EXERCISES FOR LECTURE II- 26/10/2004

1) Hilbert-Schmidt inner product

Let L_V be the set of linear operators on a Hilbert space V. It is easily seen that L_V is a linear space. Show that the function \langle , \rangle on $L_V \times L_V$ defined by

$$\langle A, B \rangle =: tr[A^{\dagger}B], \ A, B \in L_V$$

is an inner product. Show that if the dimension of V is d, the one of L_V is d^2 . Find a basis of hermitian matrices for L_V , orthonormal with respect to the above inner product.

2) Consider the two-qubit singlet state

$$|\Psi\rangle = 1/\sqrt{2}\{|0\rangle \otimes |1\rangle - |1\rangle \otimes |0\rangle\},\$$

where $|0\rangle$, $|1\rangle$ represent the vectors of the computational basis, and let

$$\rho = |\Psi\rangle\langle\Psi|$$

be the corresponding $density\ operator.$

Show that

$$\rho = 1/4(I \otimes I - \sum_{m} \sigma_{m} \otimes \sigma_{m}),$$

where I is the identity and σ_m , m = x, y, z are the Pauli operators.

3) Using only CNOTs and Toffoli gates, construct a quantum circuit that performs the transformation

4) Consider the operator $\sigma \cdot \mathbf{v}$, where $\mathbf{v} \in \mathbb{R}^3$, $\|\mathbf{v}\| = \mathbf{1}$. Show that $\sigma \cdot \mathbf{v}$ has eigenvalues ± 1 and that the projectors onto the corresponding eigenspaces are $P_{\pm} = \frac{1}{2}(I \pm \sigma \cdot \mathbf{v})$. Compute the probabilities of obtaining +1 for a measurement of $\sigma \cdot \mathbf{v}$ when the initial states of the system are $|0\rangle, |1\rangle$.