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Coherent states in the time-energy plane provide a natural basis to study adiabatic
scattering. We relate th@iagonal matrix elements of the scattering matrix in this
basis with the frozen on-shell scattering data. We describe an exactly solvable
model, and show that the error in the frozen data cannot be estimated by the Wigner
time delay alone. We introduce the notion of energy shift, a conjugate of Wigner
time delay, and show that for incoming statgH,) the energy shift determines the
outgoing state. €2002 American Institute of Physic$DOI: 10.1063/1.1476952

[. INTRODUCTION

Scattering from a slowly changing scatterer is described, to leading ordettifg éndepen-
dentscatterer frozen at the scattering til&lthough this seems like stating the obvious, it turns
out that in trying to make precise how accurate this approximation is, one encounters both con-
ceptual and technical difficulties. Our aim is to describe these difficulties and explain how they are
resolved.

One conceptual difficulty is to understand what the frozen S matrix—a function of energy and
scattering time—means. Strictly speaking, a function of both time and energy is in conflict with
the uncertainty principle. A wave that is sharp in energy will have an ill-defined scattering time
and, conversely, a wave with a well-defined scattering time is ill-defined in energy. What, then, is
the meaning of the frozen S matrix?

The resolution of this problem is related to the fact that the adiabatic limit naturally leads to
different parametrizations of time, and the right parametrization has small uncertainty. Specifi-
cally, the physical time will parametrize the intrinsic “fast” dynamics and has the usual time-
energy uncertaintyi. The slow variation in the external conditions will be parametrized.by/e
refer to the latter aspoch Since the epoch often plays the role of a parameter it is convenient to
choose s dimensionless. The two parametrizations are relatedsbywt, with o a slow
frequency—the adiabaticity parameter. The epoch-energy uncertainty then takes thés&am
~hw and so arbitrarily small in the adiabatic limit.

Coherent states provide a convenient basis to analyze the semi-classical® ligemi-
classical analysis is traditionally about the~0 limit, but is equally valid wherf is fixed (and
henceforth set equal to ohandw— 0. Here we introduce coherent states labeled by points in the
time-energy plane, with time being the scattering time. As we shall see, the frozen S matrix
approximates the diagonal matrix elements of the dynamical scattering matrix in such coherent

3Electronic mail: avron@physics.technion.ac.il
PElectronic mail: aelgart@princeton.edu
9Electronic mail: gmgraf@itp.phys.ethz.ch
YElectronic mail: sadun@math.utexas.edu

0022-2488/2002/43(7)/3415/10/$19.00 3415 © 2002 American Institute of Physics

Downloaded 25 Jun 2002 to 132.68.1.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



3416 J. Math. Phys., Vol. 43, No. 7, July 2002 Avron et al.

states. This reconciles the time-energy uncertainty with the frozen scattering data. In a further step,
matrix elements of the frozen S matrix can be approximated by the on-shell data.

Another thorny issue that we address is when a description in terms of frozen data is mean-
ingful and how accurate it is. The question can also be rephrased as a question about the intrinsic
time scale relevant to scattering.7iflenotes this time scale, thamris the error in the frozen data
andw7<1 characterizes the adiabatic regime.

The Wigner time delay 7,,(E,s) conveys information about the time the particle spends near
the scatterer. It is a function of the ener§yand scattering epoch It is tempting to hope that
might be estimated by,,(E,s), but there is no compelling argument for doing so. One cannot
argue on the basis of dimensional analysis alone, sijcand \/T_\:V with dot a derivative with
respect to the epoch and prime with respect to the energy, give additional and independent time
scales. In fact, since Wigner time delay i@mparisonof the arrival time at a faraway point,
relative to the time of arrival in the free dynamics, it is not even positive-definite. This suggests
that it cannot quite capture which is more closely related to the “dwell time” near the scatterer.

The way to determine is to consider the error in approximating the scattering data by the
frozen data. The error is, to leading order, proportional to the adiabaticity paramedance the
error is, in general, complex, we identifywith the absolute value of the error divided ly
Calculating the error, to leading order i, is no harder, and reminiscent of, calculating the
scattering in the lowest order of the Born approximation.

We shall see that, to leading order, the adiabatic time sealan be estimated from the
scattering data and the derivative of the Hamiltorttawith respect to the epoch, E(.4) below,
but not from the Wigner time delay alone. We show this by considering an exactly soluble model
where the dynamical S matrix can be computed explicitly.

We introduce theenergy shiftoperatoré. This is a measure of the energy change in time
dependent scattering and is a natural dual of the Wigner time delay. As we shall see, in the case
that the incoming state is(Hg), the outgoing state ip(Hy— w&). In the adiabatic limit, the
energy shift can be approximated by the frozen energy shift, which is related to the logarithmic
derivative of the on-shell scattering matrix with respect to the epoch(4£8). The energy shift
then gives a handle on the exchange of erfetggnd the pumping of charge in adiabatic
scattering1°

II. ELEMENTS OF SCATTERING THEORY

Scattering theory is a comparison of dynamics: One is the actual dynamics generated by the
time dependent (t)=H, (s=w t), the other is a fiducial dynamics generated bynae inde-
pendentHamiltonianH,. The HamiltonianH, is the generator of dynamics for which there is
trivial scattering and the S matrix is the identity.

The results of this section are true in general, without taking the adiabaticdimi0. We
shall assume thatl and Hy admit good scattering. Namely, we assume the existence of wave
operators and the unitarity of the S matrix. For explicit conditiongdgrandH(t) that guarantee
this, see, e.g., Refs. 7 and 8.

A. The wave operator

LetU(t",t") andUgy(t",t")=Uy(t"—t") denote the evolution from timg to t”, generated by
H(t) and the time-independeht,, respectively.
Definition 2.1: The wave operators, based at epoclare defined by the (strong) limit

Q.(s;H,Hp) = lim U(t,t)Ug(t'—t) (s=wt). 2.1

t' >+

The existence of the limit, and the equation of motion imply the following.
Proposition 2.2: The dependence of the wave operator on the base point s satisfy the differ-
ential equation
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—iwQ.(5)=HQ.(s,H,Hg)— Q. (s,H,Hg)H,. (2.2

As we shall presently see, the notion of wave operator based at spsanly interesting in
the case of a time dependd(t).

B. The frozen wave operators

The frozen HamiltoniarHs is time independenso U(t”,t")=eMs("~t") in this case, and
Q. (sy,Hs,Hp) is independent of the base posy= wty. This follows from the existence of the
limit in Eq. (2.1 sincet’ — =« is the same as —ty— * . To stress this we writ€ . (Hs,Hy).

From Eq. (2.2 then follows the standard intertwining relation of time-independent scattering
theory:

Corollary 2.3: The wave operatorQ .. (Hg,Hg) relating the frozen Hamiltonian at epoch s
and H, are independent of the base point, and intertwine the two dynamics

H Q. (Hg,Hp)=Q . (Hg,Hp)Hyg. (2.3
C. The dynamical S matrix
The (dynamica) scattering matrix based at eposlis defined by
Sa(siH,Ho) = (s1H,Ho)Q (s;H,Ho). 2.4

The S matrices based on different points in time are all related by conjugation generated by the
free evolution. Namely, we have the following.
Proposition 2.4: Suppose that the wave operators exist. Then

S4(s;H,Hg)=e MolS4(0;H,Hg)eMot  (s=w t). (2.5

This follows fromU(s,t) Q. (s:H,Hg)=Q. (s;H,Hy)e o5~V Under a change of the ref-
erence Hamiltonian, say to the frozen Hamiltonkdy,

Sa(s;H,Ho) =01 (Hg,Ho)S4(siH,H) Q _(Hg,Ho). (2.6)

D. The frozen S matrix

In the frozen S data the epoch is decoupled from time. As such it can also be studied using
time independent methods, which are normally quite powérisl basic properties are in marked
contrast with that of the dynamical S matrix, namely:

Corollary 2.5: The frozen S matrix

Si(Hg,Ho) =% (Hg,Ho)Q_(Hg,Hp) 2.7)

is independent of the base point. It depends on freezing time parametrically thraugh H

E. The on-shell S matrix

H, provides a basis that spans the Hilbert space of scattering statekt,[ptdenote the
generalized eigenvectors bffy:

HolE,j)=E|E,j), (E,[E",j")=8(E—E")d; ;. (2.9
E is the energy angl labels the scattering channef&. commutes withH,, by Eq.(2.3), hence

(E.j|S1(Hs,Ho)[E',j") = 6(E—-E")S; (S, E). (2.9
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Sj;/(s,E) is theon-shellscattering matrix. Note that in the frozen Hamiltonian the physical time
is decoupled from the epoch, which now has been relegated to the role of a parameter. The
on-shell scattering matrix therefore is not in conflict with the uncertainty principle.

lll. THE ENERGY SHIFT
By taking thes-derivatives of Eq(2.5) one gets

iwsd(s>sd(s>f=Ho—sd(s>HoSd(s>*=[Ho,sd<s>]sg<s>=[Ho.sd<s>—&(Hs,Ho)]Sz(s(). )
3.1

This equation may be interpreted as follows. If we thinkHy as the asymptotic observable
associated with the outgoing energy, thlsn),inZSd(s)HOSd(s)T represents the asymptotic
observabl@ corresponding to the incoming energy. This motivates calling

Eq(8)=i84(s)S{(s) (3.2)

the operator of energy shift.

The energy shift vanishes for time independent scattering, as it must. It gives a handle on
changes in(certain quantum states. By the functional calculus applied to Bql), for any
function p,

Sa(8)p(Ho)Sa(8)"=p(Ho— wé(s)). 3.3

This is interpreted as follows: |f(Hy) is the incoming state, then the corresponding outgoing
state isp(Hgo— w &(S)). The energy shift is a first order quantity in the adiabaticity parameter
and, as we shall see, it can be approximated, to leading order, by the frozen data. This then gives
a handle on the outgoing stateto first order in the adiabaticity parameter.

Proposition 3.1: The energy shift based on time s is conjugate to the energy shift based on
time zero

Eq(s)=eMolg (0)e ot (s=wt). (3.4

This follows directly from Eqs(2.5) and (3.1).

IV. THE PROBLEM OF ADIABATIC SCATTERING

The dynamical S matrix has qualitatively different properties from the frozen S matrix: The
dynamical S matrix has no freezing time—it does not “know” when the incoming wave is going
to hit the scatterer. It does depend, however, by conjugation, on a choice of a base point. In
contrast, the frozen S matrix is independent of the choice of a base point and depends nontrivially
on the freezing time. The frozen scattering data for one epoch know nathprgpri about the
corresponding data at any other epoch.

Matrix elements of the scattering matrix carry information about the time that the wave is near
the scatterer. For such matrix elements, the adiabatic limit can be expressed in terms of the
corresponding frozen matrix elements. However, the introduction of wave packets promotes the
epoch from playing the role of a parameter, to that of real, albeit slow, time. One then needs to
confront the uncertainty principle. We do that by considering matrix elements between coherent
states labeled by points in the energy time plane.

A. The Wigner time delay

The Wigner time delay is defined in terms of the on-shell scattering matrix. When this defi-
nition is transcribed to the frozen, on-shell, S matrix it reads

7w(S,E)=—iS'(s,E)S'(s,E). (4.2
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Prime denotes partial derivative with respect to the energy. With this definition, the Wigner time
delay is a Hermitian matrix.

B. The frozen energy shift

For the frozen, on-shell, Hamiltonian one can associate a matrix of energy shift which is a
natural conjugate of the Wigner time delay:

&(s,E)=iS(s,E)S'(s,E), (4.2)

where dot denotes derivative with respect to the epoch.

C. Time scales

The frozen on-shell S matrix defines several time scales, among+#hemd the(dimension-
less time scale€ 1. The coherent states provide us with yet another time scale related to the time
width of the coherent states. One of the problems of adiabatic scattering is to study the relation
between these time scales and the time seal&ch thaiw7<1 characterizes the adiabatic regime.

V. TIME-ENERGY COHERENT STATES
A. The role of dispersion

For a particle moving on the line, its energy and the time that it crosses the origin are
canonical coordinates. One can therefore construct energy-time coherent states in analogy with the
usual phase space coherent states. The explicit construction, however, depends on the dispersion
law. For linear dispersion the construction is particularly simple.

Consider a classical particle with dispersion le¢p) moving freely on the line. The velocity
of the particle i’ (p) so the time of passage through the origihis—q/e’(p). Time-energy are
(local) canonical coordinates since

delddt=dqldp. (5.9

The global aspects of the energy-time phase space can be complicated. For example, for a free
(massive particle, with quadratic dispersiog(p) = p?, the energy-time phase space is made of
two copies of the half plane=0 depending on the direction of crossing of the origin.

A simpler situation is obtained in the case of linear dispers&fp)=p. There is now no
ambiguity in the direction of crossing and the energy-time phase space is again the plane. The map
(q,p)«(e,t) is, in fact, the identity

e=p, t=-q. (5.2
The usual coherent states are then also the coherent states on the energy-time plane.

B. Coherent states for linear dispersion

The time-energy coherent states are

It,e;e)=elPTeV|gy [P, X]=—i, (5.3
with g, Gaussian:
l _ n2/9.2
(plg.)= We p?/2e? (5.9

They have the following propertiés:
(A) The stategt,e;e) are normalized.
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N .

)

N

FIG. 1. A network of two channels. Each channel is chiral and lets particles propagate to and from infinity, according to
the arrows. The circle denotes the region where the channels are coupled.

Y

(B) |t,e;e) have Gaussian localization in time and energy near the pgie} ith width
1 1)
oe~g, Ot~—, Os~—.
& €

Hencew plays the role of: in the epoch-energy plane.
(C) Hy is the generator of shifts of the coherent states:

e Hot'|t,e;e)=e'®t—t' e¢).
(D) The overlap of coherent states is
(teelt’ e e)=e (e—e")?lhe? o= s2(t—t')2I4g—i (et —e'D)/2.

(E) The coherent states give a resolution of the identity

dtde
f It,e;e)(t,e;e|=1.

2
(F) The scalar product between coherent states and the eigenstatgs: &f is
—(E—e)2/262

4\ me

VI. SCATTERING BETWEEN CHANNELS WITH LINEAR DISPERSION

(E|t,e;s> — e—ite/2e—itE

Linear dispersion approximates the low energy physics of electrons in one dimensional chan-
nels provided the Fermi energy is large. The price one pays is that the “ultraviolet” properties are
pathological. In particular, the spectrum is unbounded below and this then leads to certain anoma-
lies which must be correctly interpreted. With linear dispersion one can also solve certain models
with interacting electron®’

In the following we shall study adiabatic scattering fusninteractingparticles with linear
dispersion. The particles move on a collection of lines and are allowed to “hop” from one line to
the other and scatter. Each line serves as an incoming and outgoing channel since the flow on it is
unidirectional. An example with two channels is shown in Fig(Such models bear some resem-
blance to Schidinger operators on graphs.The Hilbert space i@?zle(R), a finite direct sum.

j labels the scattering channeldq is then

(Ho)(x,))=—i¢'(x,]), xeR, 1<j=<n.

For the interaction one may take, for example,

((H()=Ho)¥) (x,]) =2 v jr(x,8) (X} ")
]/
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with v}, Hermitian, and compactly supported. Alternatively, one may consider finite rank pertur-
bations.

A. A soluble model

Here we describe a simple, time dependent, model for which the calculation of both the
dynamical and frozen scattering matrices is reduced to quadrature.

Consider scattering on the line with

Ho=P=—-iV, H=P+f(s)V, s=owt,

with (Vi) (X)=v(X) (x) a potential(multiplication operator which is sufficiently regular and
short range so thaf|v(x)|dx, [|xv(x)|dx<e. The model has one channel and should not be
confused with the two-channel example pictured in Fig. 1.

To calculate the dynamical S matrix note that

Q(t,t"):=U(t,t")Uy(t"' —1), (6.2

satisfies the Volterra type equation:

Q(t,t")
at’

=if(ot")Q(t,t)V(t—t"), Q' t")=1, (6.2

with V(t) the (backward free Heisenberg evolution of the potential, i.e.,
V(t):=Ug(t)VUg(—t). (6.3

SinceHy= P is the generator of shift§/(t) is the shifted potential:

(VO P (X)=v(X=t) h(X). (6.4)

In particular,V(t) at different times commute, and the solution of the Volterra type problem is
given simply by

Q(tt)=e Wo oV g gt 6.5

From the definition of the wave operators based on &mnEq. (2.1), we obtain for the dynamical
wave operators

Q_(S; H , HO) — e*ifgf(sfw t")V(t")dt’ ’ Q+(S; H vHO) — eif‘iwf(s— ot")V(t")dt’ )
From this we obtain for the dynamical scattering matrix
Sy(s,H,Ho) =™ Zaf(smotVithdt” 6.6
The dynamical scattering matrix, as well as the wave operators, are local gauge transformations,
i.e., multiplication by afunctionof position, of modulus one.
The wave operators and the S matrix reduce to the frozen ones upon replacing the function
f(s—wt") by its frozen valuef(s), hence,

Si(Hg,Ho) = e eI v(di_ e—if(s)ffxv+(t)dt, (6.7)

where 2/, (t)=V(t) +V(—1). S is just a number, not a function of position.
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The frozen scattering matrix provides very little information on the potent{a), for it
depends on just one number—the total weight of the potefitidgd is in sharp contrast with
scattering problems whetd, is the Laplaciatf). The dynamical S matrix, in contrast, provides
independent information about the potential for each valug of

Since the frozen S matrix is independent of the incident energy, the Wigner time delay
vanishes identically in this model:,=0. The (frozen energy shift is just a real numbéa
multiple of the identity

gfzf(s)f v(x)dx.
In contrast, the dynamical energy shift is the multiplication operator:

E4= f:f(s—w t)V(t")dt'. (6.9)

B. The on-shell scattering matrix and coherent states

For later purposes we shall need the matrix elements of the frozen S matrix. &icoen-
mutes withH, the matrix elements are independent ahd are related to the on-shell matrix by

1
(t,e,j:e|Si(Hs Ho)lt,e,j ;)= Tf dES; (s,E)e” E-97°= 5, (s,€)+ O(s20eS).
e
(6.9

The estimate is obtained by observing tBgt(s,E) — Sj;/(s,e) does not contribute to the integral
to first order inE—e. Since

(0geS)S'=—r2+ir,

(with prime denoting the derivative with respect to the engrgie see that the on-shell S matrix
approximates the diagonal entries of the frozen S matrix, provided the Wigner time delay and its
energy dependence are both small:

e2(75+| 1) <1. (6.10

VIl. THE ADIABATIC TIME SCALE =

In this section we compute, to leading order, the time seakdevant to adiabatic scattering.
This time scale is defined so thatr<1 characterizes the adiabatic regime in the sense that the
frozen scattering data approximate the dynamical scattering data.

There are two results in this section, one positive and one negative. The positive result says
that, at least to leading ordercan be computed from time independent quantities alone(7&4).
below. The negative result is thatannot be computed from the on-shell scattering matrix and its
derivatives. In particular, the Wigner time delay alone does not determine

Using Eqgs.(2.5—(2.7) and property(C) in Sec. V B, one finds

(t.e.j;2|(Sa(0;H,Ho) = Se(Hs,Ho))[t.e,j ;)
=(0,i;8|0% (Hg,Ho)(Sy(s;H,Ho — 1) _(Hg,Ho) 0, ). (7.0

The correction to the leading order of the S matrix can be approximated by an analog of the Born
series®
Sa(siH,Hg)—1~~i J &M (Hey v —Hoe Medt. (72

©
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SinceHq, i+ —Hg is supported near the origin, only sméllcontribute to the matrix elements in
Eqg. (7.1). More precisely, this depends only on the time localization property of either the bra or

the ket. We can therefore approximafe, ,  —Hs~w t'H,. Using property(C) in Sec. VB,
e M0 _(Hs,Ho)|0e j;e) =720 _(Hs Ho)lt.e.j;e),
we finally get
(t,e,];e[(Sy(0;H,Ho) = Si(Hs,Ho))[t,e,j";e)~ —iw(e,S)e), (7.3

where
T(e,S;S)ZJ (t",e,j;e| QL (Hg,Ho)HeQ _(Hg,Ho)|t',&,j;e)t'dt’. (7.9

7(e,s;¢e) involves the frozen wave operators and the rate of change of the Hamiltonian at the
epochs. In particular, one can use methods of time-independent scattering theory to compute it. It
is in general complex. The adiabatic time scate;|7(e,s;¢)|, is a measure of the errowr
<1 then clearly characterizes the adiabatic regime.

Propagation estimates can, and have been tisethound the error in the frozen data. These
estimates yield bounds on

A. Example: The soluble model

For the case of one channel scattering witts) =P+ f(s)V, by Egs.(6.6) and(6.7)

Su(S:H.Ho) — Si(Hg Ho) = (e /=1 a0 OV 1) 5 (H, Ho)

~iwi‘(s)( fitV(t)dt)Sf(Hs,Ho). (7.5

The adiabatic time scaleis, in analogy with Eq(7.3), the multiplication operator:

w—'f(s)( f tV(t)dt

sf<Hs,Ho>=—i‘<s>(fwwtv_mdt)sf(Hs,Ho);

2V_()=V(t)—V(—1). (7.6

By Eq. (6.7) the frozen S matrix only depends ®dh , while the error only depends &h_ . Since
V_ andV, are independent this shows that the error term in the adiabatic expansion cannot be
estimated in terms on the frozen scattering data alone.

Combining Eqs(6.9) and(7.3) we obtain a relation between matrix elements of the dynami-
cal S matrix and the on-shell S matrix:

(t,e,j;€|S4(0;H,Hp)lt,e,j ’;s>=Sjj r(S,e)+O(82(T3V+|T\;V|)+ wT(e,se)). (7.7

VIIl. THE ENERGY SHIFT

The energy shift is a first order quantity; nevertheless, it is determined, to leading order, by the
frozen data:

(tejie|&0)|tej e)~i(S(s,e)S!(s.e)j, (s=wt). (8.1)
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We first remark that7.3) and(7.4) generalize to off-diagonal matrix elements, i.e., the tinie
the ket|t,e,j’;e) may be shifted ta+ At [resp.t’ + At in (7.4)] while leaving the bra unchanged.
By the translation property of coherent states, prop€@Zyin Sec. Il B, multiplication byH, can
be traded for derivative with respect to time. Hence

(t,e,j;e[[Hg,Sq(0;H,Hp) ]|t +At,e,j";e)=id(t,e,j;e|Sq(0;H,Ho)|t+At,e,j";e)
~id(t,e,j;e|Si(Hs,Ho)[t+At,e,j’;€)
=iw(t,e,j;e|Si(Hs,Ho)|t+At,e,j’;e). (8.2

In principle, the order of the error in the frozen data in the passage from the second to the third
line does not determine the order of the error in derivatives, but this can be justified in the present
case. The last identity in the equation above can be seen from

1 _ _
(t,e,j;e|Si(Hs, Ho)[t+Ate,j";e)= N f dES;/(s,E)e™ (E-97% g i(a0e/2g—i(A0E,
me

We then multiply(8.2) with the complex conjugate of the mentioned generalizatiof7 &) and
integrate overAt using property(E) of Sec. V B. The result then heuristically follows from Eq.
(3.1 and the statement faf; analogous td6.9). An alternate derivation of8.1) can be made,
more directly, starting from the rhs of E(B.1) and using Born’s expansion.

The energy shift plays a role in the theory of adiabatic quantum pumps. In particular, the
pumped charge, the entropy production and noise generation in quantum pumps can all be ex-
pressed in terms of the energy sHitt is remarkable that basic properties of adiabatic quantum
pumps can be understood, to leading order, in terms of the frozen scattering data alone.
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