TWO MASSES ON A HOOP

March 3, 2002

1 The Lagrangian

The kinetic energy is
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From the Cosine Theorem, the potential energy is
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So the Lagrangian is
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The E.L. equations are:
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2 Equilibrium

w1 = const and @3 = const are solutions of the equations iff

sin(gp2 — S01) _ b
2 T 2R
or
P2 —P1=T
The first equation is for stable equilibrium (The spring is not streched) and the
second is for unstable equilibrium (The spring is streched to its maximum).



3 Small Oscillations

When £, = 2R
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¢! is the angle in stable equilibrium (¢§ — ¢ = %) and ¢; is the small deviation

fromit (i = 1,2).
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So the Lagrangian in this approximation is
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4 Normal modes and frequencies

From the last form of the Lagrangian
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The solutions for the frequencies are:
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e wy; = 0 with the normal mode % ( L ) (The two masses move together in
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the same direction)
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o Wy = ,/% with the normal mode —= ( _11 ) (The two masses move in

opposite directions with the same amplitude and frequency %)
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