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Conservation of energy in coherent backscattering of light
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Abstract – Although conservation of energy is fundamental in physics, its principles seem to be
violated in the field of wave propagation in turbid media by the energy enhancement of the coherent
backscattering cone. In this letter we present experimental data which show that the energy
enhancement of the cone is balanced by an energy cutback at all scattering angles. Moreover,
we give a theoretical description which is in good agreement with these data. The additional
terms needed to enforce energy conservation in this description result from an interference effect
between incident and multiply scattered waves, which is reminiscent of the optical theorem in
single scattering.
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Introduction. – Conservation of energy is one of the
most fundamental principles in physics, which so far has
not been violated. There are however instances, where this
seems to be the case at first glance. One such example
is the coherent backscattering cone which appears when
waves propagate in turbid media. In that case, a twofold
enhancement of the backscattered intensity with respect
to the diffusely scattered background is observed. This
enhancement decays over an angular scale of (kl∗)−1,
where k is the wave number of the wave and l∗ is the
transport mean free path of the medium [1]. Due to its
fundamental nature, the coherent backscattering cone can
be observed with many different types of waves, such as
electrons in metals [2], visible light in the laboratory [3–5]
as well as in space [6], microwaves [7], seismic waves [8],
and sound waves [9].
The origin of the backscattering enhancement lies in

the interference of waves propagating along reciprocal
paths. This interference can only spatially re-distribute
the backscattered energy. Thus the energy enhancement
at small angles should be accompanied by a corresponding
energy cutback to ensure conservation of energy. This
is because energy is conserved in Maxwell’s equations,
which microscopically describe the problem. However, in
typical experiments, at least 1010 scatterers should be
treated. For such large numbers of randomly distributed
scattering particles a solution of Maxwell’s equations is

technically impossible. Therefore a collective description
of the effect [1,10,11] needs to be done, where conservation
of energy does not appear. Moreover, such an energy
cutback has not been observed experimentally up to now.
This implies that both the theoretical description as well
as the experiments should be improved in order to restore
conservation of energy.
Furthermore, the additional energy contribution of the

coherent backscattering cone to the intensity cannot be
explained by a corresponding reduction in transmission
at surfaces not considered in the experiment. Rather, the
backscattering cone is also observed from samples which
can theoretically as well as experimentally be treated
as filling an infinite half-space, meaning that the waves
can reach no other surface than the one considered [1].
In addition, the energy in the cone cannot be obtained
from another polarization channel, since no reduction
in backscattering is observed in other polarization chan-
nels [12]. In the diffusion approximation, which is valid for
the optically thick samples we will consider, a backscat-
tering cone is only present in the polarization conserving
channel, while the polarization breaking channel shows
only the incoherent background of backscattering. This
holds for all incoming polarizations [12]. Therefore,
one can describe the problem as a scalar scattering
problem where only the polarization conserving channel
is considered.
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The fact that a possible energy cutback is not included
in any theoretical description of the backscattering cone
can be problematic as the scaling of its width with
kl∗ is commonly used to characterize multiple scattering
materials. In particular in turbid samples, when the cone
becomes very broad, there has to be a sizeable correction
if conservation of energy is to hold. This is for example
of great importance in the study of Anderson localization
of light [13], where a reliable knowledge of the parameter
kl∗ is needed to characterize the phase transition from
diffusive transport to a localizing state [14,15].
In this letter, we present measurements of coherent

backscattering, where the incoherent background is deter-
mined on an absolute scale. This is in contrast to previous
investigations, where the incoherent background was
determined from the wings of the backscattering data [16].
With this we are able to show that there is a reduction
in backscattering intensity at all angles compensating
for the enhancement in the back direction. A theoretical
description which fits these data shows that the reduction
in enhancement results from a new interference effect
between the incident and multiply scattered waves. This
is analogous to the shadow term, which accounts for flux
conservation in the optical theorem [17]. In the context of
weak localization, this was already discussed by Dmitriev
et al. [18], who have calculated the scattering cross-section
of multiply scattered electrons. This calculation involved
a crossing similar to the one introduced here and leads
to a conservation of the elastic-scattering cross-section.
In multiple scattering, the terms needed to ensure energy
conservation correspond to the so-called Hikami box
or quantum crossing [19,20]. The present experiment
constitutes a direct observation of such a scattering
process, which can be described by a Hikami box playing
a central role in quantum mesoscopic physics [20].

Experimental setup. – Our main setup to study the
angular distribution of the backscattered light consists
of 256 photosensitive diodes attached to a semi-circular
arc with a diameter of 1.2m. In its center the sample
is located, facing the illuminating laser beam which is
focussed through a small hole in the arc between the
two central diodes [21]. To average over random speckle
patterns, the sample is rotated. In this way, we can detect
light over a range of −60◦ < θ < 85◦ with a resolution of
0.14◦ for |θ|< 10◦, ∼ 1◦ for 10◦ < |θ|< 60◦ and ∼ 3◦ for
θ > 60◦. For the illumination a continuous wave dye laser
with a wavelength of 590 nm is used. The measurements
are done using circularly polarized light in order to reduce
the influence of single scattering. Using a mirror, we have
checked that this suppression exceeds 95%, such that
enhancements of 0.95 are possible with this setup. As the
very tip of the cone at θ� 0 cannot be resolved with this
setup, the central part of the backscattering cone, |θ|< 3◦,
is measured separately using a beam splitter and a charge-
coupled device (CCD) camera to a resolution of 0.01◦ [21].

Fig. 1: (Colour on-line) Backscattering cone of R700 evaluated
ignoring (dashed curve) and taking into account (full red curve)
absorption in the reference sample. The former is positive for
all angles, resulting in an uncompensated energy enhancement
of the cone. For the latter, energy enhancement and energy
cutback are balanced. This is quantified by the half-space
integral of the intensity I =−0.005(7). The corrected helicity
breaking channel is also shown, which is very flat over the
whole angular range except at the center, where a small cone
is present due to imperfect polarization selection. This shows
that the correction procedure works to the accuracy of 0.005,
which is necessary to observe the reduction of backscattering
compensating the energy in the cone. The inset shows a time-
of-flight measurement of the teflon reference, which follows
diffusion theory with an absorption time of 3.3 ns.

To be able to determine the intensity of the backscat-
tered cone on an absolute scale, the incoherent background
needs to be known. The intensity in the cone scales as
1/(kl∗)2, such that for typical values of kl∗ � 10, an
accuracy of 1% is necessary to resolve the energy cutback.
Note that we are able to achieve this level in spite of the
fact that only 95% of singly scattered light is suppressed,
since single scattering will be of the same order in the
sample and the reference. As a reference sample, we have
used a block of teflon. Teflon has a transport mean free
path of � 300µm and hence the backscattering cone of
teflon at a wavelength of 590 nm has a FWHM of about
0.02◦. Thus the cone of teflon cannot be resolved in the
wide-angle setup, and the teflon reference measurements
can be considered to describe the diffuse background of
the TiO2 samples. This is also true at wide angles as
any corrections due to conservation of energy would be
at the level of below a ppm, which is far beyond the
experimental resolution. The angle dependence is thus
given by µ(γ+µ/(µ+1)) when properly normalized [20].
Here µ= cos θ and γ is a universal parameter (γ = 2/3 in
the diffusion approximation), which describes the distance
over which the intensity enters the sample before being
scattered. From the helicity breaking channel shown in
fig. 1, it can be seen that the diffusion approximation
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is valid for our experiments, since the background is
completely flat at higher angles. The small cone, which is
visible in the figure is due an incomplete extinction of the
polarization, which leads to a cone with an enhancement
of ∼ 0.04. Due to the presence of this cone it is not feasible
to directly use the helicity breaking data as a background,
and the signal from the teflon sample has to be used
instead. In treating the teflon measurement as the diffuse
background, one however neglects the different albedo
of teflon with respect to the sample giving a different
magnitude to the background. The proper background
for the sample, αinc,samp, is therefore given by that of the
reference, αinc,ref , multiplied by the ratio of the albedos
of sample and reference, Asamp/Aref .
For an estimation of the albedos to a level of better

than 1%, one needs to take into account losses at the
sample/reference boundaries, as well as losses due to
absorption. As we will see below, the losses due to
absorption and finite thickness are both of the order of
5% for the teflon reference. Therefore already a rough
estimate of the loss factors would be able to give an
accuracy below 1%. Up to now however, these losses have
not been fully taken into account in the evaluation of the
backscattering cones [16,21].
The loss due to leakage will be of the order of the

transmission through a sample, i.e. l∗/L+ l∗/R, where
L and R are the thickness and radius of the sample,
respectively. Here, the mean free path of sample and
reference can be estimated by the uncorrected cone. A
quantitative estimate of the correction can be obtained
by comparing the diffuse energy in an infinite half-space
with the amount of energy that is left in a volume-cutout
of the infinite half-space corresponding to the size of the
sample/reference [11]. This will neglect edge effects, but
these will be of the order of (l∗/L)2, i.e. below the desired
level. The loss factor for absorption can be calculated from
the integral over the path length distribution P (D, τ, t),
where D is the diffusion coefficient and τ is the absorption
time. This leads to an exponential suppression of the
albedo with the absorption length La =

√
Dτ . Taking both

contributions together, we obtain for the albedo

A= e−
2γl∗
La

(
1− 2
π

(
arctan

(
2γl∗

L

)
+arctan

(
L

R

)
2γl∗

R

))
.

(1)

Both quantities needed to calculate the albedo, D and
τ , can be determined with a time resolved transmission
experiment [15,22]. The time-of-flight measurements like
the data from the teflon reference shown in the inset of
fig. 1 directly give the path length distribution inside the
sample, which is a function of D and τ only. In our exper-
iment, the same dye laser is used as in the backscattering
experiments, thus making a possible wavelength depen-
dence of D and τ irrelevant. Given the low absorption and
high optical thickness of our usual samples, they typically
have albedos in excess of 0.995, such that only the losses
of the teflon reference are important, for which we obtain

Fig. 2: (Colour on-line) Measurements of backscattering cones
for different samples. As the cone width increases, more energy
needs to be compensated. Thus the most turbid samples (R700
and Aldrich) lead to a noticeable energy cutback at angles
around 45◦. The amplitude of this cutback is reduced with
decreasing turbidity, but stays positioned around 45◦. This
indicates that the cutback is due to effects occurring at a fixed
length scale close to λ.

an albedo of Aref = 0.89. We thus calculate the ratio of
the albedos with respect to the reference and hence the
absolute level of the incoherent background for all samples.
Subtracting this background then directly gives a proper
measure of the backscatter enhancement.
For calibration, the diode signals are measured for the

teflon reference at several different incident laser powers,
which are determined independently with a calibrated
power-meter. Interpolation of the measured data then
yields a calibration function for each photodiode [21].
Together with the albedo correction above, this gives an
absolute calibration of the intensity for the sample.

Results. – To represent cones with a wide variety
of cone widths, we have used samples of ground TiO2
particles in its rutile structure with different particle
diameters (R700: 245 nm and Aldrich: 540 nm), a mixture
of TiO2 (R700) and ground chalk in a weight ratio of
one to five, as well as solid teflon. The TiO2 particles are
commercially available as pigment for white paint [15].
As can be seen in figs. 1 and 2, a cutback of the

backscattered energy is indeed observed when taking
into account the different loss factors of reference and
sample. This is most significant for samples with very wide
cones like R700 and Aldrich, where the enhancement is
noticeably below zero for a range of 50◦ around ±45◦, as
shown in fig. 2. The enhancement for teflon is essentially
zero away from the cone and in fact gives the intensity
resolution of the apparatus, which is of the order of
0.2%. Note that unlike the coherent backscattering peak,
the energy cutback is not characterized by a specific
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β

Fig. 3: (Colour on-line) Wave configurations of the contri-
butions HA and HB,C to coherent backscattering. HA (a)
describes interference between time-reversed amplitudes (full
and dashed lines) and gives the classical cone shape [1]. When
r1 and r2 are within a transverse distance of λ, the time-
reversed loops have to be considered as closed and the ampli-
tudes are becoming coupled. This is described by HB,C (b),
as an interference effect between the incident plane wave and
the attenuated spherical wave traveling between the points r1,2
and a newly introduced scatterer r at an angle β (see text).

angle but is rather spread out broadly over the whole
angular range. Furthermore, these energy cutbacks do
compensate the energy enhancements of the cones, as the
integral of the enhancement α(θ) over the backscattering
half-space I =

∫
α(θ) sin θ dθ is zero for all investigated

samples within the margins of error. This shows that a
determination of the absolute intensity scale is crucial for
the correct observation of the backscattering cone. For
such a determination, the different loss factors of reference
and sample had to be accounted for.

Theory. – Theoretically, the coherent backscattering
cone has been described in great detail [20]. In the
geometry of a semi-infinite medium of section S (see
fig. 3a), this description makes use of the following well-
known expression for the coherent albedo αAc :

αAc =
c

4πSl∗2

∫
dr1 dr2H

A(r1, r2)P (r1, r2), (2)

where HA(r1, r2) = e
−µ+1µ z1+z2

2l∗ ei(k+k
′)·(r1−r2) for an inci-

dent plane wave normal to the interface. P (r1, r2) is the
probability of having a multiple-scattering path starting
at r1 and ending at r2. The first factor in H

A describes the
attenuation of an incident plane wave over a distance of the
order of the elastic mean free path l∗. The second factor
in HA accounts for interference and leads to the enhance-
ment with an angular width of order 1/kl∗. With the
scattering vector q= k sin θ, the evaluation of this integral
is well known and yields for the backscattering cone [20]:

αAc =
3/(8π)

(µ+12µ + ql
∗)2

(
2µ

µ+1
+
1− exp(−2γql∗)

ql∗

)
. (3)

The interference term HA is the product of four ampli-
tudes describing the two incoming and the two outgoing
plane waves. It is known as a quantum crossing and it is

at the origin of coherent effects in quantum mesoscopic
physics such as weak localization, universal conductance
fluctuations and eventually it leads to the localization
transition. Energy (or number of particles) conservation
imposes constraints on the quantum crossings. It is well
known [19] that in order to fulfill this constraint, two other
contributions HB,C(r1, r2) must be added to H

A, which
mix the in- and out-going wave vectors. Energy conserva-
tion thus imposes that

∫
dR (HA+HB +HC) = 0, where

R= r1− r2.
A complete description of coherent backscattering

must therefore include these additional contributions
HB and HC , which are equal. The physical basis of
these contributions lies in a coupling of the light fields at
the first and the last scatterer (r1 and r2), when they are
within a volume of order λ2l∗. This coupling originates
in an interference of the incoming plane wave with the
multiply scattered spherical wave and is described by
introducing an additional scattering event located in r
(see fig. 3b). This is reflected by the short-range behavior
of HB,C(r1, r2) and the additional contribution results
from almost closed diffusive trajectories. Consequently,
this interference is not restricted to small angles θ as is
the case for αAc . On the other hand, there is an interesting
interference effect between the incoming and outgoing
waves. Figure 3b shows that it involves two phase factors
of the form eik·(r−r1)−ik|r−r1| = eikR(cosβ−1). The main
contribution results from small angles β and the angular
integration leaves a very small amplitude, of order 1/kl∗

for each phase factor. For the case of an incident wave
normal to the interface, the contribution αBc can be
written as

αBc �
c

Sl∗3

∫
dr P (r, r) e−

µ+1
µ

z
l∗ h2, (4)

where

h�−
∫
dr′ eik

′·r′ e
ikr′

4πr′
e−r

′/2l∗ � il
∗

2k
(5)

is calculated to leading order in (kl∗)−1. It is interesting
to note the similarity between h and the shadow term
which occurs in the optical theorem and ensures flux
conservation for single elastic scattering. Here, the shadow
terms h describe the interference between the incident and
the multiply scattered waves. The integral in eq. (4) can
be solved approximately to give a correction

αB+Cc �− 1.15
(kl∗)2

µ

µ+1
(6)

Thus the correction is of order −(kl∗)−2. Noting that
the angular integral of αAc � (kl∗)−2, we indeed retrieve
the energy conservation condition of quantum crossing,
namely that the integral over αA+B+Cc is zero, as it
should be.
The expression for αB+Cc shows that the interference

effect in eq. (4) is twofold. First, h is purely imaginary so
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Fig. 4: (Colour on-line) Comparison of the backscattering
cone of R700 with corrected and uncorrected enhancement.
The agreement between the measured data and the fit of the
corrected enhancement αA+B+Cc (dashed) is perfect within the
errors. The uncorrected enhancement αAc (dotted) calculated
with the value of kl∗ obtained by the fit of the data with
αA+B+Cc describes the cone itself quite well, but shows signifi-
cant deviations in the area of the energy cutback.

that h2 is negative resulting in a depletion of the coherent
albedo proportional to (kl∗)−2. Secondly, this interference
term does not contribute at a specific angular value but it
is rather spread out over the whole angular range.
The scaling of the contribution of the cone with kl∗

used here is valid in the diffusion approximation, i.e. in
the absence of low-order scattering. When low-order scat-
tering is important, a contribution proportional to (kl∗)−1

is obtained, which would imply a different correction [23].
In our case however, low-order scattering seems to be
negligible as can be seen from the helicity breaking chan-
nel shown in fig. 1. In the presence of low-order scattering,
a coherent backscattering peak should be observed in
the polarization breaking channel as well [12], whereas the
small cone observed in the figure is compatible with the
measured imperfection of the polarizer foil. Therefore a
description in the diffusion approximation as it is carried
out above should be sufficient to describe the data.
A fit of the total coherent albedo αA+B+Cc to our data

is shown in fig. 4 by the dashed line. The dotted line shows
only αAc , where the same value of kl

∗ has been used as in
αA+B+Cc . Comparing this description with the uncorrected
data in fig. 1 shows that the kl∗ values determined with
those data are close to their real values.
In order to properly determine the turbidity of the

sample, the value of kl∗ obtained from eq. (3) still has to
be corrected for internal reflections [24], which lead to a
broader distribution of light paths, and thus to a narrower
cone. Furthermore, the ratio between the transport and
elastic mean free paths will influence the pre-factor in
the correction but is assumed to be close to unity.

Carrying out this correction, we find the following values
for kl∗: kl∗R700 = 2.5(2), kl

∗
Ti−Pure = 5.0(3), kl

∗
chalk+TiO2

=
25(1) and kl∗teflon = 1950(75).

Discussion and conclusions. – We have shown
experimentally that coherent backscattering does fulfill
conservation of energy. For this purpose, the losses of the
reference sample had to be quantified via a time-of-flight
measurement to ensure an absolute energy calibration of
the setup. If the loss of the reference differs significantly
from the loss of the sample, this leads to different
positions of the incoherent background in spite of equal
incident laser energies.
Furthermore, we have provided a complete theoretical

description of coherent backscattering based on the
calculation of the three terms HA,B,C that contribute to
the Hikami box or quantum crossing. HA describes the
steep angular variation around backscattering and HB,C

take into account crossed diagrams dressed by a scatter-
ing impurity. Such an impurity provides an additional
interference between incoming and multiply scattered
waves at short distances. Since the cone is basically the
Fourier transform of this intensity this leads to a broadly
distributed energy cutback [10]. This improved descrip-
tion of the cone-shape for extremely turbid samples also
allows a reliable determination of kl∗ in such samples. A
comparison of these results with those obtained previously
on the same samples shows however that the values of kl∗

thus determined change only very little. This implies that
the systematic dependence of deviations from classical
diffusion is indeed as it was previously determined [14].
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