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We study the spectral determinant of the Laplacian on finite graphs characterized by their
number of vertices V and bonds B. We present a path integral derivation which leads to two
equivalent expressions of the spectral determinant of the Laplacian in terms of either a V_V
vertex matrix or a 2B_2B link matrix that couples the arcs (oriented bonds) together. This
latter expression allows us to rewrite the spectral determinant as an infinite product of contri-
butions of periodic orbits on the graph. We also present a diagrammatic method that permits
us to write the spectral determinant in terms of a finite number of periodic orbit contributions.
These results are generalized to the case of graphs in a magnetic field. Several examples
illustrating this formalism are presented and its application to the thermodynamic and transport
properties of weakly disordered and coherent mesoscopic networks is discussed. � 2000

Academic Press

1. INTRODUCTION AND MAIN RESULTS

This work is devoted to the study of the spectral properties of the Laplacian
operator on finite graphs. This problem already has a long history. The properties
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of the Laplacian describing free electrons on networks made of one-dimensional
wires have been investigated in the context of organic molecules [1]. Subsequently,
this approach has proved useful for studying superconducting networks using
linearized Ginzburg�Landau equations [2], the vibration properties of fractal structures
such as the Sierpinski gasket [3], the adiabatic conductances of a network in an
inhomogeneous magnetic field [4, 5], or the behavior of disordered systems in a
magnetic field [6�11]. More recently, it has been shown [12�14] that the Laplacian
on graphs provides an interesting framework for studying the onset of quantum
manifestations of chaos. In these examples, the quantity of main interest is the
spectrum of eigenenergies of the Schro� dinger equation, or the diffusion equation,
defined for each wire of the network with appropriate boundary conditions at the
vertices. Finally we should also mention the relevance of the spectral determinant
of the Laplacian on graphs in the context of statistical field theory and more
precisely for the problem of the triangulation of random surfaces. There, the corre-
sponding homology and (dual) cohomology groups provide the corresponding
graphs over which the Laplacian is defined [15].

The problem of the spectrum of graphs has been also investigated thoroughly in
the mathematical literature [16�20a]. The more specific question of deriving a trace
formula for the heat kernel (partition function) of the Laplacian operator on a
graph has been studied by Roth [21, 22].

Let us start by recalling some already known results. The partition function Z(t)
of the scalar Laplacian operator 2 with appropriate boundary conditions is defined
as

Z(t)=Tr[et2]. (1)

Evaluating the trace over a set of eigenstates of &2 of eigenvalues En , we obtain

Z(t)=:
n

e&Ent. (2)

The spectral determinant S(#) is formally defined by S(#)=det(&2+#)=>n (#+En)
up to a regularization independent of #. It is such that

|
�

0
dt Z(t) e&#t=

�
�#

ln S(#). (3)

On a graph in the presence of a magnetic field, a compact form for the determinant
of the operator #&(dx&iA(x))2 has recently been obtained [11],

S(#)=#(V&B)�2 `
(:;)

sh(- # l:;) det(M), (4)

where V is the number of vertices, B is the number of bonds, and l:; is the length
of the bond (:;). M is a V_V matrix whose elements are [2, 6, 7, 11]
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M::= :
m:

i=1

coth(- # l:;i
) (5)

M:;=&
ei%:;

sh(- # l:;)
if (:;) is a bond

=0 otherwise, (6)

where the summation is taken over the m: neighboring sites of the vertex :. %;:=
� ;

: A(x) dx is a phase equal to the circulation of the vector potential A(x) along the
bonds (:;). This expression has been obtained by a calculation of Green's function
on the graph. The derivation is recalled in Appendix A.

Although it is well known that the spectrum of the Laplacian on a graph is given
by the zeros of det(M(#=&E))=0 [1, 2, 5], formula (4) is richer since it contains
non-trivial multiplicative factors which depend on #. If the relation of S(#) to the
matrix M(#) allows a very simple determination of the spectrum, it cannot help to
understand the structure of the spectrum in terms of periodic orbits on the graph.
To do so, it is more convenient to introduce a ``link matrix'' E whose elements
E(:;)(+&) relate oriented bonds (:;) and (+&). This 2B_2B matrix is defined as1

E(:;)(+&)=
2

m;
e&- # l:;+i%:; if ;=+ (7)

=\ 2
m;

&1+ e&- # l:;+i%:; if {;=+
:=&

(8)

=0 otherwise. (9)

The spectrum is now given by det(1&E(#))=0. The trace expansion of det(1&E)
leads to a description of the spectrum in terms of periodic orbits [13].

Finally, a trace formula has been obtained by Roth, which expresses the partition
function as a contribution of such periodic orbits,

Z(t)=
L

2 - ?t
+

V&B
2

+
1

2 - ?t
:
C

l(C� ) :(C) e&l(C) 2 �4t, (10)

where the sum runs over closed orbits C on the graph. C� is the primitive orbit
associated with C. The geometrical factor :(C� ) will be defined in Section 6.

We now give an overview of the paper and describe rapidly our main results. In
Section 2 we recall briefly how transport and thermodynamic properties of weakly
disordered and coherent conductors can be related to the spectral determinant [8�10].
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In particular the weak-localization correction to the conductance is a physical measure
of the spectral determinant.

After having set up the notation and definitions in Section 3, we present in
Section 4 a path integral formulation for the calculation of the spectral determinant
of the Laplacian on a graph. It allows us to obtain an expression of the spectral
determinant in terms of the vertex matrix (5) and (6). The interest of this approach
relies on the fact that the path integral on each bond involves the propagator of a
two-dimensional harmonic oscillator for which the role of time is played by the
length along the bond. This problem corresponds to a zero-dimensional Gaussian
field theory, so that the path integral is easily calculated using standard quantum
mechanics. This approach has many advantages, such as allowing a simple generaliza-
tion to other types of boundary conditions, or permitting very easily the elimination
of vertices of coordination 2 (Appendix C).

In Section 5, we derive a dual and equivalent expression of the spectral determi-
nant in terms of the link matrix (7) and (8):

S(#)=#(V&B)�2e- # L \`
:

m: + 2&B det(1&E(#)). (11)

By a trace expansion of the determinant det(1&E), we find in Section 6 the result

S(#)=#(V&B)�2e- # L \`
:

m:+ 2&B `
C�

(1&:(C� ) e&- # l(C� )+i%(C� )), (12)

which allows us to recover the Roth trace formula for the partition function (10),
demonstrating the equivalence between (4) and (10). The trace formula (12) for the
spectral determinant involves the contribution of an infinite number of periodic
orbits C� and bears some similarity to the Selberg trace formula [23] or the semi-
classical trace formulae for chaotic Hamiltonian systems [24]. In Section 7 we show
that the spectral determinant involves the contributions of a finite number of periodic
orbits only. This provides a diagrammatic method for computing the determinant.
This method is applied to a particular example.

In Section 8 the path integral formulation is shown to be a good starting point
for generalizing these results to the case where a magnetic field is applied to the
network. In this way we obtain a generalization of the Roth formula (10). Sections
9 and 10 discuss how to extend the previous results to the case of more general
boundary conditions, and provide a discussion of the low-energy behavior of the
spectrum and the existence of zero modes, respectively.

Section 11 discusses the scattering problem when the graph is connected to an
infinite lead. In this case the relevant information is contained in a phase shift which
is shown to be related to the ratio of two spectral determinants calculated with
different boundary conditions. Finally, Section 12 gives an illustration of the
formalism for the case of the complete graph Kn .
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2. PHASE COHERENT PROPERTIES OF DISORDERED CONDUCTORS

In this section, we briefly recall how transport and thermodynamic properties of
weakly disordered and coherent conductors can be related to the partition function
Z(t) or equivalently to the spectral determinant S(#). A more detailed derivation
can be found in Refs. [8�10] and references therein. These expressions are quite
general and are not specific to graphs. But their calculation on any network made
of quasi-one-dimensional diffusive wires is straightforward with expression (4) [11].

The first step is to write the physical quantities in terms of the classical return
probability P(r, r, t) solution of the diffusion equation (we set �=c=1)

_ �
�t

&D(%+2ieA)2& P(r, r$, t)=$(r&r$), (13)

where &e is the electron charge and D is the diffusion coefficient. In the other
sections of this paper, we have set &2e=1 and D=1. The return probability has
actually two contributions, a purely classical Pcl which is the solution to Eq. (13)
with A=0 and another one Pint which is the result of constructive interferences
between electronic propagators associated with time-reversed trajectories. This
second contribution exists only when the system is phase coherent. In the presence
of a magnetic field, time-reversed trajectories accumulate opposite phases. This is
why Pint obeys Eq. (13) with an effective charge 2e [25]. In this section, we use a
unique notation for the two contributions.

The solution of the diffusion equation (13) has the form

P(r, r$, t)=%H(t) :
n

�n(r) �n*(r$) e&Ent, (14)

where %H(t) is the Heaviside function. The eigenvalues En and the eigenfunctions �n

are solutions of

&D(%+2ieA)2 �n(r)=En�n(r). (15)

The integral over the whole space of the return probability is precisely the partition
function of the Laplace operator &2, or &(%+2ieA)2 in a magnetic field, namely

Z(t)=| dr P(r, r, t)=:
n

e&Ent. (16)

As recalled in the Introduction (Eq. (3)), the Laplace transform of Z(t) is related
to the spectral determinant S(#).

The electrical conductivity is a current�current correlation function and is expressed
in terms of products of two electron propagators. These propagators have uncorrelated
phase factors which cancel after disorder averaging. This corresponds to the classical
Drude�Boltzmann conductivity _0=e2D\0 , where \0 is the density of states at
Fermi energy. However, pairs of time-reversed trajectories have the same action
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and thus the same phase. This constructive interference leads to an additional
contribution to the conductivity, called the weak-localization correction [25],
which is proportional to the probability of having pairs of time reversed trajec-
tories, i.e., to the probability for a diffusive particle to return to the origin. The
correction can be written as

(2_) =(_) &_0=&
2e2

?
D
0 |

�

0
dt Z(t) e&#t (17)

with 0 being the volume of the system. The exponential damping at large time is
due to the breakdown of phase coherence because of inelastic processes. This break-
down is phenomenologically described by a characteristic time {,=1�#, related to
the phase coherence length2 L,=- D{, . A magnetic field or an Aharonov�Bohm
flux, by breaking the time-reversal symmetry, destroys the weak-localization correction.

In a mesoscopic system, i.e., with a typical size L smaller than L, , the conductivity
is known to exhibit large variations from sample to sample, with a variance which
is universal in the limit L�L, � 0 and for a sample perfectly connected to leads. The
structure of this variance results from different phase correlations between four
electron propagators (two for each conductance). It can be shown that this variance
can also be written in the following compact form [9],

($_2) =
12e4

;?2

D2

02 |
�

0
dt t Z(t) e&#t, (18)

where ;=1 if there is time-reversal symmetry and ;=2 in the absence of such
symmetry.

The magnetization due to the orbital motion of the non-interacting electron gas
is known as the Landau magnetization. Taking into account electron�electron
interactions in the Hartree�Fock picture gives an additional contribution, known as
the Aslamasov�Larkin correction [26]. The structure of this correction implies the
product of four wave functions, i.e., two local density of states whose disorder-
averaged product can be related to the Fourier transform of the return probability
P(r, r, t) [27]. After spatial integration, one gets

(Mee)=&
*0

?
�

�B |
�

0
dt Z(t, B)

e&#t

t2 , (19)

where *0 is the dimensionless interaction parameter.3 B=%_A is the magnetic
field.
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2 Integrals (17)�(20) may not converge at small time. In this case the lower bound of the integral
should be the elastic time {e , the smallest time for diffusion.

3 Considering higher corrections in the Cooper channel leads to a ladder summation [26, 28], so that
*0 should be replaced by *(t)=*0 �(1+*0 ln(=F t))=1�ln(T0 t), where T0 is defined as T0==Fe1�*0. The
authors of Ref. [29] found *(t)=1�ln(=F t).



Finally the fluctuations of the magnetization ($M2) , defined as ($M 2) =(M2)
&(M) 2, can also be written in terms of field derivatives of Z(t). Neglecting
electron�electron interactions, the magnetization is proportional to the density of
states. Thus the fluctuations of the magnetization involve the two-point correlation
function of the density of states which has been shown by Argaman et al. [30] to
be related to the Fourier transform of tZ(t). One obtains

($M 2) =
1

2?2 |
�

0
dt [Z"(t, B)&Z"(t, 0)]

e&#t

t3 , (20)

where Z"(t, B)=�2Z(t, B)��B2.
Using standard properties of Laplace transforms, the above time integrals can be

written as integrals of the logarithm of the spectral determinant, so that the physical
quantities described above can be written as [11]

(2_)=&
2e2

?
D
0

�
�#

ln S(#) (21)

($_2)=&
12e4

;?2

D2

02

�2

�#2 ln S(#) (22)

($M2)=
1

2?2 |
�

#
d#1(#&#1)

�2

B2 ln S(#1)| B
0 (23)

(Mee)=
*0

? |
�

#
d#1

�
�B

ln S(#1). (24)

When the integrals do not converge at the upper limit, this limit should be taken
as 1�{e , where {e is the elastic time.

3. DEFINITIONS AND NOTATION

Consider a graph G which consists of a set of V vertices linked by B bonds. Its
adjacency matrix a:; is a square matrix of size V, where a:;=1 if a bond joins the
vertices : and ; and 0 otherwise (in particular a::=0).4 The coordination of vertex
: is m:=�; a:; . Each bond (:;) of length l:; is identified with a finite interval
[0, l:;] # R. The total length of G is L=�bonds(:;) l:;= 1

2 �:, ; a:; l:; . We denote by
x:; the coordinate on the bond (:;), starting from vertex : (it follows that x;:=
l:;&x:;). A scalar function on G is a set of B-component functions �(:;)(x:;).
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vertices (see Fig. 9), without changing the nature of the graph, to go back to a situation where there is
only one bond between two vertices. However, the formalism that is presented in this paper can be easily
generalized to avoid this procedure and minimize the number of vertices by suppressing all vertices with
coordination 2. It is the purpose of Appendix C to discuss this point.



When there is no possible ambiguity we will neglect to label the components. The
Laplacian on G acts as the usual one-dimensional Laplace operator on each bond:

(2�)(:;)=
d2

dx2
:;

�(:;)(x:;). (25)

Its domain is the set of functions that satisfy the following conditions at the
vertices:

(i) continuity

�(:;i )
(x:;i

=0)=�: for i=1, ..., m: ; (26)

(ii) a second condition sufficient to ensure current conservation

:
m:

i=1

dx:;i
�(:;i )

(x:;i
=0)=0, (27)

where dx #d�dx and the ;i 's label the m: neighboring vertices of vertex :. The
scalar product is defined as

(� | .) = :
(:;)

|
l:;

0
dx �*(:;)(x) .(:;)(x). (28)

In the search for the eigenvalues of the Laplacian, one may construct the wave
function of energy E=k2 in such a way that condition (i) is satisfied: �(:;)=
(1�sin kl:;)(�: sin k(l:;&x:;)+�; sin kx:;). Imposing condition (ii) leads to the
system of V equations � ; M:;(#=&k2) �;=0, where M is given by (5) and (6).
The eigenvalues of the Laplacian are solutions of det(M(#=&E))=0 [1, 2, 5, 13].

It is useful to introduce some additional notions. An arc(:;) is defined as the
oriented bond from : to ;. Each bond is therefore associated with two arcs. A path
on G is an ordered sequence of arcs such that the end of each arc coincides with
the beginning of the one that immediately follows in the sequence. Closed paths will
play a special role. The set of closed paths that only differ by a cyclic permutation
of the arcs will be called a circuit (or an orbit). Among all possible circuits we will
distinguish those that are primitive. A circuit is said to be primitive if it cannot be
decomposed as a repetition of any smaller circuit. The length of a circuit C will be
designated by l(C).

As an example, let us consider the graph of Fig. 1. This graph contains six arcs:
1, 2, 3 and the reversed arcs 1� , 2� , 3� . (1, 1� , 2, 2� ) and (2, 2� , 1, 1� ) are two different
paths, two possible representations of the same circuit. (1, 1� , 1, 1� , 1, 1� ) is not a
primitive circuit but (1, 1� , 1, 1� , 1, 1� , 2, 2� ) is indeed primitive.
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FIG. 1. A graph with four vertices, three bonds, and six arcs.

4. A PATH INTEGRAL DERIVATION OF THE SPECTRAL
DETERMINANT

An expression of the spectral determinant S(#)=det(&2+#) in terms of the
determinant of a finite matrix has been derived in [11, 10] (cf. Appendix A). The
purpose of this section is to provide a more direct derivation of this result using a
path integral formulation. The spectral determinant may be written as

S(#)=det(&2+#)=\|, on Graph
D, D,� e&(1�2) � Graph ,� (&2+#),+

&1

, (29)

where , is a complex field defined on the graph G. The path integral is performed
over all fields satisfying the conditions (26) and (27) and the integral in the
exponential along all branches of G. Since the field is continuous at each vertex the
path integral may be decomposed on each bond (:;) as an integration over fields
that take fixed values ,: and ,; on the two sides of the bond

S(#)&1=| `
vertices :

d,: d,� :

_ `

(:;)
bonds

|
,(l:; )=,;

,(0)=,:

D, D,� e&(1�2) �
0
l :; dx ,� (x)(&d2

x+#) ,(x), (30)

where d, d,� =d Re , d Im ,. This involves, after an integration by parts, the quantity5

`
(:;)

|
,(l:; )=,;

,(0)=,:

D ,D ,� e(1�2) ,� dx ,|
0
l:; e&(1�2) �

0
l:; dx( |dx ,| 2+# |,| 2 )

=exp \&1
2 :

V

:=1

,� : :
m:

i=1

dx:;i
,(x:;i

=0)+
_`

(:;)
|

,(l:; )=,;

,(0)=,:

D, D,� e&(1�2) �
0
l:; dx( |dx ,| 2+# |,| 2 ). (31)
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For the sum of boundary terms in the exponential we have replaced the sum over
the bonds by a sum over the vertices, a trick that will be frequently used through-
out the rest of this paper. Equation (27) implies that the boundary terms vanish.
The above path integral, involving a zero-dimensional Gaussian field theory, can
easily be integrated out using standard quantum mechanical techniques. On each
bond the path integral can be expressed in terms of the propagator of a two-dimen-
sional harmonic oscillator of frequency |=- #

N&1
r |

,(l:; )=,;

,(0)=,:

D, D,� e&(1�2) �
0
l:; dx ( |dx ,| 2+# |,| 2 )

=G|=- #
l:;

(,; , ,:)=(,; | e&(l:; �2)(&%,
2+#, 2 ) |,:) , (32)

where ,=(Re ,, Im ,) and Nr is a constant independent of # depending on the
precise normalization chosen in the definition of the path integral, or in other terms
on the choice of regularization made to define the determinant. In the following
we will drop this inessential normalization constant. Using the expression of the
propagator [31]

G|
x (,, ,$)=

|
2? sh(|x)

e&(|�2 sh(|x))(ch(|x)(, 2+,$ 2)&2, } ,$) (33)

one may re-scale the fields ,: to extract a #-dependent factor,

S(#)&1=#(B&V)�2 | `
V

:=1

d,: d,� : `
(:;)

G- # l:;
(,; , ,:), (34)

where Gx(,, ,$)#G|=1
x (,, ,$). This expression will be used as a starting point for

the derivation of the following section. Using the V_V matrix M introduced in
Section 1

M::= :
m:

i=1

coth(- # l:;i
) (35)

M:;=&
1

sh(- # l:;)
if (:;) is a bond

=0 otherwise, (36)

we may express the determinant as

S(#)&1=#(B&V)�2 `
(:;)

1

2? sh(- # l:;) | \ `
V

:=1

d,: d,� : + e&(1�2) � :, ; ,� :M:; ,; . (37)
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After performing the integration over ,: one finds

S(#)=\- #
2? +

V&B

`
(:;)

sh(- # l:;) det(M), (38)

which is the expression given in [11] (see Appendix A) up to an inessential numerical
factor (2?)B&V that will be dropped in the following.

5. THE SPECTRAL DETERMINANT IN TERMS OF THE LINK MATRIX

Equation (38) expresses the spectral determinant as the determinant of a finite
V_V matrix. The matrix M describes the topology of the graph, telling us which
vertices are coupled, and also contains the metric information. At this stage, the
metric and topological information are inextricably mixed. The purpose of this
section is to derive another expression of the spectral determinant in terms of the
determinant of a 2B_2B matrix whose natural basis is the set of arcs (oriented
bonds). An advantage of this formulation is that it leads to an expansion of the
spectral determinant as a sum of terms that will be interpreted in the next section
as the contribution of periodic orbits.

Our starting point is expression (34). Since the # dependence of the determinant
is simple, one may set #=1 and recover the # dependence at the end. The first
step is to find a more convenient expression of the propagator in (34). To begin
let us consider the one-dimensional harmonic oscillator propagator gt(x, x$)=
(x| e&(t�2)(&d2

x+x 2 ) |x$). This propagator may be expanded over the eigenstates
.n(x)=(1�?1�4

- 2nn!) Hn(x) e&(1�2) x 2
of energies En=n+ 1

2 , where Hn(x) are
Hermite polynomials. Using the generating function of Hermite polynomials
��

n=0 Hn(x)(*n�n!)=e2*x&*2
, the propagator may be rewritten as

gl:;
(x: , x;)=

e&l:; �2

- ?
e&(1�2)(x 2

:+x 2
; )

_ :
�

n=0

e&nl:;

2n n!
�n

*:;
e2x: *:;&*2

:; �n
*:;

e2x; *;:&*2
;: |*:; , *;:=0 . (39)

A re-summation of the series gives

gl:;
(x: , x;)=

e&l:; �2

- ?
e&(1�2)(x 2

:+x 2
; )e(1�2) e&l:; �*:;

�*;: e2x: *:;+2x; *;:&* 2
:;&* 2

;: | *:; , *;:=0 .

(40)

Writing the two-dimensional propagator as a product of one-dimensional propagators
Gl:;

(r: , r;)= gl:;
(x: , x;) gl:;

( y: , y;) one is led to an analogous expression for
Gl:;

(r: , r;). For each bond one has to introduce two couples of variables (*:; , *;:)
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and (*$:; , *$;:) associated to x: , x; and y: , y; respectively. Using the complex
notations z:=x:+iy: and 4:;=*:;+i*$:; (one recalls that �z= 1

2 (�x&i�y)) one
eventually finds

Gl:;
(z: , z;)=

e&l:;

?
e&(1�2)( |z: | 2+|z; | 2) O:; ez:4� :;+z� :4:;+z; 4� ;:+z� ; 4;:&|4:; | 2&|4;: | 2

, (41)

where O:; is the operator:

O:;=exp(e&l:; (�4:;
�4� ;:

+�4� :;
�4;:

))| 4:; , 4;:=0 . (42)

Equation (41) shows that one has to introduce two variables 4:; and 4;: per
propagator in (34); i.e., each arc(:;) is associated with a 4:; .

From (34) and (41) it follows that

S(#=1)&1=2B&V e&L

?V O _`
(:;)

(e&|4:; | 2&|4;: | 2
)

_| `
:

(d,: d,� : e&(1�2) m: |,: | 2+�
m :
i=1 (,:4� :;i

+,� :4:;i
))& , (43)

where the operator O=>(:;) O:; is understood as acting on both terms that follow
it (one has multiplied (34) by the numerical factor (2?)V&B to make it disappear
in the final result). Again, one has replaced in (34) the product over bonds by a
product over vertices. Integration over ,: is then straightforward and leads to

S(#=1)&1=
2Be&L

>: m:
Oe4-Q4, (44)

where 4 is the 2B-component complex vector

41:1

b
41:m1

4=\ 42;1 + (45)
b

42;m2

b

and

4-=(4� 1:1
} } } 4� 1:m1

| 4� 2;1
} } } 4� 2;m2

| } } } ), (46)

in which the 4:; are grouped by vertices. The first group (41:1
, ..., 41:m1

) is related
to the m1 arcs :1 , :2 , ..., :m1

issuing from vertex :=1. In this basis, Q is a 2B_2B
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block diagonal matrix (with V blocks); it couples only arcs that start from the same
vertex

Q1 0 0 } } } 0

0 Q2 0 } } } 0

Q=\ 0 0 Q3 } } } 0 + ,

b b b . . . b

0 0 0 } } } QV

(47)

where each m: _m: sub-matrix Q: attached to a given vertex : has (2�m:)&1 on
its diagonal and 2�m: everywhere else. Using a tensorial notation, one may write
the matrix element of Q between the two arcs (:;) and (+&) as

Q(:;)(+&)=a:; a+&$:+ \ 2
m:

&$;&+ , (48)

where $:; is the Kronecker symbol; the connectivity matrices a:; and a+& are here
to recall that (:;) and (+&) are arcs.

The action of O e4 -Q4 is complicated because the argument of the exponential is
quadratic in the 4:; 's. This action would become much more simple on the exponential
of a linear form; this can be achieved by introducing an additional integration over
a 2B-component complex vector W

S(#=1)&1=
2B e&L

(>: m:) ?2B det(Q&1) | dW - dW e&W -Q&1WOe4-W+W - 4. (49)

The action of O is now simple by noticing that �4:;
�4� ;:

e4-W+W -4=w� :;w;:e4-W+W -4.
To write the action of O on e4-W+W -4, one has to replace �4:;

by w� :; and �4� :;
by w:; .

One finally ends up with

S(#=1)&1=
2B e&L

(>: m:) ?2B det(Q&1) | dW - dW e&W- Q&1W+W-RW, (50)

where it is clear from the expression of O that the matrix R couples only the arc
(:;) to the time-reversed arc(;:). Thus, R may be written

R(:;)(+&)=a:;a+&$:&$;+e&l:;. (51)
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It is then straightforward to perform the Gaussian integration and get the final
expression for the spectral determinant

S(#)=#(V&B)�2e- # L \`
:

m:+ 2&B det(1&E), (52)

where we have introduced E=(QR)T (the transposition is defined as (ET) (:;)(+&)

=E(+&)(:;)).
Using this tensorial notation the product QR is particularly simple to perform

E(:;)(+&)=a:;a+&$;+ \ 2
m;

&$:&+ e&- # l:;. (53)

The spectral determinant is now given by the determinant of a 2B_2B matrix E
whose basis consists of the set of arcs. Rewriting the matrix E=D= one may clearly
separate a part = that only depends on the topology of the graph

=(:;)(+&)=a:; a+&$;+ \ 2
m;

&$:&+ (54)

and a diagonal part D depending on the metric properties

D(:;)(+&)=a:; a+&$:+ $;&e&- # l+&. (55)

We end this section by mentioning the physical meaning of the different matrices
that appear in the derivation given above.

In order to simplify slightly our notation arcs will now be labeled by Roman
letters i, j, ... (i#(:;)). The matrix E is then expressed as Eij==ij e&- # li . Our =ij

coincides with the one introduced in [21]: =ij=2�m: if the end of arc i and the
beginning of arc j are the vertex : of coordinence m: , =ij=(2�m: )&1 if moreover
the two arcs are time-reversed, and =ij=0 otherwise.

Following Kottos and Smilansky [13], one may take a scattering point of view
to construct the wave function on the graph. Let us consider first the set of arcs
i # [1, ..., m:] starting at vertex :. On each arc i one writes the wave function as the
superposition of an incoming and an outcoming plane wave (see Fig. 2):

�i (x)=Ai e&ikx+Bi eikx. (56)

The scattering matrix s: at the vertex is defined as the matrix relating incoming to
outgoing amplitudes: Bi=� j (s:) ij Aj for i, j # [1, ..., m:]. Conditions (26) and (27)
lead to the following result: s:=Q: . On the graph, the 2B outgoing amplitudes are
then coupled to the 2B incoming amplitudes by [13]

Bi=:
j

Q ijAj (57)

23SPECTRAL DETERMINANT ON QUANTUM GRAPHS



FIGURE 2

(matrix Q indeed couples arcs beginning at same vertex). The physical meaning of
the matrix Q is now clear: it describes the scattering by the V vertices. As in Section
3 we use the notation i� for the time-reversed arc of i. Amplitudes of two time-reversed
arcs are related by the two obvious relations Bi=Ai� e&ikli and Ai=Bi� eikli (due to the
fact that �i (x)=�i� (li&x)). Then one has Bi=� j Qijeiklj Bj� . Using the fact that Qi� j==ij

one finds that

Bi� =:
j

Eij (#=&k2) Bj� . (58)

Then the state (56) of energy k2 belongs to the spectrum if det(1&E(#=&k2))=0
[20]. As equation det(M(#=&k2))=0, this equation gives the spectrum of the
Laplacian but not the #-dependent pre-factor of S(#).

6. A TRACE FORMULA

The result (52) is particularly suitable for deriving a trace formula that expresses
the determinant in terms of contributions of closed trajectories (orbits) on the graph.
Again we may set #=1 for the sake of simplicity. We may expand the determinant

ln det(1&E)=& :
�

n=1

1
n

Tr[En] (59)

and write the trace as a sum of terms

Tr[En]= :
i1 , ..., in

=i1 i2
=i2i3

} } } =in i1
e&(li1+ } } } +lin ), (60)

each of which is associated with a sequence of arcs that forms a closed path on the
graph. Following the notation of [21] one may attach the quantity

:(Cn)==i1 i2
=i2 i3

} } } =in i1
(61)
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to the orbit (or circuit) Cn=(i1 , i2 , ..., in) composed of n arcs, and denote its length
by l(Cn)=li1

+ } } } +lin
. Each term of Tr[E n] corresponds to a path associated

with either a primitive orbit of n steps or k repetitions of a primitive orbit of p steps
such as n=k p. Primitive orbits will be labeled as C� . A given primitive orbit of n
steps appears n times in Tr[En], corresponding to the n cyclic permutations of the
indices that give the same orbit on the graph. On the other hand the term
associated to k repetitions of a primitive orbit C� p appears p times corresponding to
the p different permutations of the indices that appear in Tr[E n]. Using these
remarks, instead of summing over all paths of length n as in (60), one may sum
over the k-repetition of primitive orbits of length p provided that n=kp:

Tr[E n]= :
k, C� p with n=kp

p:(C� p)k e&kl(C� p ). (62)

we have used the fact that if Cn is a k-repetition of C� p then :(Cn)=:(C� p)k and
l(Cn)=kl(C� p). Introducing this expression in (59) gives

ln det(1&E)=&:
C� p

:
�

k=1

1
kp

p:(C� p)k e&kl(C� p ). (63)

Instead of summing over n, k, and C� p with the constraint kp=n, one may sum over
all primitive orbits C� p and their k-repetition independently. This immediately leads
[32] to

ln det(1&E)=:
C� p

ln(1&:(C� p) e&l(C� p )). (64)

One thus gets an expression of the spectral determinant in terms of an infinite
product over all the primitive orbits C� , in infinite number,6 that can be constructed
on the graph:

S(#)=#(V&B)�2e- # L \`
:

m:+ 2&B `
C�

(1&:(C� ) e&- # l(C� )). (65)

A similar trace formula for the partition function was first derived by Roth [21].
It is indeed possible to recover it by starting from (65). The log-derivative of the
spectral determinant is equal to the Laplace transform of the partition function (3).
From (65) one gets

�
�#

ln S(#)=
L

2 - #
+

V&B
2#

+
1

2 - #
:
C�

l(C� ) :
�

k=1

:(C� )k e&k - # l(C� ), (66)
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where one has expanded the denominator coming from the derivative of the
logarithm that appears writing ln S(#). It is then possible to group the two sums in
a unique sum over all orbits C, including the repetitions of the primitive orbits

�
�#

ln S(#)=
L

2 - #
+

V&B
2#

+
1

2 - #
:
C

l(C� ) :(C) e&- # l(C). (67)

In this summation, C� designates the primitive orbit associated with a given orbit C.
Using the identity 1

2 - #
e&- # l= 1

2 - ?
��

0 dt 1
- t

e&#t&(l2 �4t) it is then easy to extract
the inverse Laplace transform of the previous expression and recover the trace
formula first obtained by Roth [21, 22]

Z(t)=
L

2 - ?t
+

V&B
2

+
1

2 - ?t
:
C

l(C� ) :(C) e&l(C) 2 �4t. (68)

Let us notice that if one considers a vertex : of coordination m:=2, the circuits
that contain a reflection at this vertex have weights :(C)=0; therefore such circuits
should not be considered in the expansion. Since one can always introduce an
arbitrary number of vertices on any bond without changing the properties of the
graph, this remark ensures that the number of orbits will not vary doing so.
Moreover this shows that a graph can always be simplified to minimize B and V
by suppressing all vertices of coordination 2.

7. SIMPLIFICATION OF THE TRACE FORMULA��DIAGRAMMATIC
EXPANSION OF THE SPECTRAL DETERMINANT

In the previous section one has expressed the determinant det(1&E), which can
be expanded to give a finite number of terms, as an infinite product (65). The
purpose of this section is to show how the infinite product eventually simplifies
to give a finite number of terms. One interest of this discussion is to provide a
diagrammatic method for constructing systematically the different terms of S(#).

We will consider the quantity that appears in (65):

S� =`
C�

(1&:(C� ) e&l(C� )). (69)

The generalization of the following discussion to the case with a magnetic field is
straightforward (see (90)).

We will call &:(C) e&l(C) the weight of the orbit. We associate to each term in
the expansion of S� a diagram, which represents either the contribution of an orbit
or the product of such contributions; in the latter case the diagram represents the
superposition of the different orbits.
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FIGURE 3

To understand how the simplifications occur let us consider a primitive orbit C�
that passes twice through the same vertex without using the same arcs as in Fig. 3.
Using the fact that =12==34==14==32 it is easy to see that

&:(C� ) e&l(C� )=&(&:(C� $) e&l(C� $))(&:(C� ") e&l(C� ")), (70)

where C� $ and C� " are obtained by crossing the paths at the vertex as shown in
Fig. 3. The consequence is that in the expansion of S� , the product of the weights of
orbits C� $ and C� " cancels with the contribution of C� .

These kind of relations may be represented diagrammatically as

and (71)

Using these relations one must take care of not introducing some reflection at a
vertex like in Fig. 4. Indeed the diagram on the left of Fig. 4 has a weight propor-
tional to (2�m:)2 whereas the diagram on the right has a weight proportional to
&((2�m:)&1)(2�m:).

Note that the case of a vertex with coordination m:=4 is special and may bring
some additional rules which simplify the expansion of S� . Those two additional rules
are

for m:=4 (72)
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FIG. 4. Take care not to introduce some reflection at a vertex using the rules (71).

and

for m:=4 (73)

What kind of consequences can be deduced from these rules (71)? Let us consider
a primitive orbit that contains twice the same arc. This orbit may be factorized
using the de-crossing rule (71):

(74)

This equation implies that one should not include in the expansion of S� the
diagrams that contain more than once a given arc. This remark implies that the
number of diagrams to be considered is finite. In the diagrams that remain in the
expansion, a bond appears in the orbits at most twice, corresponding to the two
reversed arcs; a by-product of this remark is that the longest orbits that can be
constructed satisfying this rule have lengths 2L.

Example of a Diagrammatic Expansion. As an example, consider the diagram
of Fig. 5, which consists of an arm connected to a ring pierced by a flux ,; this

FIGURE 5
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TABLE I

Primitive orbit C� Weight &:(C� ) e&l(C� )+i%(C� )

&2
3 e&l&i%

&2
3 e&l+i%

1
3 e&2b

&1
9 e&2l

&4
9 e&l&2b&i%

&4
9 e&l&2b+i%

4
27 e&2l&2b

4
27 e&2l&2b

geometry was considered for the study of persistent currents in the case of a one-
channel clean ring [33] and in the case of a metallic diffusive ring [11]. The
first step is to construct all the periodic orbits that will be involved in the expan-
sion (see Table I). One considers the situation in which the ring is pierced by a
flux , to distinguish between time-reversed orbits; %=2?,�,0 , where ,0=h�e is
the flux quantum. We call l the perimeter of the ring and b the length of the
arm. As an example let us compute the :(C) coefficient for the last orbit of
Table I C� =(1, 2, 2� , 1� ): :(C� )==12=22� =2� 1� =1� 1 with =1� 1=&1

3 , =12==2� 1� =
2
3 , and

=22� =1.
The construction of all diagrams of the expansion requires one to combine all

these orbits provided that the resulting diagrams do not contain twice the same arc.
This leads to
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(75)

where it is understood that a diagram with two primitive orbits is equivalent to the
product of diagrams for each orbit, as said above. For example,

(76)

Using the weights of the orbits given in the table one eventually finds

S� =1& 4
3 cos %e&l+ 1

3 e&2b+ 1
3 e&2l& 4

3 cos %e&l&2b

+e&2l&2b (77)

= 4
3 e&l&b(sh b sh l+2(ch l&cos %) ch b). (78)

Thus,

S(#)=sh(- # b) sh(- # l )+2[ch(- # l )&cos(%)] ch(- # b), (79)

a result that can also be obtained using (85) and (38) (see also Appendix C).
As one can realize looking at (77), there exists a symmetry between the coefficients

of the different terms appearing in the diagrammatic expansion. It is possible to use this
symmetry to reduce the number of diagrams that have to be considered, which greatly
simplifies the calculation. This point is discussed in more detail in Appendix B.

To conclude this section we insist on the fact that the periodic orbit expansion
of the spectral determinant involves only a finite number of contributions, despite
the number of primitive orbits being infinite. In contrast, the periodic orbit expansion
of the partition function (10) or the density of states involves an infinite number of
contributions.

8. GRAPHS IN A MAGNETIC FIELD

In this section, we describe the appropriate modifications to the previous formalism
that have to be done in the presence of a magnetic field, namely for a distribution of
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Aharonov�Bohm fluxes. The operator of interest is now &(dx&iA)2. In Eq. (27) one
has to replace the derivative of the function � by a covariant derivative Dx=dx&iA(x)

:
;

a:; Dx:;
�(:;)(x:;=0)=0. (80)

The path integral derivation of det(&D2
x+#) follows the same lines except that all

derivatives have to be replaced by covariant derivatives in (30) and (31). One is led
to an expression of the determinant that involves a product of terms of the form

|
,(l:; )=,;

,(0)=,:

D, D,� e&(1�2) �
0
l:; dx( |Dx ,| 2+# |,| 2 ). (81)

We may recover the Gaussian action of the harmonic oscillator by performing the
following gauge transformation

,(x)=,� (x) ei �x
x0

dx$ A(x$), (82)

where the integral is performed along the bond (:;) and x0 is an arbitrary point
on this bond (a change of x0 corresponds to adding a constant phase to the field).
If we define

%;:=|
l:;

0
dx A(x) (83)

(%;:=&%:;), where the integral is performed along the bond (:;), and choose x0

in such a way that � l:;
x 0

dx A(x)=%;: �2 and �0
x0

dx A(x)=%:;�2, then (81) becomes

|
,� (l:; )=,;e&i% ;: �2

,� (0)=,:e&i% :; �2
D,� D,�� e&(1�2) �

0
l:; dx( |dx ,� | 2+# |,� | 2 )

=- # G- # l:;
(#1�4,; e&i%;: �2, #1�4,:e&i%:; �2). (84)

Introducing this expression in (34), then it is clear that (38) still holds provided
that the matrix M is now defined as

M:;=$:; :
+

a:+ coth(- # l:+)&a:;
ei%:;

sh(- # l:;)
. (85)

The calculations of Section 5 may also be generalized. The derivation is the same
and the matrix Q now reads

Q(:;)(+&)=a:; a+&$:+ \ 2
m:

&$;&+ ei(%:;&%:&�2), (86)

and the matrix R is unchanged. To define E it is convenient to introduce a unitary
transformation U that makes the changes more clear. If one writes

QR=UETU-, (87)
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where U is

U(:;)(+&)=a:;a+&$:+$;& ei(%:; �2), (88)

then one has E=D=, where = is still given by (54) and all the dependence in the
fluxes is now contained in the matrix D:

D(:;)(+&)=a:; a+&$:+ $;&e&- # l+&+i%+&. (89)

Since the spectral determinant is given by the determinant of the matrix 1&E, the
matrix U and its inverse disappear in the determinant and (52) still holds.

The derivation of the trace formulae only requires trivial modifications and one
finally obtains for the determinant

S(#)=#(V&B)�2e- # L \`
:

m:+ 2&B `
C�

(1&:(C� ) e&- # l(C� )+i%(C� )), (90)

and the corresponding partition function,

Z(t)=
L

2 - ?t
+

V&B
2

+
1

2 - ?t
:
C

l(C� ) :(C) e&(l(C) 2 �4t)+i%(C ) (91)

which generalizes Roth's formula (68). We have used the obvious notation for the
flux enclosed by an orbit C=(i1 , i2 , ..., in) : %(C)=%i1

+ } } } +%in
.

9. MORE GENERAL BOUNDARY CONDITIONS

One must sometimes consider more general boundary conditions than (80).
Imposing instead of (80) the so-called mixed boundary conditions

:
;

a:; Dx:;
�(:;)(x:;=0)=*: �: (92)

requires to generalize some of the previous results.7 This can be easily achieved by
using the path integral formalism. It is rather obvious that the boundary terms in
(31) now produce additional Gaussian terms in (34) which now reads
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7 One may distinguish two cases. (i) In the Schro� dinger problem, the current is J=2 Im(�*dx�).
Conditions (92) also lead to current conservation at the vertices. (ii) For the diffusion problem, the wave
function �(x, t) has to be replaced by a probability density P(x, t). The current of probability is given
in this case by J(x, t)=&�xP(x, t). Equation (92) implies that such a current is not conserved at the
vertices where *: {0. This condition corresponds physically to a graph connected to the external world,
*: P(:, t) being the current of particles exiting the graph. In the Dirichlet case (*:=�) the graph is
perfectly connected, which means that a particle exits the graph with probability 1 if it reaches the
vertex :.



S(#)&1=#(B&V )�2 | `
V

:=1

d,: d,� : e&(*:�2 - #) |,: | 2

_`
(:;)

G- # l:;
(,;e&i%;: �2, ,:e&i%:;�2). (93)

Thus only the diagonal elements of matrix M change. In (38), M is replaced by M� :

M� :;=M:;+
*:

- #
$:; . (94)

It is also easy to see from the discussion of Section 5 how the different matrices
are affected by the change of boundary conditions. Equation (43) will receive some
additional Gaussian terms e&(1�2) *: |,: | 2 �- # which implies that m: has to be replaced
by m:+(*: �- #). The scattering matrix Q now reads

Q(:;)(+&)=a:; a+&$:+ \ 2

m:+(*: �- #)
&$;&+ e i (%:;&%:&�2) (95)

and the matrix = is

=(:;)(+&)=a:; a+&$;+ \ 2

m;+(*;�- #)
&$:&+ ; (96)

the other matrices R and D remain unchanged. The factor :(C) of Sections 6 and
7 will be modified according to (96).

Expression (94) allows us to treat both the case of Neumann boundary conditions
(*:=0) which has already been studied in this paper, and the case of Dirichlet
boundary condition (*:=�). For a diffusive conductor, these conditions corre-
spond to a disconnected wire and a wire perfectly connected to leads at the node,
respectively.

If one imposes the Dirichlet condition at all vertices of the graph, one has to
consider the limit * � � for all vertices. Then det(M� )&>: (*:�- #). The spectral
determinant is S(#)& (>: *:) >(:;) (sh - # l:;�- #). One can drop the irrelevant
factor >: *: since the spectral determinant is defined up to a multiplicative numerical
factor independent of #, which depends on the regularization. One finds that the
spectral determinant S(#)=>(:;) (sh - # l:; �- #) is the product of the spectral
determinants associated with each bond. All bonds are then independent.

We now discuss the case where one imposes the Dirichlet boundary at only one
vertex :0 which will be useful in the next section. Taking the limit *:0

� �, one has

S(#; [Dirichlet at :0])=#(V&B&1)�2 `
(:;)

sh(- # l:;) det(M:0 ), (97)

where M:0 is the (V&1)_(V&1) matrix given by the matrix M with the line :0

and the column :0 deleted.
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As an example consider the graph pictured in Fig. 5 for which one imposes the
Dirichlet boundary at the end of the arm. S(#) becomes

SDirich. at the end of arm(#)=
1

- #
[ch(- # b) sh(- # l)+2[ch(- # l )&cos(%)] sh(- # b)],

(98)

to be compared with (79). It is interesting to check that the magnetization of the
ring, given by (19) and (20), does not depend on the choice of the boundary condi-
tions at the end of the arm, when its length b goes to infinity (b>>L,=1�- #).

10. ZERO-MODE AND LOW-ENERGY BEHAVIOR

The low-energy part of the spectrum can be studied by using the expansion of the
spectral determinant when # � 0. Using this approach we prove the existence of a
zero-mode state when B=0 and obtain the dependence of the ground state energy
in the magnetic field. Using the infinite product representation S(#)=>n (En+#)
and assuming E0=0 imply that S(#) behaves linearly with # when # � 0. In order
to study this limit it is convenient to expand M as a power series in #

M(#)=
1

- #
M� (#)=

1

- #
(M� 0+#M� 1+ } } } ), (99)

where

M� 0
:;=$:; :

+

a:+

l:+
&

a:;

l:;
(100)

M� 1
:;=$:;

1
3

:
+

a:+ l:++
1
6

a:; l:; . (101)

From these expressions, it is easy to see that M� 0 possesses an eigenvalue !0=0
corresponding to the eigenvector v0 whose components are (v0):=1. Remembering
that M acts on the V vector constructed with the wave function at the nodes, the
vector v0 corresponds to a wave function that takes the same value on all vertices
and is constant on the graph (since #=&E=0). We denote by !n(#) (n=0, ..., V&1)
the V eigenvalues of M� (#). The eigenvalue !0(#) vanishes at #=0 and its behavior for
small # computed in perturbation theory is !0(#)&#(vT

0 M� 1v0 �vT
0 v0)=#L�V. This

implies that det(M� (#))& (#L�V ) >V&1
n=1 !n(0). It is possible to write the product of

the non-vanishing eigenvalues for #=0 as the determinant of the matrix M� 0+
(v0 vT

0 �&v0&2), where the second term is the projector on the vector v0 .
One finally obtains for the spectral determinant

S(#) &
# � 0

#
L
V \ `

(:;)

l:;+ det(K), (102)

34 AKKERMANS ET AL.



where the matrix K is

K:;=M� 0
:;+

1
V

. (103)

From the linear behavior S(#) B # at small # it follows that one has for the
partition function limt � � Z(t)=1.

Let us remark that if all the lengths of the bonds are equal to unity, the product
>V&1

n=1 !n(0) is equal to T(G), the number of trees that cover the graph (Tutte
theorem) [16, 17].

It is also interesting to see how the spectral determinant behaves at non-vanish-
ing magnetic field. For the sake of simplicity we denote the ensemble of fluxes [%:;]
by B. The matrix M� now depends on the fluxes. The spectral determinant may be
expressed in terms of the eigenvalues of M� (#, B):

S(#, B)= `
(:;)

sh - # l:;

- #
`

V&1

n=0

!n(#, B). (104)

At zero magnetic field and small #, one has shown above how S(#) behaves (102)
by a perturbative expansion of !0(#, 0). Similarly, at a small magnetic field, one
may compute the eigenvalue !0(0, B) in perturbation theory. Starting from

M� :;(0, B)=$:; :
+

a:+

l:+
&a:;

ei%:;

l:;
(105)

and expanding this expression at small fluxes, it is easy to show that !0(0, B)&
(1�2V ) �:, ; a:;(%2

:; �l:; ). Since >V&1
n=1 !n(0, 0)=det(K) the spectral determinant

behaves like

S(0, [%:;]) &
[%:;] � 0

1
V

:
(:;)

%2
:;

l:; \ `
(:;)

l:;+ det(K). (106)

One may extract from these expressions the ground state energy at a small
magnetic field. At small # one has S(#, 0)&# >n>0 En(0). On the other hand, when
the magnetic field goes to zero, the ground state energy is the only energy to vanish,
and then S(0, B)&E0(B) >n>0 En(0). The ratio S(0, B)�S(#, 0)&E0(B)�# gives
the expression of the ground state energy

E0([%:;])&
1
L

:
(:;)

%2
:;

l:;
. (107)

Let us notice that the expression (107) of the ground state energy at a small
magnetic field may be recovered in a simpler way by perturbation theory. The
eigenfunction of the ground state at zero field is �0(x # G)=1�- L. Thus the correction
to the energy at small field is E0([%:;])&(�0 | A(x)2 |�0)=(1�L) �(:;) � l:;

0 dx A(x)2.

35SPECTRAL DETERMINANT ON QUANTUM GRAPHS



By choosing a gauge such that A(x)=A;: is constant on the bond (:;), one recovers
(107) since %;:=A;: l:; .

So far we have not described the effect of a change of boundary conditions on
the low-energy behavior of the spectral determinant. The matrix M at zero magnetic
field now becomes

M�� :;(0, [*:])=M� 0
:;+*:$:; . (108)

As in the presence of a small magnetic field one may compute the lowest eigenvalue
!0(0, [*:]) of the matrix M�� (0, [*:]) by perturbation theory. This gives

S(0, [*:]) &
[*: ] � 0

1
V

:
:

*: \ `
(:;)

l:;+ det(K). (109)

One may also deduce from this result the behavior of the ground state energy:

E0([*:])&
1
L

:
:

*: . (110)

Let us notice that in a particular case, one may recover this result by another
way. Consider a ring with V vertices with mixed boundary conditions. This problem
is equivalent to a ring with a potential made of $ scatterers: W(x)=�: *:$(x&x:),
where the x: 's are the positions of the vertices on the ring. In this case it is possible to
compute perturbatively the energy of the ground state: E0([*:])&(�0 | W(x) |�0 )
which indeed leads to (110).

The result (110) has a physical interpretation in the context of diffusion. The
zero-mode E0=0 is associated with the uniform stationary distribution at long
time. As soon as the graph is connected to the external world, which may be
described by taking mixed boundary conditions, the probability of remaining on
the graph decreases at long time �Graph dx P(x, x$, t)te&E0 t which means the absence
of a zero mode. In this case, E0 is the inverse escape time of the graph.

11. THE GRAPH CONNECTED TO AN INFINITE LEAD

In this section, we consider the case of a graph connected to an infinite lead
attached to the vertex : (see Fig. 6). In that case, we are dealing with a quantum
scattering problem where the relevant information like the spectrum, the Wigner
time delays, or thermodynamic quantities like the persistent currents is encoded in
the (unitary) scattering matrix [34]. To the purpose of calculating the scattering
phase shifts, let us suppose that along the lead an incoming plane wave e&ikx enters
the graph at the vertex : and is reflected with a phase shift $:(E). Below we derive
a formula expressing the phase shift in terms of det(M). Although such a formula
is in fact a special case of the one given in [13, 14], it is nevertheless interesting to
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FIGURE 6

present an independent derivation of it and show the relation with spectral deter-
minants. m: is the coordinence of vertex : in the absence of the external lead. We
first write the wave function of energy E=k2 on the bond (+;) in a form that
ensures continuity,

�(+;)(x+;)=
eiA;+ x+;

sin kl+;
(�+ sin k(l+;&x+;)+�;e&iA;+ l+; sin kx+;), (111)

where A;+ l+;=%;+ . On the incoming lead, the wave function is written in terms of
stationary scattering states

�lead(x)=
�:

cos($:�2)
cos(kx+$:�2) B e&ikx+eikx+i$: , (112)

where x # [0, �[ is a current point on the lead. Continuity of the wave function at
vertex : is already ensured with the previous expression. Current conservation at
the vertex : gives

:
;

a:; \&�: cotg kl:;+�;
ei%:;

sin kl:; +&�: tan($:�2)=0. (113)

Since the boundary conditions on the other vertices are obviously unchanged we
are left with the linear system of V equations

&i :
;

M+;(#=&k2) �;=$+:�: tan($: �2), (114)

where +=1, ..., V. Cramer's formula then gives

�:=i tan($:�2)
det(M:(&k2))
det(M(&k2))

�: , (115)
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where M:(#) is the matrix introduced in Section 9. Then the phase shift is obviously
given by

cotg($:(E)�2)=i
det(M:(&E))
det(M(&E))

. (116)

This result, together with (97), shows that the phase shift is related to the ratio of
two spectral determinants: one calculated with a Dirichlet boundary at the vertex
connected to the lead and a Neumann boundary at all other vertices (97), and the
other calculated with a Neumann boundary at all vertices (4):

cotg($:(k2)�2)=&k
S(&k2; [Dirichlet at :])

S(&k2)
. (117)

This expression shows that $:=0 mod 2? if k2 coincides with an energy of the
graph with the Neumann boundary, and $:=? mod 2? if k2 is an energy of the
graph with Dirichlet at vertex :.

As an example the phase shift of the graph of Fig. 5 is given by the ratio of (98)
and (79) if the lead is connected to the end of the arm

cotg($�2)=
cos kb sin kl+2(cos kl&cos %) sin kb
sin kb sin kl&2(cos kl&cos %) cos kb

. (118)

As a second example the phase shift in the case of the complete graph Kn that
will be studied in the next section reads

cotg($�2)=cos(.)
cos(kl)+cos(.)&1

cos(kl)+cos(.)
cotg(kl�2), (119)

where cos(.)=1�(n&1). As expected the scattering length d$�dk |k=0=2(n(n&1)�2) l

=2L is a measure of the total length of the graph.

12. APPLICATION TO THE CASE OF THE COMPLETE GRAPH Kn

As an illustration of the previous formalism it is interesting to consider the parti-
cular case where the graph G is the complete graph Kn whose V=n vertices are all
connected (see Fig. 7). Then the number of bonds is B=n(n&1)�2.

In the case where all the bonds of a graph have the same length l one obtains

det(M)=\ 1

sinh - # l+
n

P((n&1) ch(- # l)), (120)
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FIG. 7. The complete graph K5 .

where P(X )=det(X$:;&a:;) is the characteristic polynomial of the graph. The
characteristic polynomial of Kn can be found in classical textbooks. For the complete
graphs a:;=1&$:; ; thus the determinant involved in P(X) is of the same form as
the determinant of matrix F given in Appendix D. This gives the following expression
for the spectral determinant

S(#)=(- #)(3n�2)&(n2 �2) (sh - # l)(n 2 �2)&(3n�2) (n&1)(ch - # l&1)

_[(n&1) ch - # l+1]n&1. (121)

By calculating the inverse Laplace transform of (���#) ln S(#) one obtains the
partition function

Z(t)=
n(n&1)l

4 - ?t
+

n(3&n)

4
+

l

2 - ?t {_% \ l2

4?t+&1&
+

n(n&3)
2 _% \l2

?t+&1&+2(n&1) :
�

k=1

(&1)k Tk \ 1
n&1+ e&k 2l 2�4t= ,

(122)

where %(x)=�+�
k=&� exp(&?k2x) is the Jacobi % function, and Tk(x) are Tchebychev

polynomials.

(a) Short Time Limit

Equation (122) is written in the form of the Roth formula, appropriate for short
times. The first contributions coming from the expansion of (122) in the limit t � 0
give

Z(t)=
L

2 - ?t
+

V&B
2

+
1

2 - ?t {
n(n&1)

2
2l \ 2

n&1
&1+

2

e&l 2 �t

+2
n(n&1)(n&2)

3!
3l \ 2

n&1+
3

e&9l 2 �4t+ } } } = . (123)
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FIG. 8. Some orbits associated with the first terms in the brackets of (124) for the complete graph K6 .

The first two terms coincide with the first terms of the Roth formula. For the two
following terms we recognize the contributions of the shortest orbits represented in
Fig. 8. For the orbits of length 2l, the factor ((2�n&1)&1)2 is the weight :(C) of
those orbits and n(n&1)�2 their number. The next term corresponds to orbits of
length 3l with weight :(C)=(2�(n&1))3. Their number is 2(n(n&1)(n&2)�3!)
where the additional factor 2 comes from time-reversed orbits.

(b) Long Time Limit

For the graph Kn it is also possible to study the limit t � �. Introducing .,
defined by cos .=1�(n&1), one may use the identity Tk(cos .)=cos k. and the
Poisson summation formula to find

Z(t)=% \4?t
l2 ++

n(n&3)
4 _% \?t

l 2+&1&+(n&1) :
+�

k=&�

e&4? 2 �l2)[k&(1�2?)(.+?)] 2 t.

(124)

It is easy to see that

Z(t)=1+O(e&}t), (125)

where the contribution of the first term comes from the constant zero mode
�0(x # G)=1�- L.

(c) The Eigenvalue Spectrum

Equation (124) provides the whole spectrum of Kn . The first two terms describe
a series of states E12, k=k2(?2�l2), k # N, with degeneracies d12, k=0=1, d12, k=
n(n&3)�2 if k is odd and d12, k=2+(n(n&3)�2) if k is even. The third term generates
energies E3, k=(?2�l2)(2k&1& .

?)2, k # Z, with degeneracies d3, k=n&1. These states
are similar to those of a ring pierced by a flux, where the parameter . related to
the coordination plays the role of the flux.
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For n�3, .
? # [ 1

3 , 1
2 [ and one may reorganize the energy levels:

Energy Degeneracy

E0=E12, 0=0 d0=1

E1=E3, 1=
?2

l2 \1&
.
?+

2

d1=n&1

E2=E12, 1=
?2

l2 d2=
n(n&3)

2

E3=E3, 0=
?2

l2 \1+
.
?+

2

d3=n&1

E4=E12, 2=
?2

l2 22 d4=2+
n(n&3)

2

E5=E3, 2=
?2

l2 \3&
.
?+

2

d5=n&1

b b

The case n=3 corresponds to the ring of length 3l. In this case .�?=1�3 and one
recovers the well-known spectrum.

It is interesting to note that despite the particle exploring a volume L& 1
2 n2l at

large n, the energy of the first excited state E1 &?2�4l 2 is not of order 1�L2, as one
could have naively guessed, but instead of order 1�l2.

13. CONCLUSION

We have investigated spectral properties of the Laplacian on graphs by providing
several equivalent representations of the corresponding spectral determinant. This
has been achieved thanks to a path integral formulation and to the fact that the
spectral determinant can be written in terms of the propagator of a 2D harmonic
oscillator thus leading to a set of straightforward Gaussian integrals. We have thus
obtained an expression of the spectral determinant as a trace formula involving the
contribution of an infinite number of periodic orbits. Using a systematic diagrammatic
method, we expressed the finite number of terms of the determinant as contributions
of a finite number of orbits. Although it has been already clear in the literature that
such a reduction is possible, the present formalism allows us to implement it directly
for any given graph.

The flexibility and the relative simplicity of this formalism are a hint for using it
in a broader range of problems. For networks of mesoscopic and coherent conductors,
it may help to compute both thermodynamic and transport properties in some non-
trivial situations such as the local distribution of persistent currents in a network
driven by a far remote Aharonov�Bohm flux. Along the same lines, it could be
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possible to address the problem of topological properties of fractal networks like
the Sierpinski gasket subject to a distribution of Aharonov�Bohm fluxes.

APPENDIX A

The Spectral Determinant Obtained by Constructing Green's Function on the Graph

We want to solve the diffusion equation

(#&d 2
x) G(x, y)=$(x& y) (126)

on a graph made of V vertices (or nodes) linked by B bonds. y is the source for
the diffusion. The solution of (126) is of the form

G(x, y)=:
n

�n(x) �n*( y)
#+En

, (127)

where �n are the eigenfunctions of the operator &d 2
x . The spectral determinant is

obtained by spatial integration of the diagonal Green's function G( y, y):

| dy G( y, y)=:
n

1
#+En

=
�
�#

ln S(#). (128)

For a given source located in y, the diffusion equation is solved on each bond
(:;) in terms of the values G(:, y) and G(;, y) at the nodes

G(x, y)=G(:, y) ch - # x+(G(;, y)&G(:, y) ch - # l:;)
sh - # x

sh - # l:;

, (129)

where x is the linear coordinate on the bond (:;) of length l:; .
Current conservation at the vertex :

&:
;

dx:;
G(x:;=0, y)=$:, y , (130)

where the sum stands over the nearest vertices of :, leads to the equations

G(:, y) :
;

coth ':;&:
;

G(;, y)
sh ':;

=
$:, y

- #
, (131)
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where ':;=- # l:; . We have thus obtained a system of (V+1) linear equations for
the (V+1) variables G(:, y), where : can be either a node of the graph or the
source point y,

G(:1 , y) 0

b b
My\ G( y, y) +=\1�- #+ , (132)

b b
G(:V , y) 0

where the (V+1)_(V+1) matrix My is defined by Eqs. (35) and (36). Here, : and
; are either vertices of the graph or the source point located in y. One now wants
to calculate G( y, y). First, using (131), it is written in terms of G(a, y) and G(b, y),
where a and b are the vertices ending the bond to which y belongs,

G( y, y)(coth 'ay+coth 'yb)&
G(a, y)
sh 'ay

&
G(b, y)
sh 'by

=
1

- #
, (133)

so that

G( y, y)=
1

sh 'ab \
sh 'ay sh 'by

- #
+G(a, y) sh 'by+G(b, y) sh 'ay+ . (134)

The variable G( y, y) can then be eliminated in the previous system. The two
equations for G(a, y) and G(b, y) are modified as

G(a, y) :
;

coth 'a;&:
;

G(;, y)
1

sh 'a;
=

1

- #

sh 'yb

sh 'ab
(135)

and the (V&2) other equations are unchanged. We obtain now a system for the V
variables G(:, y),

G(:1 , y) 0
b b

G(a, y) sh'yb

M\ b +=
1

- # sh 'ab\ b + , (136)
G(b, y) sh 'ay

b b
G(:V&2 , y) 0

where M is defined in (35) and (36). a and b are now two of the V vertices and the
source point y is now excluded.
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By inversion of the matrix M, one obtains G(a, y) and G(b, y),

G(a, y)=
1

- # sh 'ab

(Taa sh 'yb+Tab sh 'ay), (137)

where T=M&1. From (134), one finally obtains G( y, y):

G( y, y)=
1

- # {
sh 'ay sh 'yb

sh 'ab
+

1
sh2 'ab

[Taa sh2 'by+Tbb sh2 'ay+2Tba sh 'ay sh 'yb ]= .

(138)

The spatial integral of G( y, y) on the bond (ab) can be written as

|
b

a
dy G( y, y)=

1
2# {'ab coth 'ab&1

+(Taa+Tbb) \1+2#
�
�#+ coth 'ab&2Tba \1+2#

�
�#+

1
sh 'ab= ,

(139)

where we have used the equalities

&'
sh2 '

=2#
�
�#

coth ' (140)

&'
cosh '
sh2 '

=2#
�
�#

1
sh '

. (141)

Summing over all the bonds of the graph and using the following identities:

:
(ab)

\(Taa+Tbb) coth 'ab&2
Tba

sh 'ab +=Tr[TM]=V, (142)

:
(ab) \(Taa+Tbb)

�
�#

coth 'ab&2Tba
�
�#

1
sh 'ab+=Tr {T

�
�#

M= , (143)

' coth '=2#
�
�#

ln sh ', (144)

we find that the sum P=�Graph dy G( y, y, ) simplifies considerably into

P=
�
�#

:
(ab)

ln sh 'ab+
V&B

2#
+Tr {M&1 �

�#
M= . (145)

44 AKKERMANS ET AL.



Using the following property Tr[M&1(���#)M=(���#) ln det(M) one finally obtains

P=
�
�#

ln S(#), (146)

where

S(#)=#(V&B)�2 `
(ab)

sh 'ab det(M). (147)

APPENDIX B

The Symmetry of the Coefficients of the Diagrammatic Expansion

The purpose of this appendix is to discuss the symmetry properties between the
coefficients appearing in the expansion of the determinant discussed in Section 7.
This symmetry, a consequence of properties of the matrix E, considerably symplifies
the calculation of the spectral determinant by the diagrammatic method. Since the
presence of a magnetic field does not affect any point of the following discussion,
one will forget it. We shall start by considering first the case of Neumann boundary
conditions and we will indicate at the end of the appendix how to extend the result
to the more general case.

Let us write det(1&E)=det(E) det(1&E&1). The inverse of E is easily calculated
since =&1==T and D is diagonal: D&1

ij =$ij
- # li . Then one has

det(1&E)=det(1&=D)=(&1)V&B e&2 - # L det(1&=D&1) (148)

(for the calculation of det(E), see Appendix D). The matrix =D&1 is equal to the
matrix E in which one has replaced - # by &- #. This implies that det(1&=D) and
det(1&=D&1) exhibit similar expansions (with the same numerical factors).

To use this relation it is convenient to organize the expansion of det(1&E) in
terms associated with diagrams or product of diagrams involving the same set of
arcs. Let us call gn=[i1 , ..., in] a set of n arcs of G (in particular g0=, and g2B=G).
One may write

det(1&E)= :
2B

n=0

:
gn

}[ gn] e&- # l[ gn ], (149)

where l[ gn]=l i1
+ } } } +lin

. The coefficient }[ gn] is a sum of coefficients :(C� ) or
a sum of the product of such coefficients. Equation (148) implies that there is a rela-
tion between the terms involving diagrams with a large number of arcs and a small
number of arcs. More precisely, as a consequence of the obvious relation l[G& gn]
=2L&l[ gn], we obtain

}[G& gn]=(&1)V&B }[ gn], (150)
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where G& gn=[i�i � gn] is the set of all arcs of G except those of gn . As a simple
consequence, the term det(1&E) related to the diagrams of length 2L is precisely
(&1)V&B e&2 - # L since }[G]=(&1)V&B }[,]

The use of relation (150) is particularly powerful since it allows one to consider
only half of the expansion (149). Moreover the terms }[ gn] e&- # l[ gn ] for small n
involve not only a small number of diagrams but also the simplest diagrams, con-
structed with less than B arcs. Taking into account only the B first terms in (149)
considerably reduces the number of diagrams to be considered.

As an example, one may apply this relation for the graph of Fig. 5. For the term
n=1 in (149), the sum over g1 brings four ensembles [1], [1� ], [2], and [2� ]. Only
the first two give some contributions since [2] and [2� ] are not associated with any
orbit. Consider the case where g1=[1]. Then the term }[[1]] e&- # l[[1]], given by
the diagram

(151)

has the same numerical factor as }[[1� , 2, 2� ]] e&- # l[[1� , 2, 2� ]] associated with the
two following diagrams:

(152)

In (75) only the first 3 diagrams, among the 15, have to be considered and all other
terms are given by relation (150). It is also possible to check the symmetry (150)
on Eq. (77).

To end this appendix let us explain how relation (150) is generalized for mixed
boundary conditions. In this case the inverse of = is given by =T in which one has
replaced - # by &- # (the coefficients :(C) and }[ gn] now depend on - #). One
has det(1&E)=det(E)[det(1&=D)|- # � &- # ]. Then Eq. (150) reads in the more
general case

}[G&gn]=det(=) }[ gn]|- # � &- # , (153)

det(=) being given by (170).

APPENDIX C

Precisions on Loops and Multiple Bonds between Vertices

In Section 3 we have assumed that a bond links always two different vertices and
that there is only one bond between two different vertices. Formule (35) and (36)
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FIGURE 9

apply to those kinds of graph. As we remarked in a footnote, if two vertices are
linked by two bonds, one can introduce a vertex in one of those bonds to fall back
to the situation of Section 3 (see Fig. 9). Similarly if a bond starts and finishes at
the same vertex to form a loop it is possible to separate it into two bonds by intro-
ducing an additional vertex (see Fig. 10). Of course, these operations do not change
the spectral properties of the graph. Any graph can be described as in Section 3 but
the price to pay is to add some vertices with coordination 2, which increases V and
B. In Sections 6 and 7 one has already noticed that vertices of coordination 2 play
no role in the construction of orbits. On the other hand, since the sizes of the
matrices that we have introduced are related to B and V, the calculations would
become easier if it were possible to minimize those numbers. It is the purpose of this
section to explain how to generalize (35) and (36) to the more general case where
a loop can be present at a vertex and several bonds link two vertices. A discussion
is also given in [10] using a different method. We set #=1.

(i) Expression (34) is again a good starting point. One considers the deter-
minant of a graph, one part of which is represented in Fig. 9. In (34), the terms that
involve vertex + are

S(#)&1=| } } } | d,+ d,� +Gl;+
(,; , ,+) Gl+:

(,+ , ,:) } } } . (154)

Since ,+ does not appear anywhere else one can integrate over ,+ , using the
completeness relation for the propagator. One finds

S(#)&1=| } } } Gl;++l+:
(, ; , ,:) } } } . (155)

In (155), the integral contains two propagators that propagate the field from vertex
: to vertex ;: Gl;++l+:

(,; , ,:) and Gl:;
(,; , ,:). It is now easy to see what is the

natural generalization of (35) and (36) if B:; bonds of lengths l j
:; link the two vertices:

M::= :
B:;

j=1

coth(- # l j
:;)+ } } } (156)

M:;=& :
B:;

j=1

ei% j
:;

sh(- # l j
:;)

. (157)
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FIGURE 10

Let us stress that the elimination of a vertex of coordination m+=2 is particularly
straightforward with expression (34), since it is a consequence of the completeness
relation for the propagtor of the two-dimensional harmonic oscillator.

(ii) If one now considers a graph as in Fig. 10, one can use the same trick as
before. It is then easy to see that the contribution of the loop is

S(#)&1=| } } } Gl 1
:++l2

:+
(,:e&i% 1

:+ , ,:e&i% 2
:+ ) } } } , (158)

where l 1
:+ and l 2

:+ are the lengths of the two bonds. Writing l::=l 1
:++l 2

:+ for the
length of the loop and %::=%1

:++%2
+: for the flux that pierces it, it is easy to see that

the loop gives only a contribution to M:: :

M::=2 coth(- # l::)&2
cos %::

sh(- # l::)
+ } } } . (159)

To conclude, gathering points (i) and (ii) together one gives the general expres-
sion for M,

M:;=$:; _:
+

a:+ :
B:+

j=1

coth(- # l j
:+)+2 :

L:

j=1
\coth(- # l j

::)&
cos(% j

::)

sh(- # l j
::)+&

&a:; :
B:;

j=1

ei% j
:;

sh(- # l j
:;)

, (160)

where L: is the number of loops at vertex : (we did not change8 the definition of
a:; which is still 0 or 1 depending on whether or not the vertices are connected;
a::=0). Let us remark that M:; may be expressed in the more condensed form [6, 10]

M:;=$:; _ :

from vertex :
arcs b starting

coth(- # lb)&2 :
L:

j=1

cos(% j
::)

sh(- # l j
::)&

&a:; :

vertices : and ;
arcs b linking

ei%b

sh(- # lb)
, (161)
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where in the first sum over all arcs starting from vertex :, the case of a loop brings
twice the same contribution, as in (159), since it is associated with two arcs starting
from the vertex.

As an example let us consider the graph of Fig. 5. The number of vertices can be
reduced to 2 and the spectral determinant is given by a determinant of a 2_2
matrix,

S(#)=sh l sh b }
coth b+2 coth l&2

cos %
sh l

&
1

sh b

&
1

sh b

coth b } , (162)

which gives (79).

APPENDIX D

Some Properties of the Matrices Q, R, D, =, and E

In the more general case, in the presence of a magnetic field and with mixed
boundary conditions, the four matrices that we have introduced in Section 5 read

Q(:;)(+&)=a:;a+&$:+ \
2

m:+
*:

- #

&$;&+ e i (%:;&%:& �2), (163)

R(:;)(+&)=a:;a+&$:& $;+e&- # l:;, (164)

=(:;)(+&)=a:;a+&$;+ \
2

m;+
*;

- #

&$:&+ ,
(165)

and

D(:;)(+&)=a:; a+&$:+ $;&e&- # l+&+i%+&. (166)

The inverses of those matrices are easily calculated. They are given by their hermitic
conjugates in which one replaces - # by &- #: Q&1=Q- |- # � &- # , etc. (let us
recall that the transposition is defined as QT

(:;)(+&)=Q(+&)(:;)). For example,

=&1
(:;)(+&)=a:;a+& $:& \

2

m:&
*:

- #

&$;++ . (167)
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This shows that in the positive part of the spectrum, when #=&k2, the five matrices
Q, R, D, =, and E are unitary matrices. Let us notice that for Neumann boundary
conditions *:=0, then Q&1=Q and =&1==T.

We now compute the determinants of those matrices. To start with, one considers
the sub-matrices Q: defined in (47). We write the matrix element

(Q:);&=\ 2

m:+*: �- #
&$;&+ e i (%:;&%:& �2),

where it is understood that ; and & belong to the set of m: neighbors of :.
To compute the determinant of the matrix, the first step is to eliminate all the

phases with a unitary transformation. Then one has to consider an n_n matrix of
the form F:;=a&$:; . It is possible to compute the determinant of such a matrix
using a recursive method; one finds det(F )=(&1)n (1&n a). Coming back to Q:

one has det(Q:)=(&1)m:+1 ((m:&*: �- #)�(m:+*:�- #)). It follows that

det(Q)=(&1)V `
V

:=1

m:&*: �- #

m:+*: �- #
. (168)

If #=&k2, this is indeed a complex number of unit modulus.
Next one would like to compute det(R). The matrix R which couples time-reversed

arcs has 2B non-vanishing elements. The determinant of R is then given by the product
of all elements of R times the sign of the permutation P(1, 1� , ..., B, B� )=(1� , 1, ..., B� , B)
that exchanges each arc with its time-reversed arc; it follows that

det(R)=(&1)B e&2 - # L. (169)

Since ==(U-Q(#) R(#=0)U)T, it is easy to deduce its determinant,

det(=)=(&1)V&B `
V

:=1

m:&*: �- #

m:+*: �- #
, (170)

which involves the topological invariant V&B.
The determinant of E is given by det(E)=det(=) e&2 - # L. For Neumann boundary

conditions det(E)=(&1)V&B e&2 - # L.
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