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Coherent states in the time-energy plane provide a natural basis to study adiabatic
scattering. We relate the~diagonal! matrix elements of the scattering matrix in this
basis with the frozen on-shell scattering data. We describe an exactly solvable
model, and show that the error in the frozen data cannot be estimated by the Wigner
time delay alone. We introduce the notion of energy shift, a conjugate of Wigner
time delay, and show that for incoming stater(H0) the energy shift determines the
outgoing state. ©2002 American Institute of Physics.@DOI: 10.1063/1.1476952#

I. INTRODUCTION

Scattering from a slowly changing scatterer is described, to leading order, by atime indepen-
dentscatterer frozen at the scattering time.1 Although this seems like stating the obvious, it tur
out that in trying to make precise how accurate this approximation is, one encounters bot
ceptual and technical difficulties. Our aim is to describe these difficulties and explain how the
resolved.

One conceptual difficulty is to understand what the frozen S matrix—a function of energ
scattering time—means. Strictly speaking, a function of both time and energy is in conflict
the uncertainty principle. A wave that is sharp in energy will have an ill-defined scattering
and, conversely, a wave with a well-defined scattering time is ill-defined in energy. What, th
the meaning of the frozen S matrix?

The resolution of this problem is related to the fact that the adiabatic limit naturally lea
different parametrizations of time, and the right parametrization has small uncertainty. Sp
cally, the physical timet will parametrize the intrinsic ‘‘fast’’ dynamics and has the usual tim
energy uncertainty\. The slow variation in the external conditions will be parametrized bys. We
refer to the latter asepoch. Since the epoch often plays the role of a parameter it is convenie
choose s dimensionless. The two parametrizations are related bys5vt, with v a slow
frequency—the adiabaticity parameter. The epoch-energy uncertainty then takes the formdsde
;\v and so arbitrarily small in the adiabatic limit.

Coherent states provide a convenient basis to analyze the semi-classical limit.2,3 Semi-
classical analysis is traditionally about the\→0 limit, but is equally valid when\ is fixed ~and
henceforth set equal to one! andv→0. Here we introduce coherent states labeled by points in
time-energy plane, with time being the scattering time. As we shall see, the frozen S m
approximates the diagonal matrix elements of the dynamical scattering matrix in such co

a!Electronic mail: avron@physics.technion.ac.il
b!Electronic mail: aelgart@princeton.edu
c!Electronic mail: gmgraf@itp.phys.ethz.ch
d!Electronic mail: sadun@math.utexas.edu
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states. This reconciles the time-energy uncertainty with the frozen scattering data. In a furthe
matrix elements of the frozen S matrix can be approximated by the on-shell data.

Another thorny issue that we address is when a description in terms of frozen data is
ingful and how accurate it is. The question can also be rephrased as a question about the
time scale relevant to scattering. Ift denotes this time scale, thenvt is the error in the frozen data
andvt!1 characterizes the adiabatic regime.

The Wigner time delay14 tw(E,s) conveys information about the time the particle spends n
the scatterer. It is a function of the energyE and scattering epochs. It is tempting to hope thatt
might be estimated bytw(E,s), but there is no compelling argument for doing so. One can
argue on the basis of dimensional analysis alone, sinceṫw andAtw8 , with dot a derivative with
respect to the epoch and prime with respect to the energy, give additional and independe
scales. In fact, since Wigner time delay is acomparisonof the arrival time at a faraway point
relative to the time of arrival in the free dynamics, it is not even positive-definite. This sug
that it cannot quite capturet, which is more closely related to the ‘‘dwell time’’ near the scatter

The way to determinet is to consider the error in approximating the scattering data by
frozen data. The error is, to leading order, proportional to the adiabaticity parameterv. Since the
error is, in general, complex, we identifyt with the absolute value of the error divided byv.
Calculating the error, to leading order inv, is no harder, and reminiscent of, calculating t
scattering in the lowest order of the Born approximation.

We shall see that, to leading order, the adiabatic time scalet can be estimated from th
scattering data and the derivative of the HamiltonianH with respect to the epoch, Eq.~7.4! below,
but not from the Wigner time delay alone. We show this by considering an exactly soluble m
where the dynamical S matrix can be computed explicitly.

We introduce theenergy shiftoperatorE. This is a measure of the energy change in tim
dependent scattering and is a natural dual of the Wigner time delay. As we shall see, in th
that the incoming state isr(H0), the outgoing state isr(H02vE). In the adiabatic limit, the
energy shift can be approximated by the frozen energy shift, which is related to the logar
derivative of the on-shell scattering matrix with respect to the epoch, Eq.~4.2!. The energy shift
then gives a handle on the exchange of energy4,5 and the pumping of charge in adiabat
scattering.6,15

II. ELEMENTS OF SCATTERING THEORY

Scattering theory is a comparison of dynamics: One is the actual dynamics generated
time dependentH(t)5Hs , (s5v t), the other is a fiducial dynamics generated by atime inde-
pendentHamiltonianH0 . The HamiltonianH0 is the generator of dynamics for which there
trivial scattering and the S matrix is the identity.

The results of this section are true in general, without taking the adiabatic limitv→0. We
shall assume thatH and H0 admit good scattering. Namely, we assume the existence of w
operators and the unitarity of the S matrix. For explicit conditions onH0 andH(t) that guarantee
this, see, e.g., Refs. 7 and 8.

A. The wave operator

Let U(t9,t8) andU0(t9,t8)5U0(t92t8) denote the evolution from timet8 to t9, generated by
H(t) and the time-independentH0 , respectively.

Definition 2.1: The wave operators, based at epoch s, are defined by the (strong) limit

V6~s;H,H0!5 lim
t8→6`

U~ t,t8!U0~ t82t ! ~s5vt !. ~2.1!

The existence of the limit, and the equation of motion imply the following.
Proposition 2.2: The dependence of the wave operator on the base point s satisfy the

ential equation
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2 ivV̇6~s!5HsV6~s,H,H0!2V6~s,H,H0!H0 . ~2.2!

As we shall presently see, the notion of wave operator based at epochs is only interesting in
the case of a time dependentH(t).

B. The frozen wave operators

The frozen HamiltonianHs is time independentso U(t9,t8)5eiH s(t92t8), in this case, and
V6(s0 ,Hs ,H0) is independent of the base points05vt0 . This follows from the existence of the
limit in Eq. ~2.1! sincet8→6` is the same ast82t0→6`. To stress this we writeV6(Hs ,H0).
From Eq. ~2.2! then follows the standard intertwining relation of time-independent scatte
theory:

Corollary 2.3: The wave operatorsV6(Hs ,H0) relating the frozen Hamiltonian at epoch
and H0 are independent of the base point, and intertwine the two dynamics:

HsV6~Hs ,H0!5V6~Hs ,H0!H0 . ~2.3!

C. The dynamical S matrix

The ~dynamical! scattering matrix based at epochs is defined by

Sd~s;H,H0!5V1
† ~s;H,H0!V2~s;H,H0!. ~2.4!

The S matrices based on different points in time are all related by conjugation generated
free evolution. Namely, we have the following.

Proposition 2.4: Suppose that the wave operators exist. Then

Sd~s;H,H0!5e2 iH 0tSd~0;H,H0!eiH 0t ~s5v t !. ~2.5!

This follows fromU(s,t)V6(s;H,H0)5V6(s;H,H0)e2 iH 0(s2t). Under a change of the ref
erence Hamiltonian, say to the frozen HamiltonianHs ,

Sd~s;H,H0!5V1
† ~Hs ,H0!Sd~s;H,Hs!V2~Hs ,H0!. ~2.6!

D. The frozen S matrix

In the frozen S data the epoch is decoupled from time. As such it can also be studied
time independent methods, which are normally quite powerful.8 Its basic properties are in marke
contrast with that of the dynamical S matrix, namely:

Corollary 2.5: The frozen S matrix

Sf~Hs ,H0!5V1
† ~Hs ,H0!V2~Hs ,H0! ~2.7!

is independent of the base point. It depends on freezing time parametrically through Hs .

E. The on-shell S matrix

H0 provides a basis that spans the Hilbert space of scattering states. LetuE, j ) denote the
generalized eigenvectors ofH0 :

H0uE, j )5EuE, j ), ~E, j uE8, j 8!5d~E2E8!d j , j 8 . ~2.8!

E is the energy andj labels the scattering channels.Sf commutes withH0 , by Eq. ~2.3!, hence

~E, j uSf~Hs ,H0!uE8, j 8!5d~E2E8!Sj j 8~s,E!. ~2.9!
d 25 Jun 2002 to 132.68.1.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Sj j 8(s,E) is theon-shellscattering matrix. Note that in the frozen Hamiltonian the physical t
is decoupled from the epoch, which now has been relegated to the role of a paramete
on-shell scattering matrix therefore is not in conflict with the uncertainty principle.

III. THE ENERGY SHIFT

By taking thes-derivatives of Eq.~2.5! one gets

ivṠd~s!Sd~s!†5H02Sd~s!H0Sd~s!†5@H0 ,Sd~s!#S d
†~s!5@H0 ,Sd~s!2Sf~Hs ,H0!#S d

†~s!.
~3.1!

This equation may be interpreted as follows. If we think ofH0 as the asymptotic observab
associated with the outgoing energy, thenH0,in5Sd(s)H0Sd(s)† represents the asymptoti
observable9 corresponding to the incoming energy. This motivates calling

Ed~s!5 i Ṡd~s!S d
†~s! ~3.2!

the operator of energy shift.
The energy shift vanishes for time independent scattering, as it must. It gives a han

changes in~certain! quantum states. By the functional calculus applied to Eq.~3.1!, for any
function r,

Sd~s!r~H0!Sd~s!†5r~H02vEs~s!!. ~3.3!

This is interpreted as follows: Ifr(H0) is the incoming state, then the corresponding outgo
state isr(H02v _Es(s)). The energy shift is a first order quantity in the adiabaticity param
and, as we shall see, it can be approximated, to leading order, by the frozen data. This the
a handle on the outgoing stater to first order in the adiabaticity parameter.

Proposition 3.1: The energy shift based on time s is conjugate to the energy shift bas
time zero

Ed~s!5eiH 0tEd~0!e2 iH 0t ~s5vt !. ~3.4!

This follows directly from Eqs.~2.5! and ~3.1!.

IV. THE PROBLEM OF ADIABATIC SCATTERING

The dynamical S matrix has qualitatively different properties from the frozen S matrix:
dynamical S matrix has no freezing time—it does not ‘‘know’’ when the incoming wave is g
to hit the scatterer. It does depend, however, by conjugation, on a choice of a base po
contrast, the frozen S matrix is independent of the choice of a base point and depends non
on the freezing time. The frozen scattering data for one epoch know nothinga priori about the
corresponding data at any other epoch.

Matrix elements of the scattering matrix carry information about the time that the wave is
the scatterer. For such matrix elements, the adiabatic limit can be expressed in terms
corresponding frozen matrix elements. However, the introduction of wave packets promot
epoch from playing the role of a parameter, to that of real, albeit slow, time. One then ne
confront the uncertainty principle. We do that by considering matrix elements between co
states labeled by points in the energy time plane.

A. The Wigner time delay

The Wigner time delay is defined in terms of the on-shell scattering matrix. When this
nition is transcribed to the frozen, on-shell, S matrix it reads

tw~s,E!52 iS8~s,E!S†~s,E!. ~4.1!
d 25 Jun 2002 to 132.68.1.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Prime denotes partial derivative with respect to the energy. With this definition, the Wigner
delay is a Hermitian matrix.

B. The frozen energy shift

For the frozen, on-shell, Hamiltonian one can associate a matrix of energy shift which
natural conjugate of the Wigner time delay:

E~s,E!5 iṠ~s,E!S†~s,E!, ~4.2!

where dot denotes derivative with respect to the epoch.

C. Time scales

The frozen on-shell S matrix defines several time scales, among themtw and the~dimension-
less! time scaleE 21. The coherent states provide us with yet another time scale related to the
width of the coherent states. One of the problems of adiabatic scattering is to study the r
between these time scales and the time scalet such thatvt!1 characterizes the adiabatic regim

V. TIME-ENERGY COHERENT STATES

A. The role of dispersion

For a particle moving on the line, its energy and the time that it crosses the origin
canonical coordinates. One can therefore construct energy-time coherent states in analogy
usual phase space coherent states. The explicit construction, however, depends on the di
law. For linear dispersion the construction is particularly simple.

Consider a classical particle with dispersion lawe(p) moving freely on the line. The velocity
of the particle ise8(p) so the time of passage through the origin ist5 2q/e8(p). Time-energy are
~local! canonical coordinates since

de∧dt5dq∧dp. ~5.1!

The global aspects of the energy-time phase space can be complicated. For example, fo
~massive! particle, with quadratic dispersione(p)5p2, the energy-time phase space is made
two copies of the half planee>0 depending on the direction of crossing of the origin.

A simpler situation is obtained in the case of linear dispersion,e(p)5p. There is now no
ambiguity in the direction of crossing and the energy-time phase space is again the plane. T
(q,p)↔(e,t) is, in fact, the identity

e5p, t52q. ~5.2!

The usual coherent states are then also the coherent states on the energy-time plane.

B. Coherent states for linear dispersion

The time-energy coherent states are

ut,e;«&5ei (tP1eX)ug«&, @P,X#52 i , ~5.3!

with g« Gaussian:

^pug«&5
1

A4 p«2
e2 p2/2«2

. ~5.4!

They have the following properties:2

~A! The statesut,e;«& are normalized.
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~B! ut,e;«& have Gaussian localization in time and energy near the point (t,e) with width

de;«, dt;
1

«
, ds;

v

«
.

Hencev plays the role of\ in the epoch-energy plane.
~C! H0 is the generator of shifts of the coherent states:

e2 iH 0t8ut,e;«&5e2 i t 8e/2ut2t8,e;«&.

~D! The overlap of coherent states is

^t,e,«ut8,e8,«&5e2 (e2e8)2/4«2
e2 «2(t2t8)2/4e2 i ~et82e8t !/2.

~E! The coherent states give a resolution of the identity

E dtde

2p
ut,e;«&^t,e;«u51.

~F! The scalar product between coherent states and the eigenstates ofH05P is

~Eut,e;«&5e2 i te/2e2 i tE
e2(E2e)2/2«2

A4 p«2
.

VI. SCATTERING BETWEEN CHANNELS WITH LINEAR DISPERSION

Linear dispersion approximates the low energy physics of electrons in one dimensional
nels provided the Fermi energy is large. The price one pays is that the ‘‘ultraviolet’’ propertie
pathological. In particular, the spectrum is unbounded below and this then leads to certain a
lies which must be correctly interpreted. With linear dispersion one can also solve certain m
with interacting electrons.10

In the following we shall study adiabatic scattering fornoninteractingparticles with linear
dispersion. The particles move on a collection of lines and are allowed to ‘‘hop’’ from one lin
the other and scatter. Each line serves as an incoming and outgoing channel since the flow
unidirectional. An example with two channels is shown in Fig. 1.~Such models bear some resem
blance to Schro¨dinger operators on graphs.!11 The Hilbert space is% j 51

n L2(R), a finite direct sum.
j labels the scattering channels.H0 is then

~H0c!~x, j !52 ic8~x, j !, xPR, 1< j <n.

For the interaction one may take, for example,

~~H~s!2H0!c!~x, j !5(
j 8

v j , j 8~x,s!c~x, j 8!

FIG. 1. A network of two channels. Each channel is chiral and lets particles propagate to and from infinity, accor
the arrows. The circle denotes the region where the channels are coupled.
d 25 Jun 2002 to 132.68.1.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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with v j j 8 Hermitian, and compactly supported. Alternatively, one may consider finite rank pe
bations.

A. A soluble model

Here we describe a simple, time dependent, model for which the calculation of bot
dynamical and frozen scattering matrices is reduced to quadrature.

Consider scattering on the line with

H05P52 i¹, Hs5P1 f ~s!V, s5v t,

with (Vc)(x)5v(x)c(x) a potential~multiplication operator! which is sufficiently regular and
short range so that* uv(x)udx, * uxv(x)udx,`. The model has one channel and should not
confused with the two-channel example pictured in Fig. 1.

To calculate the dynamical S matrix note that

V~ t,t8!ªU~ t,t8!U0~ t82t !, ~6.1!

satisfies the Volterra type equation:

]V~ t,t8!

]t8
5 i f ~vt8!V~ t,t8!V~ t2t8!, V~ t8,t8!51, ~6.2!

with V(t) the ~backward! free Heisenberg evolution of the potential, i.e.,

V~ t !ªU0~ t !VU0~2t !. ~6.3!

SinceH05P is the generator of shifts,V(t) is the shifted potential:

~V~ t !c!~x!5v~x2t !c~x!. ~6.4!

In particular,V(t) at different times commute, and the solution of the Volterra type problem
given simply by

V~ t,t8!5e2 i *0
t2t8 f (s2vt9)V(t9)dt9, s5vt. ~6.5!

From the definition of the wave operators based on times, Eq. ~2.1!, we obtain for the dynamica
wave operators

V2~s;H,H0!5e2 i *0
` f (s2v t8)V(t8)dt8, V1~s;H,H0!5ei *2`

0 f (s2vt8)V(t8)dt8.

From this we obtain for the dynamical scattering matrix

Sd~s,H,H0!5e2 i *2`
` f (s2vt8)V(t8)dt8. ~6.6!

The dynamical scattering matrix, as well as the wave operators, are local gauge transform
i.e., multiplication by afunctionof position, of modulus one.

The wave operators and the S matrix reduce to the frozen ones upon replacing the fu
f (s2vt8) by its frozen valuef (s), hence,

Sf~Hs ,H0!5e2 i f (s)*2`
` V(t)dt5e2 i f (s)*2`

` V1(t)dt, ~6.7!

where 2V1(t)5V(t)1V(2t). Sf is just a number, not a function of position.
d 25 Jun 2002 to 132.68.1.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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The frozen scattering matrix provides very little information on the potentialv(x), for it
depends on just one number—the total weight of the potential~this is in sharp contrast with
scattering problems whereH0 is the Laplacian12!. The dynamical S matrix, in contrast, provide
independent information about the potential for each value ofs.

Since the frozen S matrix is independent of the incident energy, the Wigner time
vanishes identically in this model:tw50. The ~frozen! energy shift is just a real number~a
multiple of the identity!

Ef5 ḟ ~s!E
2`

`

v~x!dx.

In contrast, the dynamical energy shift is the multiplication operator:

Ed5E
2`

`

ḟ ~s2v t8!V~ t8!dt8. ~6.8!

B. The on-shell scattering matrix and coherent states

For later purposes we shall need the matrix elements of the frozen S matrix. SinceSf com-
mutes withH0 , the matrix elements are independent oft and are related to the on-shell matrix b

^t,e, j ;«uSf~Hs ,H0!ut,e, j 8;«&5
1

Ap«
E dESj j 8~s,E!e2 (E2e)2/«2

5Sj j 8~s,e!1O~«2]EES!.

~6.9!

The estimate is obtained by observing thatSj j 8(s,E)2Sj j 8(s,e) does not contribute to the integra
to first order inE2e. Since

~]EES!S†52tw
2 1 i tw8

~with prime denoting the derivative with respect to the energy!, we see that the on-shell S matr
approximates the diagonal entries of the frozen S matrix, provided the Wigner time delay a
energy dependence are both small:

«2~tw
2 1utw8 u!!1. ~6.10!

VII. THE ADIABATIC TIME SCALE t

In this section we compute, to leading order, the time scalet relevant to adiabatic scattering
This time scale is defined so thatvt!1 characterizes the adiabatic regime in the sense tha
frozen scattering data approximate the dynamical scattering data.

There are two results in this section, one positive and one negative. The positive resu
that, at least to leading order,t can be computed from time independent quantities alone, Eq.~7.4!
below. The negative result is thatt cannot be computed from the on-shell scattering matrix and
derivatives. In particular, the Wigner time delay alone does not determinet.

Using Eqs.~2.5!–~2.7! and property~C! in Sec. V B, one finds

^t,e, j ;«u~Sd~0;H,H0!2Sf~Hs ,H0!!ut,e, j 8;«&

5^0,e, j ;«uV1
† ~Hs ,H0!~Sd~s;H,Hs!21!V2~Hs ,H0!u0,e, j ;«&. ~7.1!

The correction to the leading order of the S matrix can be approximated by an analog of the
series:8

Sd~s;H,Hs!21'2 i E
2`

`

eiH st8~Hs1v t82Hs!e
2 iH st8dt8. ~7.2!
d 25 Jun 2002 to 132.68.1.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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SinceHs1vt82Hs is supported near the origin, only smallt8 contribute to the matrix elements i
Eq. ~7.1!. More precisely, this depends only on the time localization property of either the b
the ket. We can therefore approximateHs1v t82Hs'v t8Ḣs . Using property~C! in Sec. V B,

e2 iH stV2~Hs ,H0!u0,e, j ;«&5e2 iet/2V2~Hs ,H0!ut,e, j ;«&,

we finally get

^t,e, j ;«u~Sd~0;H,H0!2Sf~Hs ,H0!!ut,e, j 8;«&'2 ivt~e,s;«!, ~7.3!

where

t~e,s;«!5E
2`

`

^t8,e, j ;«uV1
† ~Hs ,H0!ḢsV2~Hs ,H0!ut8,e, j ;«&t8dt8. ~7.4!

t(e,s;«) involves the frozen wave operators and the rate of change of the Hamiltonian a
epochs. In particular, one can use methods of time-independent scattering theory to compu
is in general complex. The adiabatic time scale,t5ut(e,s;«)u, is a measure of the error.vt
!1 then clearly characterizes the adiabatic regime.

Propagation estimates can, and have been, used13 to bound the error in the frozen data. The
estimates yield bounds ont.

A. Example: The soluble model

For the case of one channel scattering withH(s)5P1 f (s)V, by Eqs.~6.6! and ~6.7!

Sd~s;H,H0!2Sf~Hs ,H0!5~e2 i *2`
` ( f (s2vt)2 f (s))V(t)dt21!Sf~Hs ,H0!

' iv ḟ ~s!S E
2`

`

tV~ t !dtDSf~Hs ,H0!. ~7.5!

The adiabatic time scalet is, in analogy with Eq.~7.3!, the multiplication operator:

t'2 ḟ ~s!S E
2`

`

tV~ t !dtDSf~Hs ,H0!52 ḟ ~s!S E
2`

`

tV2~ t !dtDSf~Hs ,H0!;

2V2~ t !5V~ t !2V~2t !. ~7.6!

By Eq. ~6.7! the frozen S matrix only depends onV1 , while the error only depends onV2 . Since
V2 andV1 are independent this shows that the error term in the adiabatic expansion can
estimated in terms on the frozen scattering data alone.

Combining Eqs.~6.9! and~7.3! we obtain a relation between matrix elements of the dyna
cal S matrix and the on-shell S matrix:

^t,e, j ;«uSd~0;H,H0!ut,e, j 8;«&5Sj j 8~s,e!1O~«2~tw
2 1utw8 u!1vt~e,s;«!!. ~7.7!

VIII. THE ENERGY SHIFT

The energy shift is a first order quantity; nevertheless, it is determined, to leading order,
frozen data:

^t,e, j ;«uEd~0!ut,e, j 8;«&' i ~Ṡ~s,e!S†~s,e!! j j 8 ~s5v t !. ~8.1!
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Downloade
We first remark that~7.3! and ~7.4! generalize to off-diagonal matrix elements, i.e., the timet in
the ketut,e, j 8;«& may be shifted tot1Dt @resp.t81Dt in ~7.4!# while leaving the bra unchanged
By the translation property of coherent states, property~C! in Sec. II B, multiplication byH0 can
be traded for derivative with respect to time. Hence

^t,e, j ;«u@H0 ,Sd~0;H,H0!#ut1Dt,e, j 8;«&5 i ] t^t,e, j ;«uSd~0;H,H0!ut1Dt,e, j 8;«&

' i ] t^t,e, j ;«uSf~Hs ,H0!ut1Dt,e, j 8;«&

5 iv^t,e, j ;«uṠf~Hs ,H0!ut1Dt,e, j 8;«&. ~8.2!

In principle, the order of the error in the frozen data in the passage from the second to th
line does not determine the order of the error in derivatives, but this can be justified in the p
case. The last identity in the equation above can be seen from

^t,e, j ;«uSf~Hs ,H0!ut1Dt,e, j 8;«&5
1

Ap«
E dESj j 8~s,E!e2 (E2e)2/«2

e2 i (Dt)e/2e2 i (Dt)E.

We then multiply~8.2! with the complex conjugate of the mentioned generalization of~7.3! and
integrate overDt using property~E! of Sec. V B. The result then heuristically follows from E
~3.1! and the statement forEf analogous to~6.9!. An alternate derivation of~8.1! can be made,
more directly, starting from the rhs of Eq.~3.1! and using Born’s expansion.

The energy shift plays a role in the theory of adiabatic quantum pumps. In particula
pumped charge, the entropy production and noise generation in quantum pumps can all
pressed in terms of the energy shift.3 It is remarkable that basic properties of adiabatic quant
pumps can be understood, to leading order, in terms of the frozen scattering data alone.
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