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Correlation of diffusing photons and level crossing spectroscopy
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Abstract – We show that an enhanced intensity correlation shows up in the diffusion of photons
multiply scattered by an atomic gas of large optical depth b. This enhancement occurs only for
scattering atoms that are Zeeman degenerate and it leads to a deviation from the Rayleigh law.
The fluctuations measured by their variance, display a resonance peak as a function of an applied
magnetic field. The resonance width is proportional to the small factor 1/b. We derive closed
analytic expressions for all these physical quantities which are directly accessible experimentally.
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We consider in this letter coherent multiple scattering
of photons propagating in cold atomic gases. For Zeeman-
degenerate atoms, there is an enhancement of the fluc-
tuations of light intensity (speckle pattern) transmitted
through a gas of large optical depth, but without change
of the average transmitted intensity [1]. This enhancement
shows up in a significant deviation from the Rayleigh law
which states that for classical scatterers without internal
structure, the variance δT 2 = T 2−T 2 of the transmission
coefficient T is related to its average value T by δT 2 = T 2.
The averaging over configurations denoted by · · · will
be defined later. The enhancement results from the
presence of additional cross-terms that involve the
ground-state Zeeman sublevels of the atoms. The depen-
dence of these cross-terms on magnetic quantum numbers
suggests that it is sensitive to an applied magnetic field
H. Our purpose in this letter is to show that indeed
the amplified variance presents a resonance as a function
of H around a crossing point, and the width of this
resonance is

∆H � a �Γ
gµ0

l

L
, (1)

where l is the photon elastic mean free path through
the atomic gas confined into a slab of width L, g is
the Landé factor and µ0 the Bohr magneton. Here, a is
a constant of order unity to be determined later, that
depends on the details of the atomic structure. All these
features are obtained in the limit of diffusing photons,
i.e., in a regime where L� l. Thus, the narrowing of
the resonance is in principle not limited, which might
prove useful in level-crossing spectroscopic measurements.
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Fig. 1: Experimental setup. A CW laser beam is incident onto
atoms confined in a slab of width L. A detector placed along
the direction ŝb, records the intensity. During the time interval
τ , assumed to be short, the scatterers stay at rest. However,
the two photons 1 and 2 experience different atomic internal
configurations due to all other photons between them. The
measurement is repeated after a time T � τ .

We shall see that the effect we present here shares
some kind of analogy with the well-known Franken or
Hanle effects [2,3]. Nevertheless, we emphasize that both
the underlying physical mechanisms and the quantities
that are being measured are very different from these two
effects [4,5].
We consider the setup of fig. 1. A photon of polarization
ε̂a is incident along a direction ŝa onto the atomic gas. It
is detected in transmission with polarization ε̂b, along ŝb
after being multiply scattered. A time τ later, a second
identical photon is detected. We assume that τ is short
enough so that the atoms stay at rest between the two
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events. The same measurement is repeated after a time
T � τ , during which the scatterers move. The averaging
over spatial disorder results from this motion. The trans-
mitted intensity T is proportional to the probability of a
photon incoming along ŝa, to emerge along ŝb. Atoms are
modeled as degenerate two-level systems. We denote by
|mg〉 the ground-state Zeeman sublevels with total angu-
lar momentum jg, |me〉 are the excited states sublevels
with total angular momentum je, and m is the projection
on a quantization axis.
The average transmission coefficient T is obtained by

squaring the sum of the scattering amplitudes, A
{R,m}
n ,

corresponding to a given configuration {R,m}. Here {R}
accounts for the spatial positions of all atoms, {m} is
a notation for their internal Zeeman states both before
and after scattering and the index n denotes one possible
multiple-scattering path. Then,

T =
∣∣∣∑
n

A
{R,m}
n

∣∣∣2 =∑
nn′
A
{R,m}
n A

{R,m}∗
n′ , (2)

where · · · denotes a configuration average over both
{R} and {m}. When averaging over {R}, all cross-terms
n �= n′ vanish because of large fluctuating phase shifts,
so that T �

∑
n |A

{m}
n |2 . This expression is the lead-

ing approximation in the weak-disorder limit k0l� 1,
where k0 is the photon wave number [6]. The two
photons detected at t= 0 and t= τ are separated by
many undetected photons (see fig. 1) which may change
the internal states of atoms. Therefore, if {m} and {m′}
refer to the atomic internal configuration seen by the two
detected photons, then we can assume that there is no
correlation between {m} and {m′}.
Similarly, the correlation function of the transmission

coefficients T and T ′ of the two detected photons is

T T ′ =
∑
ijkl

A
{R,m}
i A

{R,m}∗
j A

{R,m′}
k A

{R,m′}∗
l . (3)

As before, the averaging over {R} leaves only pairs of
amplitudes having exactly opposite phase shifts. Thus,
to leading order in weak disorder, the only non-vanishing
contributions involve two possible pairings of amplitudes,
either i= j, k= l, which gives T T ′, or i= l, j = k, so that
defining C2 = T T ′−T T ′, we obtain [1]

C2 =
∣∣∣∑
i

A
{m}
i A

{m′}∗
i

∣∣∣2 . (4)

Since generally {m} �= {m′}, these cross-terms occur
between distinct Zeeman sublevels of the ground state,
unlike the Franken or Hanle effects, where the interference
involves distinct excited sublevels.
In the theory of multiple scattering it is helpful to use a

continuous description [6]. In this framework, one defines

two Diffuson functions D(i,c) by1

T =
∫
drdr′D(i)(r, r′) and C =

∣∣∣∫ drdr′D(c)(r, r′)∣∣∣.
(5)

The two functions D(i,c) are obtained from an iteration
equation (also called ladder diagram) whose structure is
based on two elementary vertices V(i,c) , that describe the
microscopic details of the scattering process. The iteration
of the elementary vertices is written symbolically as

D= V +VWV + · · ·= V +DWV, (6)

where D, V stand for D(i,c), V(i,c). V accounts for a
single scattering and DWV represents its iteration. The
quantity W describes the propagation of the photon
intensity between successive scattering events and it will
be described later on.
Generally, the elementary vertex is obtained by coupling

two scattering amplitudes. It is given by

V =
∑

mimem′e

〈m2|V (ε̂1, ε̂2)|m1〉〈m4|V (ε̂3, ε̂4)|m3〉∗
(ω−ωm1me + iΓ2 )(ω−ωm3m′e − i

Γ
2 )
, (7)

where the operator V (ε̂′, ε̂) = ε̂′∗ ·d|me〉〈me|d · ε̂ results
from the dipolar interaction energy −d ·E between atoms
and photons. d and E are, respectively, the atomic-dipole
and electric-field operators. The states |mi〉 are Zeeman
sublevels of the atomic ground state, and |me〉, |m′e〉 are
those of the excited state. We have defined the energy
difference �ωij =Ej −Ei and the photon frequency ω.
We assume that the ground-state Zeeman sublevels are
equiprobable so that the corresponding density matrix
reduces to the factor 1/(2jg +1).
The elementary vertex V(i), that corresponds to the

average intensity, is obtained by setting m1 =m3, m2 =
m4, ε̂1 = ε̂3 and ε̂2 = ε̂4 in (7). Up to a proportionality
factor, V(i) is nothing but the differential cross-section
for this scattering process. Assuming a broad line
excitation [7], we average V(i) over ω, leading to [3]

V(i) =
∑
m1m2

∑
mem′e

B12(me)B
∗
12(m

′
e)

i ωmem′e +Γ
, (8)

where B12(me) = 〈m2|ε̂∗2 ·d|me〉〈me|d · ε̂1|m1〉. A mag-
netic field removes the level degeneracy and leads to a
Zeeman splitting, so that two kinds of terms appear in
(8) depending on whether me =m

′
e or me �=m′e. Terms

for which me =m
′
e, are independent of the magnetic

field and give the incoherent scattering cross-section. The
terms me �=m′e depend on the magnetic field and describe
interferences between two distinct scattering amplitudes.
For the vertex V(c), each of the two coupled scattering

amplitudes in (7) might belong to a distinct atomic config-
uration (see (4)), meaning that we must consider distinct

1All prefactors that depend on the geometry of the sample and
on the strength and shape of the photon source have been absorbed
in the definitions of D(i,c).
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Fig. 2: Example of a term which, for the transition jg = 1→
je = 2, contributes to V(c), but not to V(i). The solid and dashed
lines refer, respectively, to the two quantum amplitudes that
appear in (7). For large enough magnetic field, this contribution
vanishes since Zeeman splitting takes it far from resonance.

couples of initial (|m1〉, |m3〉) and final (|m2〉, |m4〉)
atomic states, as well as two initial (ε̂1, ε̂3) and final
(ε̂2, ε̂4) polarization states. Summations over the quantum
numbers mi result from averaging over initial atomic
states and from non-detected final states. The vertex
V(c) involves more interference-like cross-terms than
those already appearing in V(i). A non-degenerate ground
state leads immediately, using (7), to V(i) = V(c) so that we
recover the Rayleigh law, C2 = T T ′ [6]. Degenerate states
produce additional cross-terms in V(c) so that C2 > T T ′
(see fig. 2). An applied magnetic field removes the
degeneracy and therefore affects the interference pattern.
We now calculate the Diffusons D given by the iteration

(6). We first decompose the various terms into components
in a standard basis,

V =
∑
αβγδ

(ε̂1)−α(ε̂2)∗γ(ε̂3)
∗
−β(ε̂4)δ Vαβ,γδ . (9)

Likewise, eq. (6) acquires a tensorial form,

Dαβ,γδ = Vαβ,γδ +W
∑
µνρσ

Dαβ,µνPµν,ρσVρσ,γδ. (10)

Here W describes the scalar part of W and Pαβ,γδ =
〈(δαγ − (−)γ ŝαŝ−γ)

(
δβδ − (−)β ŝ−β ŝδ

)
〉 accounts for the

polarization-dependent part. This follows at once by notic-
ing that after being scattered by an atom, the two outgoing
photon amplitudes propagate with a wave vector ŝ= k/k0,
random in direction but identical for both, and with two
different polarization components. Since ŝ is random, the
intensity propagation is averaged 〈· · ·〉 over photon wave
vectors direction. The term δµν − (−)ν ŝµŝ−ν expresses
transversality. The two tensors Pαβ,γδ and Vαβ,γδ can
be written as 9× 9 matrices. The iteration (7) rewrites
D= (1+WVP +(WVP)2+ · · ·)V. We now use the spec-
tral decomposition theorem to expand VP =

∑
K uKT

(K),
where uK ’s are the eigenvalues of VP and the T (K)’s define
an orthonormal set of (generally) 9 projectors [1]. Then,
with the help of (10), we find

D(i,c)αβ,γδ =
∑
K

U
(i,c)
K

(
V(i,c)K

)
αβ,γδ

(11)

with V(i,c)K = T (K)V(i,c) and

U
(i,c)
K � 8πcΛ

3l2
1/u

(i,c)
K

γ
(i,c)
K +Dq2

, (12)

where Λ= (2je+1)/3(2jg +1) and q (with q= |q|) is
the Fourier variable of the difference R= r′− r between
the two endpoints of a multiple-scattering sequence. The
r.h.s. in (12) is obtained by using the diffusion approxima-
tion (i.e. ql� 1), so that W (q)� 3

2Λ (1− q2l2/3), where
D= cl/3 is the photon diffusion coefficient [6]. We
identify the set of characteristic damping rates

γ
(i,c)
K =

c

l

(
2Λ

3u
(i,c)
K

− 1
)
. (13)

The term 2
3Λ is the total cross-section conveniently

normalized. According to the values of u
(i,c)
K , we identify

3 kinds of modes. A positive γ
(i,c)
K describes an expo-

nentially damped mode. A vanishing γ
(i,c)
K corresponds

to an infinite-range stable mode which ensures energy
conservation, and a negative damping rate describes
an amplified mode. The largest eigenvalue of V(i)P
is u

(i)
0 = 2Λ/3, thus leading to one stable mode. For

degenerate scatterers (jg, je > 0), and without magnetic
field, D(c) has one amplified mode, whose occurrence
results from the fact that all terms that contribute to V(i),
contribute also to V(c) [1]. However, there are interference
terms that contribute to V(c) only (fig. 2). Therefore, the
largest eigenvalue of V(c)P becomes greater than 2

3Λ,
thus making the corresponding damping rate negative.
We now rewrite (11) in real space,

D(i,c)(r, r′) =
∑
K

Y
(i,c)
K

∫ ∞
0

dt D(r, r′, t) e−γ
(i,c)
K t, (14)

where Y
(i,c)
K are two angular functions that depend on

the incoming and outgoing polarizations ε̂a and ε̂b [1].
The scalar Diffuson propagator D(r, r′, t) obeys a diffusion
equation whose solution for a slab geometry is well
known [6].
The dominant contribution to the average intensity T is

the stable, energy conserving mode γ
(i)
0 = 0. The two other

modes have positive damping rates and are negligible
compared to this stable mode. They express photon depo-
larization in multiple scattering. The stable mode leads
to T ∝ l/L= 1/nσL. Here n is the density of scatterers
and σ is the single-scattering total cross-section. However,
the total cross-section is independent of the magnetic
field H [3]. This can be understood as follows. Starting
from (8), the outgoing polarization-dependent part is a
sum of terms like

∑
ε̂2⊥k〈m2|ε̂

∗
2 ·d|me〉〈m′e|ε̂2 ·d|m2〉=∑

k(ε2αε2β + ε
′
2αε

′
2β)〈m2|dα|me〉〈m′e|d−β |m2〉, where k

is the outgoing wave vector, and (α, β) are the standard
components of d that contribute to the transitions. Inte-
grating over k imposes α=−β, which implies me =m′e.

24002-p3



E. Akkermans and O. Assaf

-0.3 -0.2 -0.1 0.1 0.2 0.3
s

1

2

3

4

5

C

Fig. 3: Plot of C given by (15) as a function of the dimensionless
magnetic field s. We denote by ∆ its FWHM. This plot
corresponds to the jg = 1→ je = 2 transition and b= 5.

Thus, the interference terms in (8) do not contribute to
σ, which is therefore independent of H. As a consequence,
T is also independent of H. On the other hand, one
cannot take advantage of the preceding argument when
considering the generalized vertex (7). In that case, the
corresponding differential and total cross-sections depend
strongly on H. Moreover, the transitions that contribute
to V(c) but not to V(i) (fig. 2) involve essentially a change
in the Zeeman sublevels of atoms (Raman transitions).
In a strong enough magnetic field, such transitions are
suppressed. The field is thus expected to reduce V(c), and
consequently the correlation C . It is shown below that it is
indeed the case. It is nevertheless worth noticing that for
a monochromatic light, the total intensity cross-section
does depend on H, but still this dependence is much
weaker than for the correlation.
The intensity correlation function C is dominated by

the amplified mode driven by the negative damping rate

γ
(c)
0 . The integral in (14) is cutoff by tmax =L/c, where
L= cL2/D is the longest path of a diffusing photon.
Expression (14) thus leads to [1]

C = Y (c)0

(
sin2(X

b
)

X sinX
− 2 sin2

(π
b

) e−π2+X2
π2−X2

)
. (15)

We have defined X =L/L
(c)
0 (s), where L

(c)
0 (s) =√

D/γ
(c)
0 (s) is expressed as a function of the dimen-

sionless magnetic field s= gµ0H/�Γ and b=L/l is the
optical depth. This expression is displayed in fig. 3. It
retains the shape of a resonance curve whose FWHM is
given by (1). To derive it and to obtain X(s), we expand
V(c)(s) to first order in s, leading for the amplified mode
to u

(c)
0 (s)� u

(c)
0 (0)−βs2, where β is a constant that

depends on the specific scattering atom. According to
(13), the corresponding damping rate becomes

γ
(c)
0 (s)� γ

(c)
0 (0)+

2β cΛ

3u
(c)2
0 l

s2 . (16)
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Fig. 4: FWHM ∆ of C plotted vs. 1/b. The points are
obtained from (15) in which f2 results from a direct numerical

calculation of γ
(c)
0 (s). The slope of this linear behavior is in

good agreement with the predicted expression 2
√
ln 2/f2 �

0.76 obtained for the transition jg = 1→ je = 2.

By rewriting X = b

√
l2γ
(c)
0 (s)/D, and making use of

(16), we obtain X = b
√
|f0− f2s2|, where the two

constants f0 and f2 are given by f0 = (2Λ/u
(c)
0 )− 3 and

f2 = 2Λβ /u
(c)2
0 . For large enough optical depth b=L/l,

i.e., in the diffusive regime where expression (15) applies,
the FWHM ∆ behaves linearly with 1/b as shown in
fig. 4. The corresponding slope is easily calculated from
(15) and restoring units, we obtain for ∆H the expression
(1) with a= 2

√
ln 2/f2.

To summarize, we have shown that in multiple scat-
tering of diffusing photons scattered by atoms, the
presence of a magnetic field near a level crossing (or
close to zero field) shows up as a resonance peak in the
intensity correlation function C . Its width, given by (1),
is inversely proportional to the optical depth b=L/l.
The diffusive regime corresponds to large values of b
(typically b� 102), so that the sensitivity of the inter-
ference to a magnetic field is significantly enhanced.
This could be used towards more precise measurements
in level crossing spectroscopy, in the limit of dense atomic
gases where multiple scattering cannot be neglected
anymore.
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