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Lecture 1
•            Introduction to mesoscopic physics
• The Aharonov-Bohm effect in disordered 

conductors.
• Phase coherence and effect of disorder. 
• Average coherence:                 effect and coherent 

backscattering.
• Phase coherence and self-averaging: universal 

fluctuations.
• Classical probability and quantum crossings.
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• Aharonov-Bohm effect in disordered metals
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The intensity       is given byI(φ)

I(φ) = |a1 + a2|
2 = |a1|

2 + |a2|
2 + 2|a1a2| cos(δ1 − δ2)

= I1 + I2 + 2
√

I1I2 cos(δ1 − δ2)

The phase difference                            is modulated by the 
magnetic flux     :

∆δ(φ) = δ1 − δ2
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φ

φ0

φ0 = h/ewhere                     is the quantum of magnetic flux.
Continuous change of the state of interference at each point: 
                             Aharonov-Bohm effect. 



Implementation in metals : the conductance             is the analog of 
the intensity.
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G(φ)

G(φ) = G0 + δG cos(∆δ(0) + 2π
φ

φ0
)

elastic mean free path
le

L

Phase coherent effects subsist in metals in the multiple scattering regime.
                          Reconsider the Drude theory of metals. 

Webb et al.



Phase coherence and effect of disorder
The Webb experiment has been realized on a ring of size                   
For a macroscopic system coherent effects are washed out in normal 
metals.
           It must exist a characteristic length        called phase coherence 
length beyond which all coherent effects disappear.  
           

L ! 1µ

Lφ

Quantum coherence: gas of quantum particles in a finite volume

Quantum states of the gas are coherent superposition of single particle 
states and they extend over the total volume (ex. superconductivity, 
superfluidity, free electron gas, coherent states of the photon field).

For the electron gas, coherence disappears at non zero temperature so 
that we can use a classical description of transport and thermodynamics



Vanishing of quantum coherence results from the existence of incoherent and 
irreversible processes associated to the coupling of electrons to their 
surrounding (additional degrees of freedom) :

Coupling to a bath of excitations: thermal excitations of the lattice (phonons)
Chaotic dynamical systems (large recurrence times, Feynman chain)
Bath of virtual photons (Lamb shift,...)
Impurities with internal degrees of freedom (magnetic impurities)
Electron-electron interactions,....

The understanding of decoherence is difficult. It is one of the main 
challenges in quantum mesoscopic physics. The phase coherence length        
accounts in a generic way for decoherence processes. 

The observation of coherent effects require that

Lφ

le ! L ! Lφ



        Average coherence and multiple scattering

Phase coherence leads to interference effects for a given realization of 
disorder. 

The Webb experiment corresponds to a given configuration of disorder. 

Averaging over disorder            vanishing of the Aharonov-Bohm effect

G(φ) = G0 + δG cos(∆δ(0) + 2π
φ

φ0
)

What is the role of disorder ? Does it erase coherent effects ?

Disorder seems to erase coherent effects....

〈G(φ)〉 = G0



An analogous problem: Speckle patterns in optics
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Consider the elastic multiple scattering of light transmitted through a 
disordered suspension.

Outgoing light build a speckle pattern i.e., an interference picture:



Averaging over disorder erases the speckle pattern:

Integration over the motion of the scatterers leads to averaging



The                 experiment                  Sharvin
2

L

Lz

a

Experiment analogous to that of Webb but 
performed on a hollow cylinder of height larger 
than         pierced by a Aharonov-Bohm flux. 
Ensemble of rings identical to those of Webb but 
incoherent between them.

Lφ

The signal modulated at         disappears but, 
instead, it appears a new contribution 
modulated at φ0/2

After all, disorder does not seem to erase 
coherent effects, but to modify them....

φ0



Elastic disorder is not related to decoherence : disorder does not destroy phase 
coherence and does not introduce irreversibility.

What about speckle patterns ?

Averaging over disorder does not produce incoherent intensity only, but 
also an angular dependent part, the coherent backscattering, which is a 
coherence effect. We may conclude:



How to understand average coherent effects ?

A(k,k′) =
∑

r1,r2

f(r1, r2)ei(k.r1−k
′.r2)

Complex amplitude        
associated to the multiple 
scattering of a wave (electron or 
photon) incident with a wave 
vector     and outgoing with 

k
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|aj |e
iδjwhere the complex amplitude                                    describes the 

propagation of the wave between                  .                       r1 and r2
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The related intensity is 

|A(k,k′)|2 =
∑

r1,r2

∑

r3,r4

f(r1, r2)f∗(r3, r4)ei(k.r1−k
′.r2)e−i(k.r3−k

′.r4)
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On average over disorder, most 
contributions to         disappear 
since the dephasing 

ff∗

δj − δj′ " 1

j
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The only remaining contributions to the intensity correspond to terms 
with zero dephasing, i.e., to identical trajectories.
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r1 → ra → rb · · · → ry → rz → r2

r2 → rz → ry · · · → rb → ra → r1

The total average intensity is:

|A(k,k′)|2 =
∑
r1,r2

|f(r1, r2)|2
[
1 + ei(k+k′).(r1−r2)

]

incoherent 
classical term

interference term



|A(k,k′)|2 =
∑
r1,r2

|f(r1, r2)|2
[
1 + ei(k+k′).(r1−r2)

]

Generally, the interference term vanishes due to the 
sum over                  , except for two notable cases:r1 and r2

k + k
′
! 0 :  Coherent backscattering

r1 − r2 " 0 : closed loops, weak localization and           periodicity 
of the Sharvin effect. 
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Random quantum systems 
(quantum complexity)

Disorder does not break phase coherence and it 

does not introduce irreversibility

It introduces randomness and complexity:

all symmetries are lost, there are no good 

quantum numbers.

Each quantum observable of a quantum 

complex system depends on the specif ic 

realization of disorder.



Exemple: speckle patterns in optics

Diffraction 
through a circular 
aperture: order in 

interference

Transmission of  
light through a 

disordered 
suspension: 

complex system



Mesoscopic quantum systems

• Most (all ?) quantum systems are complex 

• Complexity (randomness) and decoherence 
are separate and independent notions.

• Complexity: loss of symmetries (good 
quantum numbers)

• Decoherence: irreversible loss of quantum 
coherence L ! Lϕ

Mesoscopic quantum system is a coherent 
complex quantum system with L ≤ Lϕ



Classical limit :             
The system is a collection of 
statistically independent subsystems.
A macroscopic observable defined in each subsystem 
takes independent random values in each of the N 
pieces.

Law of large numbers:  any macroscopic observable is 
equal with probability one to its average value.

The system performs an average over realizations of the 
disorder.

 

L ! Lϕ

N = (L/Lϕ)d
! 1

Phase coherence and self-averaging: 
               universal fluctuations.



For              , we expect deviations from 
self-averaging which reflect the underlying 
quantum coherence.

Need:

• a good understanding of the phase 
coherence length 

• a description of fluctuations and coherence 
in a quantum complex system.

• If disorder (complexity) is strong enough, 
the system may undergo a quantum phase 
transition

L ! Lϕ

Lϕ



Exemple: electrical conductance of a metal

A metal can be modeled as a quantum gas of electrons 
scattered by an elastic disorder.

At T=0 and in the absence of decoherence, it is a complex 
quantum system.

Due to disorder there is a finite conductance  which is a 
quantum observable.

Classically, the conductance of a cubic sample  of size     is 
given by Ohm’s law:                      where    is the 
conductivity.               

G = σL
d−2

L
d

σ



•The units of electrical conductance in quantum 
mechanics is 

•Units of classical conductance is given by the 
electromagnetic impedance of the vacuum:

• The ratio of quantum to classical conductance is the 
fine structure constant:

e2/h ! 1/25.8kΩ

√
ε0/µ0 ! 1/377Ω

α =
e2

4πε0h̄c
!

1

137

quantum effect in the electrical conductance are small and 
can be treated using perturbation theory like in quantum 

electrodynamics.



Quantum conductance fluctuations

Classical self-averaging limit :

where                       and  
           is the average over disorder.

δG

G
=

1

N
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L

)d/2
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√
G2

− G
2

...

In contrast,  a mesocopic quantum system is such 
that : 

Fluctuations are quantum, large and independent of 
the source of disorder : they are called universal. 

In the mesoscopic limit, the electrical conductance is 
not self-averaging.
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Gold ring Si-MOSFET NUMERICS ON 
THE ANDERSON MODEL


