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Fig. 0.1 : A Pretzel with 2 handles

Overview

Non-dissipative relatives of the ordinary (dissipative) conductance, which
appears in the classical Ohm’s law,

Current =Conductance × Voltage,
have geometric significance. The Hall conductance, [47, 51], is an example.
Much of what I shall say will be devoted to giving precise sense to [49, 50,
???]

Conductance = Adiabatic Curvature.
For open systems, the transport of charge is related also to comparing di-
mensions of Hilbert spaces, [10, 14], leading to a second geometric relation:

Conductance = Dimension.
In the classical theory of surfaces, the Gaussian curvature of the surface

M is related to a topological invariant, the Euler characteristic χ(M):
∫
M

Curvature = 2πχ(M) = 4π (1 − h).

h is the number of handles (the sphere has no handles). An analog, relates
the transport coefficients with topological invariants, known as Chern num-
bers [20]. Points where energy level cross play a role analogous to handles.

From a mathematical point of view what characterizes the approach
presented here is the study of geometric objects associated with families of
Schrödinger operators whose parameters are Aharonov-Bohm fluxes. From
a physical point of view this is a study of transport and its relation to
the sensitivity of quantum systems, as measured by Berry’s phase, [16], to
variation in Aharonov-Bohm fluxes.

The first ten chapters set the stage and provide background material
about geometry, gauge fields and quantum mechanics. The last three chap-
ters describe the applications to transport.
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Fig. 1.1: A horn in Euclidean three space
has negative Gaussian curvature

1. Manifolds and their Calculus

1.1. Manifolds

The Aharonov-Bohm effect tells us that interesting quantum phenomena
occur in multiply connected systems. A class of model surfaces we shall
consider are Riemanian manifolds. Riemanian says that the manifold M
comes with a metric gM . Compact manifolds model closed quantum systems
and noncompact manifolds model open quantum systems. On a compact
manifold transport is associated with “currents going around holes” and so
forces us to mind multiply connected systems. On a non-compact manifold
charges can also be lost to infinity.

The examples listed below describe various models of two dimensional
surfaces. Some of these serve as conventional models for two dimensional
electron gases, some are more esoteric.

a. The Poincaré-Lobachevski upper half plane [11, ???]: H = {z| Im z >

0}, has metric (ds)2 = dx2+dy2

y2 . Geodesics are semi-circles, whose centers
lie on the x-axis. The Gaussian curvature equals −1, and fixes a length
scale. H looks, locally, like a horn in 3-space, Fig. 1.1, where every point
is a saddle. Like the plane and the sphere, it is a symmetric space where
every point looks like every other point. Part of the interest in this model
comes from its relation to chaotic dynamics, in particular the geodesic flow
has exponentially diverging trajectories [11, 34]. Möbius transformations,

γ =
(
a b
c d

)
, z′ = γ(z) =

az + b

cz + d
, det γ = 1; a, b, c, d ∈ R,



Adiabatic Transport 7

Fig. 1.2: The 2-handle torus of Fig. 0.1
represented as an octagon with pairs of edges identified.

play a role analogous to the Euclidean motions of the Euclidean plane.
They take geodesics to geodesics, and the upper half plane to itself. Two
useful formulae are:

dz′ =
dz

(cz + d)2
, y′ =

y

|cz + d|2. (1.1)

b. Multi-handle tori: Riemann surfaces, (with two handles or more), can
be represented by polygons in the Poincaré plane with edges identified [27,
33], see Fig. 1.2.

Fig. 1.3: A punctured torus with a long boundary
c. Punctured Tori: Punctured tori, such as the one shown in Fig. 1.3,

have the topology one normally associates with an idealized quantum Hall
effect [44], shown schematically in Fig. 1.4. When an emf drives the system
in one loop, a Hall current flows in the other loop.
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Fig. 1.4: A configuration associated with the Hall effect

d. Graphs: Graphs represent quantum wires, tight binding models, and
arrays of Josephson junctions [1, 4, 7,30].

Fig. 1.5: Graphs, compact and non compact

The rest of this chapter is an introduction to the calculus of forms, ho-
mology and cohomology [3, 25, 28].

1.2. Forms

Let x ∈ M , with local coordinates (x1, . . . , xm), m = dim M . 0-form are
functions; 1-form are, locally,

ω1(x) =
m∑
j=1

ωj(x) dxj

and 2-form are given, locally, by

ω2(x) =
n∑

j<k

ωjk(x) dxj ∧ dxk, dxj ∧ dxk = −dxk ∧ dxj .
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For example, vector potentials (=gauge fields) A are 1-forms. Magnetic
fields are 2-forms.

Forms can be added and multiplied:

ωk ∧ ωj = (−)jkωj ∧ ωk.

1.3. The Exterior derivative

The exterior derivative is a linear map from k-forms to (k+1)-forms:

dωk = d
(∑

ωk
J dxJ

)
=

∑
J,j

(
�jω

k
J

)
dxj ∧ dxJ .

J is a multi-index.
Poincaré’s lemma:

d2 = 0.

Proof:
d2 =

(
�jdxj

)
∧

(
�kdxk

)
= (�jk) dxj ∧ dxk = 0.

In three space d is grad, curl and div when it operates on 0, 1, 2 forms.
Hence curl grad = div curl = 0, are versions of Poincaré’s lemma.

1.4. Riemanian Metric

The metric (ds)2 =
∑

gjk dxj ⊗ dxk, gives a volume form:

d Vol =
√
g dx1 ∧ . . . dxm; g = det{gjk} > 0.

The metric of an m-dimensional manifold is conformal if gjk(x) = m
√
gδjk .

1.5. Scalar products

The scalar product of p-forms is given by:

dxj · dxk = gjk,
(
dx1 ∧ . . .dxp

)
·
(
dy1 ∧ . . .dyp

)
= det (dxj · dyk).

1.6. Hodge ∗

Hodge ∗ is a linear operator on forms, so that for an m-dimensional manifold

∗ : k − forms −→ (m− k)forms,

ωk ∧ ωm−k =
(
∗ωk · ωm−k

)
d V ol.
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Fig. 1.6: The sphere and its hemispheres

For example, a two dimensional surface with a conformal metric has

∗(dx) = dy, ∗(dy) = −dx, ∗(1) = dV ol;
∗(dz) = −idz, ∗ (dz̄) = idz̄.

(1.2)

1.7. Cohomology

ωk is closed if dωk = 0 and is exact if ωk = df . Every exact form is closed. A
closed form is exact only locally, in a disc like domain. Sensible people study
electrostatics in Euclidean three space, where the assertion that curl E = 0
implies E = grad V is indeed valid. In spaces with complicated topology
it is not.

Example: The Maxwell equation dB = 0, (div �B = 0), makes sense on
any manifold (and is automatic if the manifold is two dimensional). On R3

it implies B = dA, (B = div A), but in Euclidean space with the origin
removed, A is only locally defined (e.g. on hemispheres). When a monopole
sits at the origin, a Dirac string of singularities prevents defining the vector
potential globally.

Cohomology groups are defined by:

Hk(M) = {closed k − forms}/{exact k − forms}.

The quotient means that f and g are identified if f − g is exact. The
closed/exact forms often live in infinite dimensional function space. The
cohomology, in contrast, is finite dimensional.

For example the circle has no exact zero forms, and the closed 0-forms are
constant. This makes H0(S1) � R. All 1-forms f(θ)dθ are automatically
closed. The exact ones (d g)(θ), have zero averages. Thus H1(S1) � R.
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1.8. Harmonic forms

a is harmonic if it is closed and co-closed:

da = ∗d ∗ a = 0.

For example, on R2, (with conformal metric) if f is holomorphic then a =
df is harmonic by Eq. (1.1). On T 2 periodicity selects a two dimensional
subspace:

a1 = α dx + β dy, α, β ∈ R.

It is a basic result of Hodge theory that for closed Riemann surfaces any
closed form ω can be uniquely decomposed into a harmonic and exact parts:
ω = h + dχ.

1.9. Integration

k-forms can be integrated on k-chains:
∫
ck

wk.

k-chains are k-dimensional submanifolds: A point is a 0 chain; A line a
1-chain; A surface is a 2-chain, etc. The pairing between chains and forms
to give a real number make the space of chains and forms dual to to each
other.

Stokes Theorem ∫
c

d ωk−1 =
∫
�c

wk−1.

�c is the oriented boundary of c.

1.10. Homology

c is closed if �c = 0, and exact if c = �c̃.
Poincaré’s lemma

�
2 = 0.

This is known as “the boundary of the boundary is zero”.
The Homology groups are defined by:

Hk(M) = {closed k − chains}/{exact k − chains}.

The quotient means that one identify c with c′ if c− c′ = �C.
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Fig. 1.7: c and c′ are closed and homologous 1-chains on the torus
c− c′ is the boundary of the hatched area.

For example the homology groups of the two torus are:

H0(T 2) � H2(T 2) � R, H1(T 2) � R⊕R.

1.11. Periods

The pairing of closed k-forms with closed k-chains provides a way to nor-
malize the basis for the cohomology group, e.g. by setting the basic periods
to be 0 and 1.

2. Aharonov-Bohm Fluxes

2.1. Summary

When Aharonov-Bohm gauge fields act on a system which has several holes
the Aharonov-Bohm fluxes make a vector φ = (φ1, . . . , φn). There are some
elementary questions one has to mind when considering the vector space
of fluxes. For example, does it have a distinguished origin? A distinguished
basis? and a distinguished metric? The answer is no, in general, for the
first two questions and yes for the second. We shall chose the metric so
that when the flux is time dependent the length squared of φ̇ is related to
the electromagnetic energy.

2.2. Fluxes

Imagine a quantum system threaded by coils that run through the holes.
The coils carry currents that can be controlled independently and give rise
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Fig. 2.1: Torus embedded in three space
with a current carrying coil threading the hole

to Aharonov-Bohm gauge fields which are closed 1-form A. Since dA = 0
there is no magnetic field associated to A on the surface.

Let {c1, . . . , cn}, n = dim H1(M) be a basis for the first homology.
There is no unique way to choose it (one can always reverse the orientation
of cycles, and take linear combinations). So we pick a choice and stick with
it, such as e.g. Fig. 2.2. The corresponding periods of a gauge potential
A give the flux vector φ = (φ1, . . . , φn), φj =

∫
cj

A. Since A is closed,
deformations of the cycles do not affect φ.

Fig. 2.2: A torus with two choices of bases for the first homology
Examples:
a. The unit circle, traversed counterclockwise generates the first homol-

ogy of the punctured plane R2/{0} . Any closed 1-form can be written
as

A =
φ

2π
i eiθ

(
de−iθ

)
+ dχ, φ ∈ R.
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θ the polar angle. Clearly dA = 0 on R2/{0}, and

∫
c

A =
{
φ, c encircles origin;
0, otherwise.

2.3. Gauge Fixing

Consider a fixed set of n coils. The n-vector of currents through the coils,
I, is associated with a (linear) map to the space of Aharonov-Bohm gauge
fields:

I −→
∑

φj aj , φ = (φ1, . . . , φn) ∈ Rn.

φ is linear in I and the aj are I independent. We may think of the aj as
being associated with the given set of coils. Fig. 2.3 shows schematically
what is meant by identical systems with different coils.

Fig. 2.3: Identical coils, which carry time independent currents,
placed in different positions inside the holes of identical systems.

Choosing a basis for the first cohomology means that any closed 1-form
has a unique decomposition

∑
φj aj + dχ, φ ∈ Rn,

∫
cj

ak = δjk.

cj and aj are the basis elements for the first homology and cohomology
respectively. (In this decomposition χ may be φ dependent.)

The periods (fluxes) of a 1-form (Aharonov-Bohm gauge field) determines
A up to an exact 1-form. Fixing a gauge, e.g. by setting χ = 0 above,
removes this freedom. Choosing a fixed set of coils, does the same thing.
Hence, choosing a basis for the cohomology and fixing a gauge are all related
notions.
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Fig. 2.4: A switching function.

2.4. Harmonic gauge

The Harmonic forms provide a basis of the first cohomology of a closed
Riemann surface. We normalize the basis so that the harmonic forms have
periods which are either 0 or 1.

Examples:
Let T 2 be the square [0, 2π] × [0, 2π] with constant metric. Let (c1, c2)

and (c1, c2) be two choices of a bases for the first homology groups, shown
in Fig. 2.2. The corresponding normalized, harmonic gauge fields are

a1 = dx, a2 = dy, a1 = dx− dy, a2 = dy.

On R2, harmonicity and normalization are in conflict. a1 = dx, a2 = dy
are harmonic but not normalizable. A convenient choice of Aharonov-Bohm
gauge field that we shall use is as follows: take any monotonic function of
one coordinate χ so that χ(∞) − χ(−∞) = 1, as in Fig. 2.4. We shall call
this a switching function.

a1(x, y) = χ′(x) dx, a2(x, y) = χ′(y) dy,

are closed and normalized. If φ it time dependent then φ̇1 a1 + φ̇2 a2 de-
scribes a gauge field that corresponds to a voltage drop φ̇1 between −∞
and +∞ along the x axis.

2.5. Singular Gauge

Let cj be a base for Hn−1(M). Set

aj = δcj (x) dxt,



  

16 J.E. Avron

with dxt “transversal” to cj and δc(x) a surface delta function. For example,
in the Euclidean plane:

a1(x) = δ(x) dx, a2(x) = δ(y) dy.

2.6. Pure Gauge Fields

A pure gauge field associated with time independent (smooth) gauge trans-
formations U is given by A = i (dU)U†. Pure gauge fields are closed:

dA = −i(dU) (dU†) = i (dU) U† (dU)U† = iA ∧A = 0.

For example, on R2/{0}, U(z) = exp i φ θ, with φ ∈ Z give A = −φ dθ.
We see from this example that the set of pure gauge fields make a lattice.

2.7. The Flux Torus

The flux torus, Φ, is the space of Aharonov-Bohm gauge fields with an
equivalence relations:

Φ � {closed 1 − forms}/{pure gauge fields}.

For example, a Riemann surface with h holes has Φ � T 2h.
Once a gauge and normalization have been fixed any Aharonov-Bohm

gauge field (a point in Φ) can be uniquely represented as

A =
∑

φj aj + pure, 0 � φj < 1.

2.8. A Riemann Metric

With time dependent fluxes, φ̇ represents a vector of emf’s. The ques-
tion we want to address here is the notion of length for such vectors.
One such choice is to make the length square of vectors φ̇ proportional
to the electromagnetic energy which comes from electric field density,∫

dV ol E · E =
∫

dV ol Ȧ · Ȧ. (There is no magnetic field energy density
for Aharonov-Bohm fields on M .) This motivates choosing for the Riemann
metric, gΦ, on flux space

(gΦ)jk =
∫
M

aj ∧ (∗ak) =
∫
M

(aj · ak) d V ol.
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Fig. 2.5: A torus with a skew angle

gΦ depends on the metric of M , on the basis for the homology groups, and
on the choice of gauge for the Aharonov-Bohm fluxes.

For example, consider the unit torus, R2/Z2, with metric

gM =
(

a2 ab cos θ
ab cos θ b2

)
, a, b, θ ∈ R.

This torus is equivalent to the skewed torus with lengths a and b with
Euclidean metric shown in the Fig. 2.5.

Choosing the obvious cycles, we have a1 = dx, a2 = dy, harmonic and
normalized.

gΦ =
1

sin θ

(
b/a − cos θ

− cos θ a/b

)
, det gΦ = 1.

The tori in coordinate and flux space are related as the unit cell of a crystal
is related to its Brillouin zone. The duality between the Bloch momenta,
and the fluxes, reappears in various other places in this theory.

3. Magnetic Fields

Magnetic fields, B, are closed 2-forms. If M is two dimensional, then any 2-
form is closed. Constant magnetic fields in two dimensions are proportional
to the area form. For example constant magnetic fields on the Euclidean
and Poincaré plane are:

B =
{
B dx ∧ dy Euclidean;
(B/y2) dx ∧ dy Poincaré.

On a curved surface there is, in general, no constant vector field. You can’t
comb the airs of a peach, see Fig. 3.1. It follows that, unlike the situation
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Fig. 3.1: You can’t comb the hairs of a peach.

for magnetic fields, there is no natural notion of constant electric field on
a curved surface.

3.1. Dirac Quantization

On a closed two dimensional manifold∫
M

B = 2π Integer.

If M is embedded in E3 this says that only magnetic monopoles with quan-
tized magnetic charges may be placed inside M . On punctured surfaces,
such as the one in Fig. 1.4, the magnetic flux can be varied continuously
at the expense of the fluxes in the punctures.

In Gaussian units the magnetic monopole g and electric monopoles e
have the same dimension: g = e/α, where α = e2/h̄c. Dirac says that 2g is
integral multiple of the quantum flux unit.

The area of a smooth compact h-handled surface with Gaussian curvature
−1, is 4π (h−1), h � 2. Dirac quantization conditions says that constant
magnetic fields are certain fractions: 2B(h− 1) ∈ Z.

4. Schrödinger Operators on Graphs

4.1. Summary

Here we describe the quantum mechanical kinetic energy operator on spaces
that looks like graphs. Graphs represent an idealized version of two dimen-
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Fig. 4.1: A graph with three vertices and six edges

sional systems of small area whose linear dimensions are large. Since mag-
netic fields set a length scale the notion of small area corresponds to the
weak magnetic field limit for system of finite area.

Schrödinger operators on graphs provide a class of models which can be
explicitly and completely analyzed and for which one can get detailed and
explicit information about spectral and transport properties [7, 8]. One
role they play in the in the logical structure of the theory of adiabatic
transport (described in section 11) is to provide examples for which the
general theory can be applied, and for which one can verify that the theory
leads to non-trivial transport properties.

4.2. The Kinetic Energy

On the edges (links) the kinetic energy is the differential operator:

1
2

(
−i

d
dx

−A(x)
)2

.

At each vertex, v, we impose boundary conditions that guarantee Kirchoff
law. Let � label the edges that are incident on v. (We denote this by �� 
 v.)
Then the boundary conditions are:

ψ�(v) = ψ(v), ∀ �∑
���v

(
�− iA(x)

)
ψ�(x)

∣∣∣
v

= λψ(v), λ ∈ R.

Kirchoff follows from∑
���v

j�(v) =
∑
���v

Im ψ̄(�− iA)ψ =
∑
���v

Im λ|ψ(v)|2 = 0.
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Fig. 4.2: Vertex with incident oriented edges

λ = 0 corresponds to Neumann, λ = ∞ to Dirichlet. Finite λ introduces
a length scale. Dirichlet disconnects the graph. Neumann is the boundary
condition we shall choose in the illustrations below.

4.3. Spectral Analysis

Spectral question on graphs reduce to questions about finite matrices. We
focus on compact graphs. Non-compact graphs, like the one in Fig. 1.5 lead
to a scattering problem that we shall not study here see e.g. [8, 26, 31].

Fix an energy E > 0, k =
√

2E > 0. For a given edge �, let

φ(�) =
∫
�

A.

The vector Ψ = (ψ1, · · · , ψn) gives the values of the eigenfunction at the
vertices of the graph. Define a matrix h(φ, k) whose entries are

huv(φ, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
��=(u,v)

exp−iφ(�)
sin k�

, u �= v;

−
∑
���u

cot(k�), u = v.

Here u, v denote vertices in the graph.
For example, suppose all edges for Fig. 4.1 have length � = 1. Let the

six complex numbers of modulus one, x,X, y, Y, z and Z correspond to
exp iφ(�) for the six edges. The matrix h is given by

h =
1

sin k

⎛
⎝ α Z + z Ȳ + ȳ

Z̄ + z̄ α X̄ + x̄
Y + y X + x α

⎞
⎠ , α = −4 cos k.

In this example the information on the Aharonov-Bohm gauge fields is
in the six complex numbers of modulus 1, x,X, y, Y, z and Z. The fluxes
carried by the four flux tubes threading the holes are determined by

xX̄ = exp iφ1, yȲ = exp iφ2, zZ̄ = exp iφ3, XY Z = exp iφ4.
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The four fluxes do not determinex,X, y, Y, z, Z uniquely: There is a two
dimensional space of gauge transformations given by diagonal unitaries
with determinant one.

The spectral properties follow from:
1. The vector of amplitudes at the vertices, Ψ, and k (provided sin k� �= 0),

determines the eigenfunction at every point of the graph. For x ∈ �
the wave function is determined in terms of its values at the vertices
{u, v} = ��

ψ(x) =
exp i

∫ x
A

sin k�

(
ψ(v) exp

(
− iφ(�)

)
sin kx + ψ(u) sin k(�− x)

)
.

2. The eigenvalue equation is

det h(k, φ) = 0.

It gives energy bands on the flux torus. The corresponding eigenvectors
Ψ lie in the kernel of h(k, φ).

3. The Hilbert space metric induces a (non-trivial) metric i.e.

||Ψ||2 =
∑

ψ̄u guv(k, φ)ψv.

5. Schrödinger Operators on Manifolds

5.1. Summary

This chapter describes the kinetic energy operator for non relativistic, spin-
less quantum particles on (curved) manifolds in the presence of magnetic
and Aharonov-Bohm gauge fields. The notion of periodic boundary condi-
tions turns out to be subtle when gauge fields are present.

We describe the quantum kinetic energy operator of a single charged
particle. The generalization that gives the Hamiltonian describing many
interacting particles on curved manifolds is soft and easy (using the ad-
ditivity of the kinetic energy). The spectral analysis of the two kinds of
operators is a different ball game, of course. For the kinetic energy of a sin-
gle particle (with homogeneous magnetic fields) one has, as we shall see in
section 6, explicit spectral information on the low lying eigenvalues. There
is no comparable information for interacting electrons.
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Fig. 5.1: Overlapping patches

5.2. Landau Hamiltonians

On a manifold with gauge fields define the velocity operator by the 1-form

v = −id −A. (5.1)

If we think of the wave function |ψ〉 as a function (0-form), then |vψ〉 is a
1-form. The expectation value of (twice) the kinetic energy associated to
the state is:

〈vψ|vφ〉 =
∫

dV ol vψ(x) · vφ(x) =
∫

∗vψ(x) ∧ vφ(x).

(̄· denotes complex conjugation.) The kinetic energy operator now follows
by integrating by parts, which we write formally as:

H =
1
2

(∗v∗)v. (5.2)

This is the generalization of (− half) the Laplacian −∆ = (∗d∗)d. We call
the kinetic energy operator for constant B Landau Hamiltonian.

For example, on a two dimensional manifold with conformal metric the
Landau Hamiltonian is

H =
1

2
√
g

(
(−i�x −Ax)

2 + (−i�y −Ay)
2
)
, A = Axdx + Aydy.

5.3. Periodic Boundary Conditions

Wave functions and gauge fields on overlapping patches are related by gauge
transformations:
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A+ −A− = dχ, ψ+ =
(

exp iχ
)
ψ−.

Example: Consider the torus in configuration space shown in Fig. 2.5. In
the symmetric gauge A = (B/2) (xdy − ydx), comparing the gauge poten-
tials on the left/right and up/down boundaries of the polygon gives:

AL −AR = (Ba/2) dy =⇒ χLR = (Ba/2) y + φ1,

AU −AD = −(Bb/2) dx =⇒ χUD = −(Bb/2) x + φ2.

It follows that the periodic boundary conditions are:

ψ(a, y) =
(

exp iφ1 exp (iBay/2)
)
ψ(0, y);

ψ(x, b) =
(

exp iφ2 exp (−iBbx/2)
)
ψ(x, 0).

5.4. Magnetic Translation

The magnetic translations on R2, [ ???], in the symmetric gauge, are
defined by:

(Uaψ) (x) =
(

exp i(B × a · x/2)
)
ψ(x− a), x, a ∈ R2.

The operators satisfy a Weyl-Heisenberg algebra Ua Ub = ei B·a×b Ub Ua,
and are generated by:

i
(
daUa

)
U †

a = −id + A.

5.5. Automorphic Factors

In the Poincaré upper half plane fix the gauge

A = B
dx
y
.

Let γ be the Möbius transformation that relates the two edges of the poly-
gon such as the octagon in Fig. 1.2. The boundary conditions are deter-
mined using Eqs. (1.1)

dx′

y′
− dx

y
= Re

(
dz′

y′
− dz

y

)
= Re

(−2ic dz

cz + d

)
= 2 Im d ln (cz + d).
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The gauge transformation that matches wave functions is

χ(γ) = −iB ln
cz + d

cz̄ + d
+ φ(γ).

Hence, the periodic boundary conditions are [35]

ψ(z′) = ei χ(γ)ψ(z) = ei φ(γ)

(
cz + d

cz̄ + d

)B

ψ(z).

6. Spectral Properties of Landau Hamiltonians

6.1. Summary

There is detailed spectral information about the ground state of Landau
Hamiltonians, for a large class of surfaces. This is a consequence of certain
index theorems. This chapter is an introduction to this. For more on this
see e.g. [19, 35]. Quantum scattering on non-compact Riemann surfaces is
also a highly developed subject, but we shall not discuss it at all see e.g.
[2, 21, 35, 46].

The theory of adiabatic transport that we aim at is general and is cer-
tainly independent of whether the models are explicitly soluble or not. The
role played by soluble models, is twofold: First, the theory makes certain
assumptions, and it is useful to have a class of models where these assump-
tions can be verified. This makes the theory non-empty. Second, the models
serve to guarantee that the theory is non-trivial: Soluble models show that
non-zero non-dissipative transport coefficients arise.

6.2. The Flat Torus

For the flat torus:

0 � 2H = (−i�x + By/2)2 + (−i�y −Bx/2)2 = D†D −B;

D = 2�−Bz̄/2, D† = −2�̄−Bz/2.

Let Spec(H) denote the spectrum of H. Since B is constant

Spec(2H) = Spec(D†D) −B = Spec(DD†) + B.
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Positivity of the kinetic energy gives KerD = 0, if B > 0. (KerD is the
vector space which is annihilated by D.) The Index theorem says:

dimKerD† − dimKerD =
BArea

2π
. (6.1)

(In the section 6.3 we shall describe where this comes from.) It follows that
the ground state energy is B/2 and its degeneracy is

dimKerD† =
BArea

2π
. (6.2)

The method gives no information for zero magnetic fields.

6.3. Riemann surfaces

Let D(B) = 2�− iB/y, D†(B) = −2�̄− i(B + 1)/y. The Landau Hamil-
tonian can be written as:

2H(B) = y2 D(B) D†(B − 1) + B = y2 D†(B − 1)D(B) −B.

Positivity of the kinetic energy says that Ker D(B) = 0 for B > 0. The
index theorem says that (see the next section):

dimKerD†(B − 1) − dimKerD(B − 1) =

(2B − 1)
Area

4π
. (6.3)

Combining the two gives, for B > 1, the ground state energy B/2 and
degeneracy, [5],

dimKerD†(B − 1) = (2B − 1)
Area

4π
.

It is instructive to restate the result in terms of the number of flux quanta.
B > 1, which is where the method applies, correspond to total flux that is
larger than 2(h − 1). The ground state degeneracy is

(
# flux quanta

)
−

(h − 1). The method distinguishes a region of weak magnetic fields, where
the total magnetic flux is less than 2(h − 1), and where the method does
not apply, and a region of strong magnetic fields where the total magnetic
flux is larger than 2(h − 1) and the method fixes the ground state energy
and it degeneracy.
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The dynamics and spectral properties in weak magnetic fields is compli-
cated, because,the negative curvature dominates the Lorentz force.

6.4. Index and Heat Kernel

Given operators A and B, the spectra of AB and BA almost coincide, that
is:

Spec(AB)/{0} = Spec(BA)/{0}.
Hence, if DD† is an operator with discrete spectrum, all its non-zero eigen-
values coincide with those of D†D. It follows that for any β > 0,

dimKerD† − dimKerD = Tr
(
e−βDD† − e−βD†D

)
.

Since the right hand side is independent of β we compute it in the limit
β → 0. To leading order in β:

Tr
(
e−βDD† − e−βD†D

)
→ β Tr

(
[D†, D] e−βD†D

)
.

When β → 0 the “heat” propagates only little around a small neighbor-
hood where the behavior of space is approximately Euclidean [15, 32]. This
suggests

〈x|e−βD†D|y〉 → 1
4πβ

e−(x−y)2/2β .

Suppose now that [D†, D] is a multiplication operator (it is in the applica-
tions above), then

dimKerD† − dimKerD =
1
4π

∫
polygon

d2x
(
[D†, D]

)
(x).

The commutator

[D†(B − 1), D(B − 1)] =
{

2(B − 1) flat torus;
(2B − 1)/y2 Poincaré,

gives the index formulas Eqs. (6.1-3).

7. Currents

7.1. Summary

This section discusses two notions of current operator operator in quantum
mechanics. Every textbook in quantum mechanics tells us what the current
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Fig. 7.1: The currents through homologous cuts on a disc

density operator is and the innocent reader may wonder if he does not
already know all there is to know about the current operator. A point
we stress here is that there is no one current operator; the current is an
(operator valued) function on cross sections, and more precisely on the
closed (n− 1) chains, (n is the dimension). See Fig. 7.1 where two distinct
cross sections for the current are shown. The duality between homology
and cohomology leads to a more general notion of currents as a function
on the closed 1-forms. These may be viewed at currents averaged over a
distribution of cross sections. We call this generalized notion loop current.
On a surface with h holes, it is convenient to consider the loop current
as a 1-form whose h components correspond to the h loop-currents. The
loop current operator is the operator valued 1-form dH(A), where d is the
exterior differential with respect to fluxes, H is the Hamiltonian and A is
the 1-form of the Aharonov-Bohm gauge fields. This definition is of course
independent of whether H is solvable or not and in particular holds for H
that describe interacting, multiparticle, Schrödinger operator.

7.2. Classical

Current densities j(x) are 1-forms. Incompressible current densities satisfy
d ∗ j = 0. The currents are (co) periods of the current densities:

I(c) =
∫
c

∗j, c ∈ Hm−1(M).

Different choices of c correspond to different currents. However, in the case
of incompressible flow I(c) = I(c′) if c is homologous to c′. Indeed, if
c− c′ = �C, then

I(c) − I(c′) =
∫
c−c′

∗j =
∫
C

d ∗ j = 0.
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7.3. Loop Currents

The notion of current can be generalized by considering it as a function
on closed (and normalized) 1-forms. Let a ∈ H1(M) and define the loop
current by:

I(a) =
∫
M

a · j dV ol =
∫
M

a ∧ ∗j.

We may think of the 1-form a as associated with an Aharonov-Bohm gauge
field (with normalized periods). In general, different choices of flux tubes
such as in Fig. 2.3, lead to different currents. If a is in a singular δ like 1-form
concentrated on the closed chain c, (with normalized period), I(a) = I(c).
In the cases that a is a smooth 1-form, this is a more general notion of
a current (which may be thought of as averaged over cross sections). The
current depends on a. However, for incompressible flow it is a function on
the cohomology, i.e. I(a) = I(a′) if a− a′ = dχ, the current is independent
of the choice of flux tubes. .

7.4. The Current Operator

The velocity operator in quantum mechanics was defined as the 1-form,
Eq. (5.1). In a state |ψ〉 the expectation of the current density is

〈ψ|j(x)|ψ〉 = − Re ψ̄(x)(vψ)(x).

The loop current involves a choice of weight a and is defined by

I(a, ψ) = −1
2
〈ψ|a · v + v · a|ψ〉.

Let
A =

∑
φj aj + A0, d =

∑
dφj�j .

with aj and A0 independent of φ. Then dv = −
∑

aj dφj , and

I(a, ψ) =
∑

I(aj , ψ) dφj =

− 1
2
〈ψ| dv · v + v · dv|ψ〉 = 〈ψ|dH|ψ〉 , (7.1)

with H the non relativistic, spinless, Schrödinger operator.
If H is time independent and |ψ〉 a (normalized, nondegenerate) eigen-

state of H with energy E the conventional expression for the persistent
currents [18]∑

(�jE) dφj , (7.2)
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follows from Eq. (7.1) and Feynman-Hellman. This is a case where the
current is (guaranteed to be) incompressible, and independent of the flux
tube.

8. Adiabatic Theorems

8.1. Summary

It is a basic fact that the evolution generated by a time independent
Schrödinger operator reduces to spectral analysis. Adiabatic theorems say
that the evolution generated by slowly varying time-dependent Schrödinger
operators, also reduce to spectral analysis, but of a family of Schrödinger
operators. A strategy we shall describe here, which goes back to Kato, [36]
is to compare the true evolution with a fictitious evolution, with geometric
significance. Adiabatic theorems compare the two evolutions.

8.2. Hilbert Space Projections

Let P be a projection operator: P 2 = P , so Spec(P ) = {0, 1}. P is orthog-
onal if P † = P .

dim P ≡ dimRangeP = Tr P = dim Ker (P − 1).

Differentiating P 2 = P gives

P (dP ) P = 0. (8.1)

For example, a one dimensional projection (non-orthogonal) is: P =
|ψ〉〈φ|, with 〈φ|ψ〉 = 1. Eq. (8.1) reads: 〈dφ|ψ〉 + 〈φ|dψ〉 = 0. Spectral
projections commute with H, PH = HP and have an integral representa-
tion:

P = − 1
2πi

∮
R(z)dz.

It follows that P is orthogonal whenever H is self-adjoint. Unless otherwise
stated we shall assume that P is associated with an energy interval bordered
by gaps, as shown in Fig. 8.1.

8.3. The Adiabatic Setting

Consider a family of Schrödinger operators, H(s), with parameter s which
is time independent in the past and future. Let τ be the time scale, and
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Fig. 8.1: The spectrum and the contour associated to a spectral projection

s = t/τ the scaled time. Consider the evolution equations i�t U(t) =
H(t/τ) U(t), or equivalently,

i
τ
�s U(s) = H(s) U(s), (8.2)

with initial condition U(0) = 1 for the evolution operator in the limit
τ → ∞.

8.4. Adiabatic Evolution

Kato [36] introduced fictitious evolutions, UA, which are defined so that
they respect the spectral splitting of the Hamiltonian, that is, with strictly
zero tunneling expressed by UA(s) P (0) = P (s) UA(s). The corresponding
generator, HA = (i/τ)(dUA) U†

A, satisfies [HA, P ] = (i/τ) Ṗ .
The most general solution of this commutator equation is given by

HA(s) = f(H) +
i

τ
[Ṗ , P ],

with f an arbitrary function. Kato chose f = 0.

HK(s) =
i
τ

[Ṗ , P ], (8.3)

turns out to be purely geometric in character (see 9.3). Another natural
choice [10] is to take f(x) = x, which gives

HASY (s) = H(s) +
i
τ

[Ṗ , P ], (8.4)

a generator which is formally close to the physical generator.
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8.5. Comparison of Dynamics

The essence of adiabatic theorems is the comparison of the physical and
fictitious dynamics for times order τ . One way to do that is to consider
how close is

S(s) ≡ U†
A(s) U(s)

to the identity. Kato showed that

S(s) − 1 = O(1/τ). (8.5)

Stronger results are described in [17, 37, 39, 41].

9. The Adiabatic Curvature

This chapter describes the geometry of families of Hilbert space projections.
The adiabatic curvature, for a one dimensional projection, is a close relative
of Berry’s phase [16, 50]. It is a measure of the sensitivity of the quantum
states to parametric changes in the Hamiltonian. Of course, a quantum
system can display sensitivity in more than one way, such as sensitivity of
the spectrum (as a set) and the eigen-energies. In the applications to charge
transport the parameters are Aharonov Bohm fluxes and the adiabatic
curvature is related to non-dissipative transport.

9.1. Parallel Transport and Riemanian Geometry

Let P denote the operator associated to family of finite dimensional and
smooth projections. When Range P is one (complex) dimensional,

Range P � C � R2.

Parallel transport (or connection) is concerned with the question of orient-
ing planes in the family.

Since Riemanian geometry provides a basic paradigm, and the historical
motivation, for the more abstract setting, it is useful to recall how these
issues get sorted out in Riemanian geometry. Consider, for example Fig. 9.1,
which shown a bundle of tangent planes.

The Levi-Civita connection stipulates that tangent vectors is parallel
transported along a geodesic if it keeps its length and angle with respect to
the geodesic. This rule can be used to transport a frame from one plane to
another along a geodesic. The rule can be expressed in terms of a first order
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Fig. 9.1: A bundle of tangent planes to the sphere

differential equation involving the covariant derivative D, as the following
example shows: Consider the Poincaré plane. With v ∈ C we associate the
tangent vector (vx, vy) = (Re v, Imv). Since vertical lines are geodesics,
the Levi-Civita connection says that a constant vector field on vertical
lines v has parallel vectors, so the equation of parallel transport is �yv = 0.
Similarly, semi-circles with r = const are geodesics, and Levi-Civita says
that the vector field eiθ has parallel vectors. The corresponding differential
equation is �θv = i v. In Cartesian coordinates these two equations read

�yv = 0,
(
�x +

i
y

)
v = 0.

This fixes the covariant derivative to be

D =
(
�x +

i
y
,�y

)
.

The Levi-Civita connection coincides (up to a factor i) with the quantum
mechanical velocity operator in the gauge field A = B/y for B = 1.

9.2. The Canonical Connection

We shall denote by d the exterior derivative with respect to the parameters
and think of these as fluxes.

When P = 1 the constant vector field has all its vectors parallel to
each other and the equation of parallel transport is d|ψ〉 = 0. The natural
geometric generalization of this to non-trivial projections is to require that
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Fig. 9.2: Holonomy of tangent vectors on the sphere

there is no variation of the vector in RangeP , i.e. P d |ψ〉 = 0 along a path
γ. This sets the covariant derivative to be D = P d.
For |ψ〉 ∈ RangeP , P⊥d is “tensorial”, (P⊥ ≡ 1 − P ), i.e. for a (scalar
valued) function g

(P⊥d) g |ψ〉 = g P⊥d |ψ〉 = g (dP ) |ψ〉.

One has the operator identities on RangeP

D = Pd = d− (dP ) P = d− [dP, P ].

From this sequence of identities one sees that if the parameter is (scaled)
time, the equation of parallel transport

iDs |ψ〉 =
(
i�s − i[Ṗ , P ]

)
|ψ〉 =

(
i�t −

i
τ

[Ṗ , P ]
)

|ψ〉 = 0,

is Schrödinger equation with the adiabatic generator of Kato Eq. (8.3).

9.3. Curvature

Curvature measures the extent that parallel transport along a closed path
fails to bring a vector back to itself. A standard example from Riemanian
geometry is associated with the parallel transport of tangent vectors along
a spherical triangle, as shown in Fig. 9.2

For example, suppose RangeP is one dimensional, and pick an appropri-
ately normalized, vector |ψ〉 in RangeP . That is P = |ψ〉〈ϕ|, 〈ϕ|ψ〉 = 1.
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Any vector in RangeP can be written as |f〉 = g|ψ〉, g complex valued.
The equation of parallel transport is

〈ϕ|D|f〉 = dg + g 〈ϕ|dψ〉 = g
(
d log g + 〈ϕ|dψ〉

)
= 0.

For a circle of projections, i.e. for a closed path � in parameter space,∫
�

d log g = −
∫
�

〈ϕ|dψ〉 = −
∫
�−1�

〈dϕ|dψ〉.

〈dϕ|dψ〉 is the adiabatic curvature and �
−1� is a surface with boundary �.

9.4. Projections of Arbitrary Rank

The example in the previous subsection introduces the adiabatic curvature
for projections which are rank one. Here we generalize this to projections
of higher rank. This generalization is both natural, and something we shall
need for the applications. Some applications concern infinite dimensional
projections.

Let φ denote the coordinates in parameter space, i.e. the family of pro-
jection is represented by a function P (φ). The curvature, Ω, is a 2-form
with components Ωjk:

Ω =
∑

Ωjk dφj ∧ dφk, Ωjk = [Dj , Dk].

It is remarkable that even though Ω is made from differential operators, it
is not a differential operator. In fact (on RangeP )

[Dj , Dk] =
(
P�j

)(
P �k

)
−

(
P�k

)(
P �j

)
= P

(
�jP

)
�k − P

(
�kP

)
�j

= P
(
�jP

)
P⊥�k − P

(
�kP

)
P⊥�j

= P
(
�jP

) (
�kP

)
− P

(
�kP

) (
�jP

)
= P

[
(�jP ) , (�kP )

]
= P

[
(�jP ) , (�kP )

]
P.

In form notation we have

Ω = P dP ∧ dP P.

9.5. Miscellaneous Formulas for the Curvature

Suppose P is a spectral projection associated with an eigenvalue e of the
Schrödinger operator H, i.e. PH = eP . Then

Ω(P ) = P dH R̂2(e)dH P, R̂(z) = P⊥R(z)P⊥. (9.1)
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This is a relative of formulas of perturbation theory and of Kubo type
formulas. The rank one case is a special case of this since by first order
perturbation theory

d|ψ〉 = −R̂(E) (dH) |ψ〉.
Suppose that the family of projections is represented by the action of a
family of unitaries on a fixed projection. That is

P = U Q U†, dQ = 0.

Let A = (dU)U†, denote the generator of the family. Using dP = [A, P ]
and dP P = P⊥ AP, we find

Ω(P ) = −P AP⊥ AP = −P A ∧AP + (P AP ) ∧ (P AP ) .

Two special cases that deserve spelling out are:
Finite Rank: If P is finite dimensional and A is bounded, cyclicity of the

trace and anticommutativity of 1-forms gives

TrΩ(P ) = −Tr
(
P A ∧AP

)
, dimP < ∞, A bounded.

(9.2)

If U comes from a Lie group, A is a Lie algebra valued 1-form, and A∧A
a Lie algebra valued 2-form [48].

Gauge transformation: When U comes from a (smooth) family of
(abelian) gauge transformation A ∧A = 0 and:

TrΩ(P ) = Tr
(

(P AP ) ∧ (P AP )
)
. (9.3)

The curvature vanishes if P is finite dimensional.

9.6. General Properties of the Curvature

The flatness of the full Hilbert space is expressed by:

Ω(P⊥) = −TrΩ(P ). (9.4)

Spectral projections that come from self-adjoint Hamiltonians are auto-
matically orthogonal. For orthogonal projections, P = P †, the adiabatic
curvature is pure imaginary:

Ω(P )† = −Ω(P ); ReTrΩ(P ) = 0. (9.5)
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For this reason one finds that the adiabatic curvature is often defined to
be a multiple of

√
−1 of the adiabatic curvature as we have defined it here.

If P is orthogonal and time reversal invariant, i.e. P commutes with a
(fixed) anti-unitary, then

TrΩ2n+1(P ) = 0, (9.6)

for all integral n. If P,Q are commuting orthogonal projections, i.e. PQ =
QP = 0, then P + Q is an orthogonal projection and

TrΩ(P + Q) = TrΩ(P ) + TrΩ(Q). (9.7)

For P = U Q U†

Tr Ω(P ) = Tr Ω(Q) + d Tr (Q U†dU). (9.8)

10. Constant Curvature

10.1. Summary

Here we give a collection of examples where the adiabatic curvature is a
multiple of a natural area form in parameter space. Constant curvature are
related to quantized transport.

10.2. Curvature and Quantum Numbers

Consider spin 1/2 in a magnetic field [16]

H = B · σ, B ∈ R3/{0}.

σ is the triplet of Pauli matrices. The family of eigenvalues, E± = ±|B|,
has a conic singularity at the origin, as shown in Fig. 10.1. The family of
projections is smooth away from the origin and is given by

P± =
1 ± B̂ · σ

2
, B̂ = B/|B|.

The associated curvature is proportional to the area form of the unit sphere:

TrΩ(P±) = ± i
2|B|3

(
B1dB2 ∧ dB3 + B2dB3 ∧ dB1 + B3dB1 ∧ dB2

)
.
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Fig. 10.1: A Conic family of eigenvalues

It is 1/2 the Riemanian (Levi-Civita) curvature of the unit sphere reflecting
the fact that 2π rotation of spin 1/2 flips the sign.

10.3. Phase Space Translations

The family of unitaries associated with translations and boosts:

Ua = exp
(
ipa/h̄

)
, Vb = exp

(
− ixb/h̄

)
, [p, x] = −ih̄, a, b ∈ R.

satisfy the Weyl-Heisenberg algebra Ua Vb = eiab/h̄ Vb Ua. W (a, b) = Ua Vb,
the unitary family of phase space translations, is generated by:

i (dW ) W † =
1
h̄

(
− pda + (a + x)db

)
.

For Q fixed the family of projections P = WQW † has constant curvature
on phase space:

Tr Ω(P ) = − i
h̄

(TrQ) da ∧ db.

10.4. Landau Hamiltonians on Tori

The previous example can be used to compute the adiabatic curvature
associated with Landau levels on tori. Take the torus [0, 2π] × [0, 2π]. The
magnetic co-translations:

Uφ = exp iv1 φ/B, Vφ = exp −iv2 φ/B,
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(with vj the components of the velocity operator Eq. (5.1) in the sym-
metric gauge), satisfy Weyl-Heisenberg algebra UaVb = exp(iab/B)VbUa.
A computation like the previous example gives

Tr Ω(P ) =
i
B

(Tr P ) dφ1 ∧ dφ2. (10.1)

From Eq. (6.2) we know that the degeneracy of Landau levels for the [2π×
2π] torus is: Tr P = BArea/2π = 2πB (which is integral by Dirac) and
thus

Tr Ω(P ) = 2πidφ1 ∧ dφ2.

It follows that adiabatic curvature is (universal) constant on flux space. A
result of the next chapter is that the Hall conductance is the

√
−1 multiple

of the adiabatic curvature. This makes the Hall conductance of a Landau
level equal 1/2π. To convert this to the usual units, recall that the unit of
conductance is 2π

(
e2/h

)
with e the electron charge and h Planck constant.

10.5. Curvature and Gauge Transformations

Consider the family of Schrödinger Hamiltonians on the infinite plane:
H(v, x) with

v(φ) = v − φ1 dχ(x) − φ2 dχ(y),

and where χ is a switching function. The flux dependence of the family
comes from gauge transformations. As a consequence, if we let P project
on all states below the Fermi energy EF, then

P (φ) = W (φ)P (0)W †(φ), W (φ) = exp−i
(
φ1 χ(x) + φ2 χ(y)

)
,

with an (abelian) generator A = χ(x)dφ1 + χ(y)dφ2. From Eq. (9.3)

TrΩ = Tr[P (0)χ(x)P (0), P (0)χ(y)P (0)]dφ1 ∧ dφ2. (10.2)

The adiabatic curvature is a constant, independent of the flux. In order to
examine it in more detail we shall need a formula for certain integrals of
switching functions.

10.6. Area of Triangles

A remarkable integral of switching functions is:∫
R2

dx1 ∧ dx2

(
χ(y1 + x1)χ(z2 + x2) − χ(y2 + x2)χ(z1 + x1)

)

= y ∧ z . (10.3)
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Where y ∧ z = y1 z2 − y2 z1 is (twice) the areas of triangle with vertices at
(0, y, z). The (singular) integral is independent of details of the switching
function, and gives a multilinear function of the coordinates on the right
hand side whereas the dependence on the coordinates of the integrand is
non-linear. We shall meet areas of triangles again in the last section when
we discuss conductance as an Index.

10.7. Curvature for Landau Levels

We can say more about the curvature of Landau levels in Eq. (10.2). We
note that since the magnetic field is constant, the Hamiltonian, and there-
fore also the spectral projection on a Landau level, is translation invariant
up to gauge transformation. That is, with a, x, y ∈ R2:

〈x + a|P |y + a〉 = e−iΛ(x;a) 〈x|P |y〉 eiΛ(y;a), . (10.4)

Eqs. (10.2-3) give:

TrΩ12(P )

=
∫
R6

dxdy dz 〈x|P |y〉 〈y|P |z〉 〈z|P |x〉×
(
χ(y1)χ(z2) − χ(y2)χ(z1)

)

=
∫
R4

dy dz 〈0|P |y〉 〈y|P |z〉 〈z|P |0〉 y ∧ z.

(10.5)

For the lowest Landau level in the plane one has

〈x|P |y〉 = (B/2π) e−B(x−y)2/4 eiB·x∧y/2.

The four dimensional integral is essentially Gaussian. It turns out to inte-
grate to

√
−1

11. Conductances

11.1. Summary

The basic formula which relates transport coefficients with the adiabatic
curvature is, formally:

I(a, ψ) = dE − φ̇ ·
(√

−1 Ω(P )
)
. (11.1)
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Fig.11.1: A path in flux space and the associated vector φ̇

I(a, ψ) is the expectation value of the (adiabatically evolving), loop current
1-form discussed in chapter 7. a is the Aharonov-Bohm gauge fields which
specify a particular loop current operator (see 7.3). ψ is the (instantaneous)
eigenstate. dE =

∑(
�E
�φj

)
dφj with E the eigenenergy function gives the

contribution of the persistent currents to the loop current, Eq. (7.2). φ̇ is
the vector of emf due to adiabatically varying fluxes; Ω(P ) is the adiabatic
curvature in the ground state, and P = |ψ〉〈ψ|.

√
−1 Ω is a (real) conduc-

tance 2-form in flux space. It is proportional to the area form in flux space
and the constant of proportionality is the common conductance. (The con-
ductance is normally thought of as a function and not as a 2-form.) The
notion of conductance as a function clearly depends on the existence of a
natural area form in flux space something we introduced in section 2.8.

11.2. Setting

Consider a finite quantum system, with one or many interacting electrons,
in the presence of external Aharonov-Bohm gauge fields. We assume that
the adiabatic theorem holds (see section 8) and the system is initially in the
ground state, which is non-degenerate and associated with a finite vector
ψ. When all the gauge fields are held fixed, there are, in general, persistent
currents in the ground state. Consider a situation where one, or some, of
the fluxes are varied adiabatically in time, e.g. as represented in Fig. 11.1.
This generates a small emf around some of the loops in the system and will
lead, in general, to additional charge transport, beyond that carried by the
persistent current. This is the object we focus on.
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11.3. Charge Transport and Adiabatic Curvature

Here is a pedantic formulation of Eq. (11.1).
Theorem: Suppose φ1(s) changes monotonically and adiabatically, φ2

fixed, and that at t = 0 the system is in a (non degenerate) ground state
ψ. The total charge transport around φ2, from time 0 to time t = sτ > 0
with s fixed, is

Q2(sτ, φ2, ψ) = τ

∫ s

0

�E

�φ2
ds− i

∫ φ(s)

φ(0)

dφ1 Ω12

(
P (φ1, φ2)

)
+ O(1/τ).

The projection is P = |ψ〉〈ψ|.
Remarks
1. The first term, can be interpreted as the contribution of persistent

currents. It is the leading term being O(τ). The contribution of the adia-
batic curvature to transport is subleading and O(1). It is geometric in the
sense that it depends on the orbit traversed in flux space but not on its
history in time.

2. There are situations where charge transport is dominated by the adi-
abatic curvature. First, in certain classes of models the contribution from
the persistent currents vanishes identically. This is the case for the models
discussed in chapters 6,10 and 13. More generally, for any model, consider a
path of (almost) fixed emf in flux space, which winds over many Aharonov-
Bohm flux periods O(τ1/2+ε). Since the contribution from the persistent
currents have a vanishing average over an Aharonov-Bohm period, the con-
tribution of the persistent currents is O(τ1/2−ε) and the contribution of the
adiabatic curvature, being O(τ1/2+ε), dominates. Finally, for any model,
and any path in flux space the φ2 averaged charge is determined by adia-
batic curvature alone.

Proof
Charge transport can always be computed as a boundary value:

Q2 ≡
∫ t

0

dt 〈ψ| �H
�φ2

|ψ〉 = τ

∫ s

0

ds 〈ψ| �H
�φ2

|ψ〉 = i 〈ψ| �ψ
�φ2

〉
∣∣∣∣∣
s

0

,

where all that was used in the definition of current, the Schrödinger equa-
tion i

τ �sψ = H(s, φ2)ψ, and integration by parts. We now introduce the
evolution operator, U(s, φ2), the adiabatic evolution UA(s, φ2) and their
comparison S(s, φ2) (see section 8):

|ψ(s, φ2)〉 = U(s, φ2) |ψ(0, φ2)〉 = UA(s, φ2)S(s, φ2) |ψ(0, φ2)〉.
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In this notation

〈ψ| �ψ
�φ2

〉
∣∣∣∣∣
s

0

= Tr
{
S(s, φ2)P (0, φ2)S†(s, φ2)×

(
U†
A(s, φ2)

(
�UA

�φ2

)
(s, φ2) +

(
�S

�φ2

)
(s, φ2)S†(s, φ2)

)}
.

By the adiabatic theorem S(s, φ2) = 1 + O(1/τ), so

Q2 = iTr
{
P (0, φ2)U

†
A(s, φ2)

�UA

�φ2
(s, φ2)

}
+ O(1/τ)

= i 〈ψA|
�ψA

�φ2
〉

∣∣∣s
0

+ O(1/τ).

|ψA〉 evolves according to the adiabatic evolution i
τ �sψA = HASY (s, ψ2)ψA

and
|�ψA

�s
〉 = φ̇1 |�ψA

�φ1
〉.

We now unwind the computation above using:

�s

(
〈ψA|

�ψA

�φ2
〉
)

=
�

�φ2
〈ψA|

�ψA

�s
〉 +

(
〈�ψA

�s
|�ψA

�φ2
〉 − 〈�ψA

�φ2
|�ψA

�s
〉
)
.

The first bracket gives the adiabatic curvature term. The second brackets
give the persistent currents since

�φ2〈ψA|
�ψA

�s
〉 = −iτ �φ2〈ψA|HASY ψA〉 =

− iτ �φ2〈ψA|H ψA〉 = −i τ �φ2 E .

Remarks
1. van-Kampen criticized the interchange of thermodynamic and weak

field limit that goes into the standard linear response theory, such as in
Kubo’s formulas. The framework here involve no interchange of limits.

2. As we shall see in the next section, the adiabatic curvature has quan-
tized periods. Consequently, constant curvature implies quantized curva-
ture. In particular, a necessary and sufficient conditions for linear response
to hold with quantized conductances is
No persistent currents ∧ Constant curvature ⇐⇒ Quantized conductances

Exercise: Show that for the Aharonov-Bohm gauge field A =
∑

φj aj(x),
the conductance is a periodic function of the fluxes with the Aharonov-
Bohm period.
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11.4. Covariance

Two identical systems with Aharonov-Bohm gauge fields φj aj in one and
φj ãj in the other, have unitarily equivalent Schrödinger operators. Never-
theless, the two systems do not, in general have the same conductances.
Let

dχj = aj − ãj , U =
∏

eiφjχj , Q = U P U†.

Then,

Tr
(
Ω(Q) − Ω(P )

)
= dTr (PU†dU) = idTr (Pχj)dφj .

There is no reason for the right hand side to vanish in general. The con-
ductances of the two systems would then be different. In particular, the
conductances are not a function on the flux torus as defined in 2.7.

This result is disturbing at first, because it appears to conflict with gauge
invariance. It does not. The two systems are gauge equivalent when the
fluxes are viewed as parameters. However, when the fluxes actually change
in time, even adiabatically, the two systems have different electric fields
and are not gauge equivalent.

12. Chern Numbers

12.1. Summary

In this section we show that the periods of the adiabatic curvature are
integrals multiples of 2πi. First we consider the classical situation where
the projection lives on a closed manifold (specifically, a sphere). Then we
consider a slight generalization, where the projection is periodic up to gauge
transformations. We then discuss few applications, including a Diophantine
equation for the periods. Seminal papers on Chern numbers in condensed
matter theory are [24, 45, ???, ???]

12.2. Chern Number of a Complex Line Bundle on S2:

Suppose P is one dimensional so RangeP � C. On the upper hemisphere,
(see Fig. 1.6), we can choose a smooth family of normalized vectors, |ψ+〉 ∈
RangeP . Similarly, in the lower hemisphere we choose |ψ−〉 ∈ RangeP .
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The period of the adiabatic curvature associated to P is
∫
S2

Tr Ω =
∫
S+

d〈ψ+|dψ+〉 +
∫
S−

d〈ψ−|dψ−〉

=
∫
�S+

(
〈ψ+|dψ+〉 − 〈ψ−|dψ−〉

)
.

But, since Rank P is one dimensional

ψ+ =
(
eiχ

)
ψ−,

with χ a real valued, smooth function, on the equator. Direct computation
shows

〈ψ+|dψ+〉 − 〈ψ−|dψ−〉 = i dχ.

So finally, ∫
S2

Tr Ω = i
∫
�S+

dχ = 2πi Integer.

A similar demonstration works when P is a function on the torus, and, for
that matter, any closed surface. In the case RangeP � Cn similar ideas
apply.

We shall denote
c(P, S) ≡ 1

2πi

∫
S

TrΩ(P )

the Chern number, (an integer), associated to the projection P and the
closed surface S (a sphere in the example). The surface S is in parameter
space, (and is distinct from the surface in configuration space). The geom-
etry of the quantum system in coordinate space does not enter explicitly.
(It affects P , of course.)

For example, consider the 2× 2 hermitian matrix valued function on the
2-sphere [50]:

H(φ) =
∑

gjk φ
j σk, det g �= 0, |�φ| = 1.

The Chern numbers associated with the projections of the families of
lower/upper eigenvalues are

c(P±, S
2) =

{
± sgn det g S2 surrounds origin;
0 otherwise.

The important thing to note from this example is that non-zero Chern
numbers are associated with surfaces in parameter space that encloses the
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conic singularity, Fig. 10.1, where eigenvalues cross. For spheres that do
not enclose the point of level crossing the Chern number vanishes: Chern
numbers are born where the adiabatic limit dies.

12.3. Chern numbers for the Flux Torus

In applications to charge transport, P is a spectral projection on flux space.
It is not, in general, a periodic function of the fluxes but rather it is periodic
up to pure gauge fields (section 2.6). The integrality of the Chern numbers
requires a slight generalization of the previous demonstration which works
under the following assumptions, [ ???]:

Suppose

P (φ1 + 2π, φ2) = U P (φ1, φ2)U†, P (φ1, φ2 + 2π) = V P (φ1, φ2)V †,

with U, V independent of φ and commuting U V = V U. Then
∫
T

Tr Ω = 2π i Integer, T = [0, 2π] × [0, 2π].

In the context of conductance, U, V are gauge transformations, associated
with pure gauge fields.

12.4. Diophantine Equations

Symmetry arguments can give information on the Chern numbers of charge
transport, through Diophantine equation[13, 23, 38, ???] .

On the torus in coordinate space Tx = [0, 2π]×[0, 2π], consider the family
of Hamiltonian H(v − φ, x), where v is the velocity (1-form) operator (see
10.3), and φ = φ1 dx + φ2 dy 1-form of fluxes. Suppose H(v − φ, x) is a
periodic function of x with m × n unit cells in Tx which may originate
from, say, a periodic potential. The Chern numbers for any smooth family
of projection, c(P, Tφ) satisfies

(2πB) c(P, Tφ) − Tr P = 0 mod (mn), (12.1)

provided mn and B are relatively prime. Tφ is the unit torus in flux space.
(By Dirac 2πB is integral.)

The magnetic co-translations, W , can be used to shift the flux depen-
dence from the kinetic energy term to the potential energy term:

H(v − φ, {x, y}) = W (φ)H
(
v, {x− φ1/b, y + φ2/b}

)
W †(φ).
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Let P (φ) be a spectral projection for H and let Q(φ) = W †(φ)P (φ)W (φ).
The corresponding curvature are related by Eq. (9.8):

Tr
(
Ω(P )

)
= Tr

(
Ω(Q)

)
+

i
B
Tr(P ) dφ1 ∧ dφ2.

Integrating this identity over the square in flux space [0, 2πB] × [0, 2πB]
gives

(2πB)2 c(P, Tφ) − (2πB)Tr P = mnInteger.

If mn and 2πB are relatively prime, Eq. (12.1) follows.

13. Counting electrons

13.1. Summary

In this chapter we describe a method for comparing the (infinitely many)
number of electrons that lie below the Fermi energy of two extended system.
When the method applies, this difference is a finite integer (and an Index
of a certain operator). For homogeneous systems this integer coincides with
the adiabatic curvature. The recognition that conductance is an Index is
due to Bellissard [12].

13.2. Landau Levels

The number of electrons that occupy a full Landau level in the plane is infi-
nite, of course. We want to compare the number of electrons in full Landau
levels in situations that differ by one extra flux tube carrying one unit of
quantum flux. This is described by the family of Hamiltonians parameter-
ized by the flux in the tube:

H(φ) = −∆rr +
(
− i
r
�θ −

B r2

2
+ φ

)2

.

The simplifying feature of this example is the existence of a constant of
motion, which makes the problem explicitly soluble, for all values of φ, [6].
Increasing φ by one unit, induces a flow that takes the spectrum back to
itself. But it does so in such a way that if the Fermi energy is just above
the lowest Landau level, then an extra electron is added to the system in
the process, see Fig. 13.1.

In this example the difference is one, an integer. This need not always be.
The corresponding problem for the Laplacian (without magnetic fields) has
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Fig. 13.1: The energy spectrum as function of flux

been analyzed by A. Moroz [40]. (There are related results of Akkermans.)
It is harder (because the Fermi energy lies in the spectrum) and requires a
clever regularization. He finds for the spectral projection below any fixed
positive Fermi energy:

dimPE(φ) − dimPE(0) = −1
2
φ(1 − φ), 0 � φ � 1.

The right hand side is never a (non-zero) integer.

13.3. Comparing dimensions

Let Index(P,Q) compare the dimensions of P and Q. In the finite dimen-
sional case

Index (P,Q) = dimP − dimQ = Tr (P −Q) ∈ Z.

A comparison of dimensions should satisfy:

Index (P,Q) = −Index (Q,P ) = −Index (P⊥, Q⊥)

= Index (UPU†, UQU†)
= Index (P,R) + Index (R,Q).
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U unitary and P⊥ = 1 − P and R a projection.
The comparison we introduce satisfies these conditions, [9]. However, for

the method to apply P and Q must be close in an appropriate sense, more
precisely, P −Q needs to be compact.

13.4. Compact operators

Definition: C, a self adjoint, bounded, operator, is compact if it has discrete
spectrum and 0 is the only point of accumulation of its eigenvalues.
Examples:

1. The resolvent of the Harmonic oscillator (−∆ + x2)−1 is a compact
operator.

2. If P and Q are spectral projections below a gap in the spectrum of
non-relativistic Schrödinger operators H and H ′ in two dimensions, which
differ by one Aharonov-Bohm flux tube, then P −Q is compact.

If C is compact, with eigenvalues λn then
∑

|λn| may or may not con-
verge. We say that CN is trace class if for N (possibly large)

∑
|λn|N < ∞.

13.5. Index

Suppose P −Q compact. Define

Index (P,Q) = dimKer (P −Q− 1) − dimKer (P −Q + 1).

Since P − Q is compact, ±1 have at most finite multiplicity. Each of the
terms on the right hand side is a finite integer and the index is a finite
integer too.

It is not obvious from the definition that the Index is a good comparison
of dimensions or even that it reduces to what it should be in the finite
dimensional case. To see that it does, let us introduce

S = P −Q⊥, C = P −Q

Then
S2 + C2 = 1, SC + CS = 0.

Theorem: SpecC/{±1} is invariant under reflection.
Proof:

C en = λn en
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C (S en) = −S (C en) = −λn(S en).

It remains to check S en �= 0.

S en = 0,=⇒ C2 en = en,=⇒ C en = ±en.

It follows:

Index (P,Q) = lim
ε→0

∑
|λm|>ε

λm = Trace(P −Q) = Tr (P −Q)2N+1.

13.6. Projection Related by Unitaries

In finite dimensions, if two projections are related by invertible transfor-
mations, they have the same dimensions. This is, fortunately, not the case
for Hilbert space projections.

Theorem: Suppose P is a spectral projection for a Schrödinger operator,
associated with a gap, Q = UPU†, U a unit flux tube. Then Index(P,Q)
is an integer given by

Index (P,Q) = Tr (P −Q)3 = (13.1)∫
R6

dxdy dz 〈x|P |y〉 〈y|P |z〉 〈z|P |x〉×
(

1 − u(x)
u(y)

) (
1 − u(y)

u(z)

) (
1 − u(z)

u(x)

)
.

Comments:
1. The gap condition guarantees, for a large class of Schrödinger operator,
exponential decay:

|〈z|P |x〉| < C exp−c|z − x|, c > 0.

2. The convergence near the diagonal comes from:

|u(z) − u(x + z)| = | exp iθ1 − exp iθ2| = O(
∣∣∣x
z

∣∣∣), |z| → ∞.

Fig. 13.2 gives the geometric content of the estimate. The three factors give
O(

∣∣ 1
z

∣∣3) which is enough for two dimensions.

13.7. Homogeneous Systems

For Schrödinger operator invariant under translation the Index formula
Eq. (13.1) coincides with the adiabatic curvature Eq. (10.2). Landau Hamil-
tonians with constant magnetic fields are examples, but a version of what
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Fig. 13.2: Thin triangles

I shall describe below works for random potentials as well. Translation in-
variance says that Eq. (10.4) holds. We use this to derive a formula of
Connes [22]:

Index (P,Q) = 2πi
∫

dy dz 〈0|P |y〉〈y|P |z〉 〈z|P |0〉 y ∧ z.

This coincides with the expression for the adiabatic curvature Eq. (10.5)
Proof:

Index =
∫
R4

dy dz 〈0|P |y〉 〈y|P |z〉 〈z|P |0〉 f(y, z),

where

f(y, z) =
∫
R2

dx
(

1 − u(x)
u(y − x)

) (
1 − u(y − x)

u(z − x)

) (
1 − u(z − x)

u(x)

)
.

It is remarkable that this integral can be explicitly computed to give
f(x, y) = πiy ∧ z. To see that note first that the integrand is

(
u(z − x)
u(y − x)

− u(y − z)
u(z − x)

)
+

(
u(x)

u(z − x)
− u(z − x)

u(x)

)
+

(
u(y − x)
u(x)

− u(x)
u(y − x)

)
= 2i (sinα + sinβ + sin γ) .
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Fig. 13.3: The angles related to the oriented {0, y, z}, triangle

The angles are chosen so that −π � α, β, γ � π and inherit sign from
the orientation of the line segments and the orientation of the plane. The
rest of Connes’s computation has been remarkably simplified by Colin loop
Verdiére [ ???]. Since

α + β + γ =
{

2π, x ∈ Triangle
0, outside,

one immediately has
∫

dx(α + β + γ) = 2πArea.

To complete the computation note that sinα− a = O(|x|−3) and therefore
the integral of sinα − a is absolutely convergent. But since the integrand
is antisymmetric, it vanishes

∫
d2x (sinα− a) = 0.

This shows that the Index coincides with the adiabatic curvature.
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[29] J. Fröhlich and U. Studer, Gauge invariance and current algebras is non-
relativistic many body theory, Rev. Mod. Phys. 65, 733-802 (1993).

[30] P.G. loop Gennes, Champ critique d’une boucle supraconductrice ramifiee, C.R.
Acad. Sci. Ser. B 292, 279 (1981).

[31] N.I. Gerassimenko and B.S. Pavlov, Scattering problems on noncompact graphs,
Teo. Mat. Fiz. 74, 345-359, (1988),[English translation, Theor. and Math. Phys.
74, 230-240, (1988)].

[32] P.B. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer Index
theorem, Publish or Perish, (1984).

[33] P. Griffith and J. Harris, Principles of Algebraic Geometry, J. Wiley, N.Y. (1978).

[34] M. Gutzwiller, Chaos in classical and quantum mechanics, Springer, (1990).

[35] D. Hejhal, The Selberg Trace formulas for PSL2(R), Lecture Notes in Math.

548, 1001, Springer, (1976,1983).

[36] T. Kato, On the adiabatic theorem of quantum mechanics, Phys. Soc. Jap. 5,
435-439, (1958).

[37] M. Klein R. Seiler, Power law corrections to Kubo vanish in Quantum Hall
systems, Comm. Math. Phys. 128, 141, (1990).

[38] H. Kunz, Quantized currents and topological invariants for electrons in incom-
mensurate potentials, Phys. Rev. Lett. 57, 1095-1097, (1986), and Comm. Math.
Phys. , 112, 121 (1987).

[39] A. Martinez, Precise exponential estimates in adiabatic theory, J. Math. Phys.
35, 3889-3915, (1994).

[40] A. Moroz, Single particle density of states for the Aharonov-Bohm potential and
the instability of matter, IPNO preprint

[41] G. Nenciu, Linear Adiabatic theory: Exponential estimates, Comm. Math. Phys.
152, 479-496 (1993).



     

54 J.E. Avron

[42] Q. Niu, Towards a quantum pump for electric charge, Phys. Rev. Lett. 64 1812
(1990).

[43] Q. Niu and D. J. Thouless, Quantized adiabatic charge transport in the presence
of substrate disorder and many body interactions, J. Phys. A 36, 1911, (1983).

[44] Q. Niu and D.J. Thouless, Quantum Hall effect with realistic boundary condi-
tions, Phys. Rev. B 35, 2188-2197, (1987).

[45] S.P. Novikov, Magnetic Bloch functions and vector bundles, Typical dispersion
laws and their quantum numbers, Sov. Math. Dokl. 23, 298-303, (1981).

[46] A. Pnueli, Scattering matrices and the conductances of leaky tori, Ann. Phys.
231, 56-83, (1994).

[47] R.E. Prange and S.M. Girvin, The Quantum Hall Effect, Springer (1987).
[48] J. Segert, Nonabelian Berry’s phase, accidental degeneracy and angular momen-

tum, J. Math. Phys. 28, 2101 (1987).
[49] R. Seiler, On the quantum Hall effect, in Recent developments in Quantum Me-

chanics, A. Boutet loop Monvel et. al. Eds., Kluwer, Netherland, (1991).
[50] B. Simon, Holonomy, the quantum adiabatic theorem and Berry’s phase, Phys.

Rev. Lett. 51 2167-2170 (1983).
[51] M. Stone, The Quantum Hall effect, World Scientific, (1992).
[52] Y. Tan Localization and quantum Hall effect in two dimensional periodic poten-

tial, J. Phys. C, 6, 7941-7954, (1994).
[53] A. Terras, Harmonic Analysis on Symmetric Spaces, Springer, (1985).
[54] D. J. Thouless, Quantization of particle transport, Phys. Rev. B 27, 6083 (1983).
[55] D.J. Thouless,Topological interpretation of quantum Hall conductance, J. Math.

Phys. 35, 1-11, (1994).
[56] D. J. Thouless, M. Kohmoto, P. Nightingale and M. den Nijs, Quantum Hall

conductance in a two dimensional periodic potential, Phys. Rev. Lett. 49, 40,
(1982).

[57] Colin loop Verdière, private communication through R. Seiler.
[58] J. Zak, Magnetic translation group , Phys. Rev. , 134, A1602–1607, (1964) and

Magnetic translation group II: Irreducible representations, 1607–16011, (1964);
and in Solid State Physics 27, F. Seitz, D. Turnbull and H. Ehrenreich, 59,
Academic Press, (1972).


