
complex conjugate pairs. In that case, changing the index by 2 is merely a codimension-1
Combining these observations we obtain the following theorem.

Theorem 8: In the space of Toeplitz operators that are analytic in a~fixed! annulus containing
S1, almost every operator is Fredholm. For every integerk>1, the points where the index ca
jump by k is a set of real codimensionk.

If we impose a reality conditionf ( z̄)5 f (z) then, for everyk<n, the points where the index
jumps byk is a stratified space, the largest stratum of which has real codimensionb(k11)/2c.

Finally we consider Toeplitz operators that are not necessarily analytic, but are merelyl times
differentiable, and we use theCl norm. Our result is the following.
d 18 Jan 2001  to 128.139.197.31.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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Theorem 9: In the space of ToeplitzCl operators, almost every operator is Fredholm. F
every integerk with 1<k<2l 11, the points where the index can jump byk is a set of real
codimensionk. For every integerk>2l 11, the points where the index can jump byk is a set of
real codimension 2l 11.

In other words, our familiar results hold up to codimension 2l 11, at which point we lose all
control of the change in index.

Proof: As long as f is everywhere nonzero,Tf is Fredholm. To get a change in inde
therefore, we need one or more points wheref , and possibly some derivatives off with respect to
u, vanish. Suppose then that for some angleu0 , f (u0)5 f 8(u0)5¯5 f (n21)(u0)50 for somen
< l , but that thenth derivative f (n)(u0)Þ0. This is a codimension 2n21 event, since we are
setting the real and imaginary parts ofn variables to zero, but have a 1-parameter choice of po
where this can occur. Without loss of generality, we suppose that thisnth derivative is real and
positive. By making aCl-small perturbation off , we can make the value off highly oscillatory
near u0 , thereby wrapping around the origin a number of times. However, since aCl-small
perturbation does not change thenth derivative by much, the sign of the real part off can change
at mostn times nearu0 , so the argument off can only increase or decrease bynp or less. The
difference between these two extremes is 2np, or a change in winding number ofn.

To change the index by an integerm, therefore, we must have the function vanish to vario
orders at several points, with the sum of the orders of vanishing adding tom. The generic event
is for f ~but not f 8! to vanish atm different points—this is a codimensionm event, analogous to
having m zeroes of a polynomial cross the unit circle simultaneously atm different points. All
other scenarios have higher codimension and are analogous to having two or more zeroes om
zeroes crossing the unit circle at the same point.

The situation is different, however, when the functionf and the firstl derivatives all vanish at
a pointu0 . Then the higher-order derivatives are not protected fromCl-small perturbations and
by making such a perturbation, we can changef into a function that is identically zero on a sma
neighborhood ofu5u0 . By making a further small perturbation, we can makef wrap around the
origin as many times as we like nearu5u0 . More specifically, iff is zero on an interval of size
d, then, for smalle, f̃ (u)5 f (u)1eeiNu will wrap around the origin approximatelyNd/2p times
nearu0 . By pickingN as large~positive or negative! as we wish, we can obtain arbitrarily positiv
or negative indices. As long as we takee!N2 l , this perturbation will remain small in theCl

norm. j

The results of this section can be extended, with minor modifications, to the algebra of m
valued Toeplitz operators4 where the index is related to the winding of the determinant of a ma

VI. QUANTUM HALL SYSTEMS

A. Phase diagrams of soluble models

Phase diagrams of the quantum Hall system describe the dependence of the Hall cond
on parameters such as the magnetic fieldB and the Fermi energyE. There are three idealize
models where the phase diagram can be computed explicitly: The Landau Hamiltonian
Euclidean plane, whose phase diagram is shown in Fig. 2; The Landau Hamiltonian fo
hyperbolic plane, whose phase diagram is shown in Fig. 3 and Harper models in the pla19,8

whose phase diagram is associated with the Hofstadter butterfly, shown in Fig. 4 for the ca
tight binding model on a square lattice.

These are not models of Toeplitz operators, and none of these models are generic, es
insofar as all of them have symmetries. However, we consider the extent to which they follo
generic phase rules of~smooth, complex! Toeplitz operators anyway. Where these rules are
followed, we consider how a small generic perturbation might restore the rules.

The phase diagram for the Euclidean plane, Fig. 2 satisfies the generic phase rules awa
the lineB50. On the lineB50, however, the index takes an infinitely large jump, while at
origin infinitely many phases meet. Both are forbidden by the phase rules.
d 18 Jan 2001  to 128.139.197.31.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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The phase diagram in the hyperbolic plane, Fig. 3, satisfies the generic phase rules outs
shaded parabolic region. In the shaded region, the operator is not Fredholm and the index
defined. This is contrary to the phase rules since not being Fredholm is expected to be
mension 1 event.

The phase diagram of the Harper model, Fig. 4, is in serious conflict with the phase ru
~smooth, complex! Toeplitz operators: It is known,20 that for a full measure of values of th
magnetic field~irrational, of course!, the spectrum is a Cantor set. Since the boundary betw
phases is contained in the spectrum, this suggests that any point on the boundary between
phases can also be on the boundary between infinitely many other phases. This is the
behavior we observed for bounded operators with no restrictions. However, even in this wi
there is some regularity. For example, the center of the figure is on the boundary of all phase
odd indices while Theorem 2 allows for even indices as well.

FIG. 2. The phase diagram for the Landau Hamiltonian in the Euclidean plane. The shaded wedge contains infinite
thinner and thinner, wedges, with indices that go to6` and accumulate at theB axis.

FIG. 3. The phase diagram for the Landau Hamiltonian in the hyperbolic plane. In the shaded parabolic region the
is not Fredholm and the index is not defined.
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Remark:To see how Fig. 4 is obtained, we recall that for a tight-binding model with fluxp/q
through a unit cell, the Hall conductance,s j associated with thej th gap,~provided all gaps below
it are open! satisfies the diophantine equation8,21

ps j5 j modq. ~16!

A similar equation holds for gaps counted from above. In the Harper model it is known22 that all
gaps except possibly for the central gap, are open.

Finally, consider the phase diagram of the Harper model with a disordered potential. T
not soluble in the same sense that the previous models are, but there are numerical resul
Figure 5, which we borrowed from Ref. 23, shows the phase diagram for a split Landau le
the Harper model with disorder. More precisely, the diagram describes a Harper mode
fractional flux 8

5 through a unit cell.
Without disorder the conductances of each isolated band satisfies the Diophantine equa

similar to Eq.~16!, except that for a split Landau bandp andq are interchanged. For flux85 the
Diophantine equation fixes the conductances (2,23,2) of the bands at the flanks and21 at the
center. Zero disorder is, of course, not generic, and, indeed, there are bands on theE axis where
the index is not defined, something that the phase rules for Toeplitz forbid. Under perturbati
diagram should deform so that these bands where the index is not defined disappear. This is
the case. The diagram in Ref. 23 is obtained by drawingn lines emanating from each band whe
n is its Hall conductance.

In summary, the wild character of the phase diagram of the Harper model is tamed by di
and one finds, remarkably, a phase diagram compatible with the phase rules for Toeplitz ope

FIG. 4. The phase diagram for the Harper model associated with tight binding model on a square lattice the plan
point on the boundary between two phases appears to be a point of accumulation of infinitely many phases. Figu
with permission, from Ref. 31.
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B. Perturbations of Landau Hamiltonians

Motivated by the effect of disorder on the Harper model phase portrait, we next consid
effect of perturbations on the phase portraits of Landau Hamiltonians. Such perturbation
modify the phase diagram near phase boundaries. As a consequence one expects a phase
to be qualitatively modified near points of accumulation of phases, even if the perturbat
small.

Figures 2 and 3 satisfy the phase rules in the region of large magnetic fields, but fail to
for small magnetic fields. We now examine how the two figures might be modified to satisf
phase rules everywhere.

The phase diagram of the Landau Hamiltonian in the plane, Fig. 2, will be significa
modified near the lineB50 which, by symmetry, must lie in a region with index 0. A schema
phase diagram that is generic and close to the Landau phase diagram is shown in Fig. 6.

The phase diagram in Fig. 3 has a region of full measure, the shaded parabola, wh
operator is not Fredholm. This is nongeneric, and unstable. A perturbation might produce a
diagram like Fig. 7. Note that the two perturbed diagrams, Figs. 6 and 7 are topologically
tical.

How do the phase diagrams, Figs. 6 and 7, compare with what one finds in experiments
quantum Hall effect? For large magnetic fields one finds phase diagrams that resemble bo

FIG. 5. The phase diagram for the Hall conductance of a split Landau level in Harper model with disorder after R

FIG. 6. A phase diagram that satisfies the phase rules of Toeplitz operators and is a perturbation of the phase di
Landau Hamiltonian in the plane.
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2 and 6 and satisfy the phase rules. For weak magnetic fields one observes a transitio
insulating phase. The emergence of an insulating phase~with index 0! for small magnetic fields is
in agreement with the phase rule and Fig. 6. However, some experiments24 and numerical
simulations25 have been interpreted as giving evidence to direct transitions from a Hall con
tance of 2 and 3 to the insulating phase. Taken literally, such transitions would violate the
rule. However, these results may merely indicate that, forB small, the phase boundaries of Fig.
are too closely spaced to be distinguished numerically and experimentally.

C. Toeplitz operators

The main gap in our analysis is that we have not established a direct relation betwe
algebra of Toeplitz operators, where our phase rules are proven, and the class of operators
to ~disordered! quantum Hall systems.

At the minimum, Toeplitz operators serve as a natural mathematical laboratory. How
there is a more direct justification for considering Toeplitz operators. The most elementary
digm for a quantum Hall system is the Landau Hamiltonian, in which case one has the follo

Theorem 10:Let P be a projection on the lowest Landau level inR2, and letU be the gauge
transformation associated with an Aharonov–Bohm flux tube at the origin. ThenPUP, acting on
the range ofP, differs from a Toeplitz operator by a compact operator.

Proof: A basis for the lowest Landau level is

un&5
1

Ap n!
zn e2uzu2/2, n>0. ~17!

As a consequence

FIG. 7. A phase diagram that satisfies the rules of Toeplitz operators and is a perturbation of the phase diagram o
Hamiltonian in the hyperbolic plane.
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^nuUum&5dn,m11

~m11/2!!

m!Am11
'dn,m11S 12

1

8mD . ~18!

j

In this case, a compact perturbation ofPUP is not only a Toeplitz operator; it is a simpl
shift. However, if the flux tube is placed at a different point, or if the magnetic field is spread
over a finite region, then we obtain a more general Toeplitz operator. IfP is a projection on a
higher Landau level, the same results hold but the calculation is more involved. IfP is a projection
onto multiple Landau levels, thenPUP is a compact perturbation of a direct sum of Toepl
operators, one for each Landau level.

This is not to say that Toeplitz operators apply directly to all systems, only that they app
many. There are basic models wherePUP fails to be Toeplitz. Indeed, an elementary model
localization is a random multiplication operator, i.e.,H5Vv on l (Zd). This is a caricature of
strong disorder. The eigenfunctions are now concentrated at lattice points. The projecP
~below a Fermi energy! is

P5( un&^nu, ~19!

where the sum is over a random set of lattice points with,Vv(n),E, in Zd. PUP is now a
multiplication by a phase. It is an invertible operator and has Fredholm index zero. It is, how
not Toeplitz.

D. Open problems

It is tempting to directly study the index ofPUP, for spectral projectionsP and unitary
operatorsU, rather than rely on generic results based on Toeplitz operators. There are, ho
several technical obstacles. The first is thatPUP is thought of as acting on RangeP, which is a
Hilbert space in its own right. This means that a deformation of the parameters of the system
to a deformation of the space RangeP. In contrast, our strategy so far is formulated on a fix
space. The second obstacle is that our results depend on continuity properties while s
projections tend to have bad continuity properties that come from a discontinuity at the
energy.

To overcome the first problem one can replacePUP by an operatorF defined on the entire
Hilbert space with coinciding index. There is large arbitrariness in choosingF, but a natural
choice is

F5PUP1P'5PUP1P'
2 511P~U21!P, ~20!

whereP'512P.
To overcome the second problem one may want to replaceP by a Fermi function. That is,

replaceP by a smooth version

P~b,B,EF!5
1

exp~b~H~B!2EF!!11
. ~21!

In that case, however,P2 is no longer equal toP, and the different expressions forF in Eq. ~20!
are no longer equivalent. For each choice, it would be interesting to derive a phase portr
index (F) as the temperature, Fermi energy, magnetic field and degree of randomness are

E. Concluding remark

In this paper we explored what can be said about generic phase diagrams of indi
Fredholm operators. We did not use the fact that the Fredholm operators relevant to the qu
d 18 Jan 2001  to 128.139.197.31.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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Hall effect are of the formPUP, with P a spectral projection of an ergodic Schro¨dinger operator.
Rather, we considered the index of several natural classes~and algebras! of operators. The weak
ness of this strategy is that we cannot say much that is definitive about quantum Hall syste
its defense, we recall that replacing the particular by the generic proved to be useful in qu
physics in the hands of Wigner, von Neuman, and Dyson.26–28Whether it will turn out to be usefu
for quantum Hall effect remains to be seen.
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