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Abstract. The solution to problem 4 in final, Fall 2002

1. Show that the frame is a principal frame

Since all three masses are on the z = 0 plane

Ixz = Iyz0

For the remaining

Ixy = −m
∑

xiyi = −m(x1y1 + x2y2 + x3y3)

m1 has x1 = 0 and so does not contribute. For the remaining t20 y2 = y3 and
x2 + x3 = 0 hence Ixy = 0.

2. The inertia tensor in frame I

From the figure, and elementary geometry

Ixx = ma2
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Iyy = mh2
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Since the triangle is thin
Izz = Ixx + Iyy = ma2

3. The Intertia tensor in a rotted frame

Since the top is symmetric, the inertia tensor is the same in all frames rotated
in the x-y plane, i.e.

I =
ma2
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