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Abstract. The quantum dynamics of an electron in a uniform magnetic field is studied for
two-dimensional geometries corresponding to integrable cases. The WKB approximations of
the energies and the eigenfunctions of the semi-infinite plane and the disk are obtained. These
analytical solutions are shown to be in excellent agreement with the numerical results obtained
from the Schr̈odinger equations even for the lowest levels. It is shown for strong fields that the
coalescence of the caustics with the boundary has to be taken into account in order to describe
the gradual transition in the spectrum from Landau-like levels into edge levels.

1. Introduction

The aim of this work is to present some analytical methods to obtain the energy spectrum
and eigenfunctions of non-interacting electrons constrained to a two-dimensional domain
with boundaries and submitted to a uniform perpendicular magnetic field.

This problem is relevant to various situations in condensed matter physics. In the low
magnetic field regime, defined by the condition8 � 80, where8 is the magnetic flux
through the system and80 = hc/e is the quantum flux, recent experiments [1] performed
on small metallic systems showed the importance of the effect of the boundaries. It actually
determines the nature of the zero-field classical motion being either integrable or chaotic.
The magnetic susceptibility has been shown using numerical and semiclassical methods to
present large fluctuations and to be reduced with respect to the Landau value in the chaotic
case, whereas it is enhanced in the integrable case [2, 3]. In the opposite limit8� 80 of
high fields, we are in the so-called integer quantum Hall effect (IQHE) regime, where the
edge states associated with the boundary play a prominent role [4]. In this work, we shall
concentrate on the problem of non-interacting electrons constrained by hard walls to move
on the semi-infinite plane or on a disk.

The classical dynamics allows for a natural distinction between bulk and edge states.
A first semiclassical method is based on the Einstein–Brillouin–Keller (EBK) quantization
rules [5] and preserves this bulk and edge states splitting, by giving different quantization
rules for each of them. This approximation is further improved for the semi-infinite plane
by constructing the asymptotically matched WKB wavefunction and then finding its zeros
corresponding to the energy levels. The calculation is not new [6], however we present
it in detail, as it serves as a starting point for the WKB approximation for the disk. The
spectrum and eigenfunctions of the disk are found using the comparison equation method
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Figure 1. Semi-infinite cylinder in the magnetic fieldB.

(for general references, see [7, 8]), also called the Miller–Good method [9], which is used to
map the problem onto the semi-infinite plane’s one. The semiclassical results obtained are
found by comparison with numerical calculations to give surprisingly good approximations
of the lowest levels. They are valid for any strength of the magnetic field, thus providing
us with a way to study more particularly both the IQHE and the low-field regimes.

2. The semi-infinite plane in the magnetic field

In this section the spectrum of an electron in the semi-infinite plane in a magnetic field is
approximated, first by using the EBK quantization rules and then by building the matched
WKB wavefunction. To introduce the semiclassical language, we begin by considering the
classical dynamics.

2.1. The classical dynamics

We consider a spinless particle of charge−e (e > 0) and massm constrained by a hard wall
to move in the semi-infinite plane. A uniform magnetic fieldB is applied perpendicular
to the plane. Cartesian coordinates are defined such that thex-axis is perpendicular to
the boundary and the motion is confined to positive values ofx. It will be convenient to
consider the boundary having a finite lengthL and therefore we impose periodic boundary
conditions in they-direction. The particle can then be regarded as if it moves on the
semi-infinite cylinder represented in figure 1.

In the Landau gaugeA = (0 , Bx), the Hamiltonian of the particle is:

H = 1

2m

(
px

2+
(
py + e

c
Bx
)2
)
. (1)

The momentum isp = (mẋ,mẏ − eBx/c). The total energyE and they-componentpy
of the momentum are constants of motion, therefore the problem is integrable. In the four-
dimensional phase space of the Cartesian coordinates and the corresponding momenta, each
family of classical trajectories are winding on an invariant torus defined by the two constants
of motion. The ensemble of trajectories splits naturally into two families: those that do not
touch the boundary (bulk trajectories), and others (edge trajectories). Bulk trajectories of
energyE go anticlockwise in circles of radiusrc =

√
2E/mω2 (whereω = eB/mc is the

cyclotron frequency) with their centre farther thanrc from the edge. They have momenta
py < −

√
2mE. Edge trajectories have momenta−√2mE < py <

√
2mE and undergo
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specular reflections on the boundary before closing a circle so that the cyclotron orbit centre
begins drifting along the edge (see figure 1). Increasingpy at fixed energy, the bulk tori in
phase space are transformed atpy = −

√
2mE in a discontinuous way into edge tori.

2.2. The EBK quantization

We now consider the quantum-mechanical version of the same problem. Dirichlet boundary
conditions are imposed on the wavefunction9(x, y):

9(0, y) = 0. (2)

The application of the EBK quantization rules for integrable systems leads to the
quantization of the two action variablesIy and Ix . The actionIy corresponding to the
motion along they-axis (parallel to the boundary) is quantized by:

Iy = 1

2π

∮
py dy = pyL

2π
= nyh̄ (3)

with ny ∈ Z. The motion along thex-axis (perpendicular to the boundary) is different for
the bulk and edge states, therefore their quantization also differs. The energies of the bulk
states are found from

Ix = 1

2π

∮
px dx = 1

π

∫ 2rc

0
dx

√
2mE −

(
py + e

c
Bx
)2
= E

ω
= h̄

(
nx + 1

2

)
(4)

wherenx ∈ N. For the edge states the EBK quantization gives

Ix = Ix(ξ0) = 1

π

∫ rc− py

mω

0
dx

√
2mE −

(
py + e

c
Bx
)2

= 2E

πω

∫ 0

ξ0−1
dξ
√
−ξ(ξ + 2) = h̄(nx + 3

4) (5)

where

ξ0 = py

mωrc
= 2πnyh̄

L
√

2mE
. (6)

For the bulk trajectories (ξ0 < −1), the Maslov index is1
2; we obtain degenerate Landau

levelsE = h̄ω(nx + 1
2) which correspond to states that are completely insensitive to the

presence of the boundary. For the edge trajectories (|ξ0| < 1), the integration range is
restricted because of the reflection from the boundary, and the Maslov index is3

4 since
there is one turning point (Maslov index14) and one reflection (Maslov index12 associated
to a change of sign of the wavefunction). The energies are solutions of (5) and (6). They
are non-degenerate and bounded below by ¯hω(nx+ 3

4) for eachnx . Note thatE→∞ when
ξ0 → 1. There is a singularity in the EBK spectrum, separating bulk and edge energies.
This result is clearly incorrect: as noted in [4], the energy levels should rise steadily from
values close to the Landau levels up to infinity.

2.3. Matching the WKB wavefunctions

Once the motion in they-direction is integrated, the Schrödinger equation together with
the boundary condition (2) reduces to a one-dimensional Sturm–Liouville problem. A
systematic WKB analysis is well developed for those kinds of problems and improves the
preceding EBK approach.



6534 D Spehner et al

We introduce the dimensionless variablesx̃ = √2x/lB and x̃0 =
√

2py/mωlB , where
lB =

√
h̄c/eB is the magnetic length. Using (1), the Schrödinger equation for the one-

dimensional wavefunctionϕ(x̃) = e−ipyy/h̄9(x, y) reads:(
d2

dx̃2
+ E

h̄ω
− 1

4
(x̃ + x̃0)

2

)
ϕ(x̃) = 0. (7)

Let us setε = h̄ω/2E. A subsequent change of variableξ = √ε/2(x̃+x̃0)−1= x/rc+ξ0−1
gives:

ε2f ′′(ξ)− (ξ2+ 2ξ)f (ξ) = 0 (8)

wheref (ξ) = ϕ(x̃). Equation (7) is a Weber equation, and its solution which vanishes at
infinity is given (up to an arbitrary constant) by:

ϕ(x̃) = D E
h̄ω
− 1

2
(x̃ + x̃0) (9)

whereDν(u) is the parabolic cylinder function [10, 11]. Using (9) and condition (2) one
can obtain the spectrum numerically. The Dirichlet boundary condition (2) is

ϕ(0) = f (ξ0− 1) = 0 (10)

in the new variables. Since the solutionsf of equation (8) depend only onε, without
this condition the energies would be proportional to ¯hω (Landau levels). However, this
condition makes the rescaled energiesE/h̄ω depend on the (energy-dependent) parameter
ξ0. They are given by an implicit equation of the form:

E

h̄ω
= 1

2ε
= hnx (ξ0) (11)

whereξ0 is given by (6), and the labelnx refers to different ‘energy bands’. In the infinite
L limit, hnx (ξ0) gives the appropriate energy bands (in this limitξ0 varies continuously).

Our purpose in this section is to use a semiclassical approximation in order to find
explicit analytical expressions for the energies. As noted by Isihara and Ebina [6], for small
ε (i.e. large energies), (8) is a standard example of equation where the WKB method is
applicable. It has two turning points atξ1 = 0 andξ2 = −2. Sufficiently far from them,
the WKB function is given by the following asymptotic expression [10]:

fWKB(ξ) = (ξ2+ 2ξ)−1/4

(
C+ exp

(
1

ε

∫ ξ

dξ ′
√
ξ ′(ξ ′ + 2)

)
+C− exp

(
− 1

ε

∫ ξ

dξ ′
√
ξ ′(ξ ′ + 2)

))
(12)

where C+ and C− are arbitrary constants. In the vicinity of the turning points this
approximation breaks down. The potential(ξ2+ 2ξ) is then linearized in equation (8) and
the resulting Airy equation can be solved exactly. One obtains the approximate solution
fWKB(ξ) by matching the corresponding Airy solutions for each turning point with the WKB
solutions (12) valid to the right, between, and to the left of them. This matching procedure
has to be accomplished from the right to the left [10].

The functionfWKB(ξ) consists of five branches, related to the five overlapping intervals
in which the WKB and Airy approximations are valid.

(i) The first branch has a domain defined byξ � ε2/3, where expression (12) holds
[10]. The vanishing of the wavefunction at infinity fixesC+ = 0, and we can set arbitrarily
C− = 1. Thus, the first branch of the WKB function is:

f
(1)
WKB(ξ) = (ξ2+ 2ξ)−1/4 exp

(
− 1

ε

∫ ξ

0
dξ ′

√
ξ ′(ξ ′ + 2)

)
. (13)
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It is always non-zero, so there are no solutions of (8) and (10) forξ0− 1� ε2/3.
(ii) The second branch approximates the exact solution near the first turning point, i.e.

for |ξ | � 1, whereξ2 + 2ξ can be linearized and replaced by 2ξ in equation (8). It
consists therefore of a linear combination of two independent Airy functions Ai(t) and Bi(t)
with t = 21/3ξ/ε2/3. When ξ is such thatε2/3 � ξ � ε2/5, t is large so the asymptotic
approximations of Airy functions can be used, and we can approximate the exponential in
(13) by exp(−2

√
2ξ3/2/3ε). We match for suchξ ’s the solution of the linearized equation

with f (1)WKB(ξ) and determine the unknown constants of the linear combination. This gives:

f
(2)
WKB(ξ) =

2
√
π

(2ε)1/6
Ai

(
21/3

ε2/3
ξ

)
. (14)

The energies are found by imposing the Dirichlet condition (10) on this solution:

E

h̄ω
= hnx (ξ0) =

(
anx

2ξ0− 2

)3/2

0< 1− ξ0� 1 (15)

where theanx are the(nx + 1)th zeros of the Airy function Ai(t). These energies are
associated with the ‘whispering gallery’ orbits (see figure 1) which are concentrated in a
very narrow region near the boundary. We note that they can be obtained from a ‘generalized
EBK rule’ by lettingnx be such thatnx + 3

4 = 2(−anx )3/2/3π in (5), instead of an integer.
There are no energies forξ0 > 1, since the real zeros of Ai(t) are negative.

(iii) Between the two turning pointsξ1 and ξ2, expression (12) holds again and to
determine the constantsC+ and C− we do the matching withf (2)WKB(ξ) in the interval
−ε2/5� ξ � −ε2/3. This gives forξ � −ε2/3 andξ + 2� ε2/3 :

f
(3)
WKB(ξ) = 2(−ξ2− 2ξ)−1/4 sin

(
1

ε

∫ 0

ξ

dξ ′
√
−ξ ′(ξ ′ + 2)+ π

4

)
. (16)

The argument of the sine isπIx(ξ + 1)/h̄+π/4, whereIx(ξ + 1) is the classical action (5)
for the edge motion, and is also given by the following formula:

Ix(ξ + 1) = h̄

2πε

(
arccosξ − ξ

√
1− ξ2

)
. (17)

Thus, as expected we obtain the EBK quantization (5) forξ0 between but not too close to 1
and−1. The comparison of the energies derived within the WKB approximation with the
exact ones found numerically is shown in figure 2(a) for the second and third branches.

(iv) This branch represents the function in the vicinity of the second turning point
ξ2 = −2. Repeating the scheme of matching with the previous third branch, we obtain for
|ξ + 2| � 1:

f
(4)
WKB(ξ) =

2
√
π

(2ε)1/6

(
sin
( π

2ε

)
Ai

(
−21/3

ε2/3
(ξ + 2)

)
+ cos

( π
2ε

)
Bi

(
−21/3

ε2/3
(ξ + 2)

))
.

(18)

Thus the energiesE/h̄ω = 1/2ε for |ξ0+ 1| � ε2/3 are given by:

tan
π

2ε
= −

Bi
(
− 21/3

ε2/3 (ξ0+ 1)
)

Ai
(
− 21/3

ε2/3 (ξ0+ 1)
) . (19)

These energies correspond either to edge trajectories which nearly complete full circles
before being reflected or to bulk trajectories nearly touching the boundary (see figure 1).
In figure 2(b) we see that, for the lowest bandnx = 0, the energies of the fourth branch
become closer belowξ0 ' −0.5 to the exact energies than those of the third branch.
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Figure 2. (a) The energy spectrum fornx = 0: the full
curve is the exact spectrum, triangles represent the zeros
of the second branch and circles represent the zeros of
the third branch. (b) Same as (a). Crosses represent the
zeros of the fourth branch. (c) Same as (a). Triangles
represent the zeros of the fifth branch.

(v) The fifth branchf (5)WKB(ξ) is derived in a similar way. For−ξ − 2� ε2/3:

f
(5)
WKB(ξ) = (ξ2+ 2ξ)−1/4

(
sin
( π

2ε

)
e−1/ε

∫ −2
ξ

dξ ′
√
ξ ′(ξ ′+2) + 2 cos

( π
2ε

)
e1/ε

∫ −2
ξ

dξ ′
√
ξ ′(ξ ′+2)

)
.

(20)

The equation to be solved for the energies is:

1

2
tan

π

2ε
= −exp

(
1

ε

(
− arccosh(−ξ0)− ξ0

√
ξ2

0 − 1

))
− ξ0− 1� ε2/3. (21)

When |ξ0| is large, the r.h.s. of this equation is a large number so that the argument of
the tangent on the l.h.s. is to a good approximationπ time a half-integer. Thus for
|ξ0| sufficiently large, the energies are very close to the Landau levels given by (4), i.e.
1/2ε ' nx + 1

2. The solutions of the energy equations for the fourth and fifth branches and
the exact energies are shown in figure 2(c).

The graphs in figures 2(a)–(c) show a very good agreement between the exact calculation
and the matched WKB approximation even for the lowest energies. The distinction between
the bulk and edge states disappears and the spectrum rises gradually from ¯hω/2 to infinitely
large edge energies.
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3. The disk in magnetic field

In this section we study a similar problem to that of the previous section but for a geometry
of a disk with centreO and radiusR. The magnetic fieldB is applied in thez-direction
perpendicular to the disk. We first discuss the classical dynamics of this system and then
compute the semiclassical eigenfunctions and spectrum. Finally, we briefly discuss the
charge transport by introducing an Aharonov–Bohm flux line at the originO.

3.1. Classical dynamics

For the disk geometry, a convenient choice forA is given by the symmetric gauge
A = 1

2Breθ , where(r, θ) are polar coordinates ander , eθ the corresponding unit vectors.
The two momenta canonically conjugated tor andθ arepr = mṙ andpθ = mr2(θ̇ − ω

2 ),
thez-component of the angular momentum. In the symmetric gauge the Hamiltonian of the
particle reads:

H = 1

2m

(
pr

2+ 1

r2

(
pθ + mω

2
r2
)2
)
. (22)

Sincepθ and the energyE are conserved by reflection on the boundary, we again deal with
an integrable system.

Let us introduce the dimensionless radiusρ0 = R/rc and momentumlz = pθ/mωr2
c ,

whererc =
√

2E/mω2 is the cyclotron radius. SettingH = mω2r2
c /2 in (22) and using

the fact thatp2
r > 0, one can show thatlz has to be smaller than12, and that trajectories

of energyE and angular momentumlz are inside the annulusrmin 6 r 6 rmax, with
rmin = rc| − 1+ √1− 2lz| and rmax = rc(1+

√
1− 2lz). One must havermin 6 R. This

implies−ρ2
0/2− ρ0 6 lz. If ρ0 6 1, the conditionlz 6 −ρ2

0/2+ ρ0 also has to be fulfilled.
In the opposite caseρ0 > 1, the trajectories of energyE split into two families: for angular
momenta−ρ2

0/2 − ρ0 6 lz 6 −ρ2
0/2 + ρ0, rmax > R and the particle bounces off the

boundary (edge trajectories); for momenta−ρ2
0/2+ ρ0 6 lz 6 1

2, rmax6 R and the particle
follows a circle of radiusrc without touching the boundary (bulk trajectories) (see figure 3).
If ρ0 6 1, all trajectories of energyE are of the edge type. Since in quantum mechanics
h̄ω/2 is a lower bound for the energy of our system, this situation is relevant in particular
for disks of radiiR smaller than the magnetic lengthlB =

√
h̄/mω. This weak field or small

system limit has been extensively studied before (see for exampe [3] and references therein).
Trajectories with positive values of angular momenta enclose (and turn around) the

origin O (see figure 3). In fact, for such values oflz, rmax 6 2rc. The valuelz = 0 is
associated with trajectories having a turning pointrmin in the radial direction equal to zero.
For ρ0 > 1, the upper valuelz = 1

2 is associated with bulk trajectories centred onO. Note
that the two turning points in the radial direction,rmin andrmax, coalesce whenlz → 1

2−. In
virtue of these classical considerations, one can expect the semiclassical spectrum to differ
noticeably for positive and negative values of the angular momentum.

3.2. Semiclassical wavefunction

Let us now formulate the quantum-mechanical problem. Since the system is invariant by
rotation along (Oz), we choose wavefunctions9(r, θ) = ϕ(r)eilθ having well-defined values
lh̄ of the angular momentum along (Oz). ϕ(r) satisfies the radial Schrödinger equation:{

− h̄
2

2m

(
d2

dr2
+ 1

r

d

dr

)
+ 1

2mr2

(
lh̄+ mωr

2

2

)2

− E
}
ϕ(r) = 0. (23)
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Figure 3. The classical motion for the disk in magnetic field: bulk trajectories are shown in
(a)–(c) and edge trajectories in (d),(e). The circlesr = rmin andr = rmax are represented with
shaded lines. The angular momentumlz is negative in (a),(d), it is positive in (b),(c),(e) and
equal to 1

2 in (e).

The Dirichlet boundary conditionϕ(R) = 0 is imposed on this wavefunction. Equation (23)
has an exact solution remaining finite at the origin, given (up to an arbitrary multiplicative
constant) by:

ϕ(r) =
(
r

λB

)|l|
exp

(
− r2

4λ2
B

)
1F1

(
1+ l + |l|

2
− E

h̄ω
, 1+ |l|; r

2

2λ2
B

)
(24)

where 1F1(v,w; u) is the confluent hypergeometric function [11]. The spectrum can be
computed numerically by finding the zerosv of this function foru = R2/2λ2

B [12].
As a result of the singularity at the origin due to the centrifugal potentiall2h̄2/2mr2 in

(23), the WKB method cannot be applied directly to solve this equation. One can handle
this problem by performing a Langer transformation [13]x = − ln(r2/r2

c ). In fact, when
this change of variable is made in (23), one obtains a new equation with no pole in the
potential and no first derivative. An easy way to handle the singularity of the potential at
the origin is to use a method developed by Fröman and Fr̈oman [8, ch 1]. This method,
called by its authors the phase-integral method with unspecified basis, can be regarded to
be a generalization of the Langer transformation. Both methods can be used, for example,
to justify the celebrated Langer substitution [14] in the case of the radial equation of the
hydrogen atom. As we shall see, in our case (two dimensions) Langer substitution is unnec-
essary. We first transform equation (23) in order to eliminate the first derivative and to have
dimensionless quantities. Letµ = h̄ω/2E, ρ0 = R/rc and lz = lh̄/mωr2

c = lµ. Making
the change of variableρ = r/rc and settingϕ(r) = ϕ(ρ) = ρ−1/2y(ρ) in (23), we obtain:

d2y

dρ2
=
(
− 1

µ2
Q2(ρ)− 1

4ρ2

)
y(ρ) (25)

whereQ2(ρ) = −ρ2/4+ 1− lz − l2z /ρ2. The boundary conditions are:

y(ρ0) = 0 lim
ρ→0

ρ−
1
2y(ρ) <∞. (26)

For smallµ, the last term in the parenthesis on the r.h.s. of (25) can be neglected as com-
pared with the first (the interested reader is referred to [8] for the justification of this point).
Let us seta = 2(1− lz) andc =

√
1− (2lz/a)2. Far from the zerosρmin =

√
a(1− c) and
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ρmax=
√
a(1+ c) of Q2(ρ), the approximate solution of (25) is [8]:

y(ρ) = |Q2(ρ)|−1/4

(
C+ exp

(
1

µ

∫ ρ

dρ ′
√
−Q2(ρ ′)

)
+C− exp

(
− 1

µ

∫ ρ

dρ ′
√
−Q2(ρ ′)

))
(27)

whereC+ andC− are arbitrary constants. Iflz > 1
2, Q2(ρ) < 0 for all ρ’s and thus approx-

imation (27) is valid everywhere. The integral in the exponentials diverges at zero and (26)
implies thatC+ = 0 andC− = 0. There are therefore no semiclassical solutions of (25) and
(26) for suchlz’s, and we can restrict our discussion to the classically allowed regionlz 6 1

2.
As noted above, whenρ0 > 1 the two turning points,ρmin andρmax, tend to coalesce as

lz → 1
2; but it is well known that the standard WKB or phase-integral analysis fails to give

approximations valid no matter how close they are to the turning points. We are thus led
to use the so-called comparison equation method [7, 8] which gives uniform approximation
for this case. The main motivation to use this method is that it connects our problem nicely
with the previously solved problem of the semi-infinite plane. The approximate solution of
(25) is written in terms of a functionf (σ) solution of a simpler equation. We shall choose
this simpler ‘comparison equation’ to be:

d2f

dσ 2
=
(
σ 2− 1

ε

)
f (σ) (28)

whereε is a parameter to be determined later. The solutiony(ρ) of (25) is obtained by
multiplying f (σ) by a slowly varying amplitude and allowing its argumentσ to depend
weakly onρ. In other words, we look for solutions of the formy(ρ) = A(ρ)f (σ (ρ)).
The equation obeyed by the mapping functionσ(ρ) becomes simpler if we choose
A(ρ) = ( dσ

dρ )
−1/2, and reads:

1

µ2
Q2(ρ)+ 1

4ρ2
=
(

dσ

dρ

)2(1

ε
− σ 2(ρ)

)
−
(

dσ

dρ

)1/2 d2

dρ2

(
dσ

dρ

)−1/2

. (29)

If ( dσ
dρ )
−1/2 varies suffisciently slowly and ifµ is small enough, the second term on the r.h.s.

and the second term on the l.h.s. of equation (29) can be neglected:

1

µ2
Q2(ρ) '

(
dσ

dρ

)2(1

ε
− σ 2(ρ)

)
(30)

(for more details and justifications of this approximation see [8]).
Let us define by analogy with (5) the classical radial action variableIr(ρ) for

ρmin 6 ρ 6 ρmax:

Ir(ρ) = 1

π

∫ rcρ

rcρmin

dr

√
2mE − 1

r2

(
lh̄+ mω

2
r2
)2
= h̄

πµ

∫ ρ

ρmin

dρ ′Q(ρ ′). (31)

For±ρ > ±√a(1± c), Q2(ρ) is negative and the action is purely imaginary:

Ir(ρ) = −ih̄

πµ

∫ ρ

√
a(1±c)

dρ ′
√
−Q2(ρ ′). (32)

An easy calculation gives:

π

h̄
Ir(ρ) = a

4µ

(√
c2−

(
ρ2

a
− 1

)2

+ arccos

(
1

c
− ρ

2

ac

)
−
√

1− c2 arccos

(
(1− c2)a

cρ2
− 1

c

))
. (33)
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This formula is correct for allρ’s if one defines
√

1− u2 = −i
√
u2− 1 if |u| > 1 and

arccos(u) = ∓i arccosh(|u|) if ±u > 1.
For the above analysis to be meaningful, the mappingρ 7→ σ has to be one to one, i.e.dσ

dρ

and dρ
dσ must never vanish. From (30) and assumingdσ

dρ < 0, it follows thatσ(ρmin) = 1/
√
ε

andσ(ρmax) = −1/
√
ε. By integrating (30) and making the change of variableξ = √εσ−1,

we obtain ifρ 6 ρmax:

Ir(ρ) = h̄

πε

∫ 0

ξ(ρ)

dξ
√
−ξ(ξ + 2) = Ix(ξ(ρ)+ 1) (34)

whereξ(ρ) = √εσ (ρ)− 1 andIx(ξ + 1) is the action of the semi-infinite plane (see (5)),
which is given by (17) for allξ ’s (with the same conventions as above for the square root
and the arccos functions). Ifρ > ρmax, so thatξ(ρ) < −2, (34) is still correct if the upper
bound of integration 0 is replaced by−2. Using (31), (32), (34) and (17) one can show
that the mapping function takes the following forms whenρ tends to 0,∞, ρmin andρmax

respectively:

√
εσ (ρ) '

∣∣∣∣2εl ln

(
ρ

ρmin

)∣∣∣∣1/2 if ρ � ρmin (35)

√
εσ (ρ) ' −

√
ε

2µ
ρ if ρ � √a (36)

√
εσ (ρ)∓ 1'

(
a
√
cε

4(1∓ c)µ
)2/3(

−ρ
2

a
+ 1∓ c

)
if

∣∣∣∣ρ2

a
− 1± c

∣∣∣∣� c(1∓ c). (37)

The parameterε is obtained by settingρ = ρmax andξ(ρmax) = −2 in (34). Letθ(l) = 0
for l < 0 and 1 forl > 0, then

1

2ε
= 1

2µ
− lθ(l). (38)

The comparison equation (28) is transformed into equation (8) by means of a change
of variable ξ = √εσ − 1. Moreover, using (30) and (35), one can show that
(dσ/dρ)−1/2 ∼ ρ1/2|2 ln(ρ/ρmin)/ l|1/4 whenρ → 0. The second condition in (26) implies
thatρ−1/2(dσ/dρ)−1/2f (σ(ρ)) has a finite limit whenρ → 0, and therefore thatf (σ)→ 0
when σ → ∞. We can thus use the results of section 2 to determinate the approximate
solution of (25) and (26). It is given (up to an arbitrary multiplicative constant) by:

yWKB(ρ) =
(−ξ(ρ)2− 2ξ(ρ)

Q2(ρ)

)1/4

fWKB(ξ(ρ)) (39)

whereξ(ρ) = √εσ (ρ) − 1 andfWKB(ξ) is the WKB solution of (8) vanishing at infinity
and satisfying the boundary condition (10) withξ0 = ξ(ρ0) + 1 = √εσ (ρ0). Using (13),
(14), (16), (18), (20) and (37), the semiclassical wavefunction of the disk is obtained (η is
a small parameter):

ϕ(ρ) = (−ρ2Q2(ρ))−1/4 exp

(
i

h̄
πIr(ρ)

)
if ρ 6 ρmin− η

= 2
√
π

(a2(c − c2)µ)1/6
Ai

( a
√

2c

4(1− c)µ

)2/3(
−ρ

2

a
+ 1− c

)
if ρmin− η 6 ρ 6 ρmin+ η
= 2(ρ2Q2(ρ))−1/4 sin

(π
h̄
Ir(ρ)+ π

4

)
if ρmin+ η 6 ρ 6 ρmax− η
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= 2
√
π

(a2(c + c2)µ)1/6

sin
( π

2ε

)
Ai

( a
√

2c

4(1+ c)µ

)2/3(
ρ2

a
− 1− c

)
+ cos

( π
2ε

)
Bi

( a
√

2c

4(1+ c)µ

)2/3(
ρ2

a
− 1− c

)
if ρmax− η 6 ρ 6 ρmax+ η = (−ρ2Q2(ρ))−1/4{

sin
( π

2ε

)
exp

(
− i

h̄
πIr(ρ)

)
+ 2 cos

( π
2ε

)
exp

(
i

h̄
πIr(ρ)

)}
if ρ > ρmax+ η. (40)

This semiclassical approximation of equation (23) becomes better as the magnetic field
tends to zero. In fact, in this limit the energiesE must tend to their finite zero-field values
and thereforeµ = h̄ω/2E approaches zero. The semiclassical analysis is thus expected to
work particularly well for low fields.

3.3. The semiclassical spectrum

Let N8 = mωR2/2h̄ be the magnetic flux through the disk in units of the quantum flux80.
The energy 1/2ε in (38) must coincide with the semi-infinite plane energy (11). FixingN8,
nx and l, the energy levelsE/h̄ω = 1/2µ of the disk are thus given by solving the two
coupled equations:

1

2µ
= hnx (ξ0)+ lθ(l)

Ix(ξ0) = Ir((2N8µ)1/2).
(41)

The second equation is obtained by settingρ = ρ0 = (2N8µ)1/2 and ξ0 = ξ(ρ0) + 1
in (34). As for the semi-infinite plane there are no levelshnx (ξ0) with ξ0 > 1, we must
haveρ0 > ρmin. Equivalently, the angular momentumlz satisfies the classical conditions
−ρ2

0/2− ρ0 6 lz 6 1
2 if ρ0 > 1 and−ρ2

0/2− ρ0 6 lz 6 −ρ2
0/2+ ρ0 if ρ0 6 1. Using

(41), we see that ifl 6 0 the energiesE/h̄ω = 1/2µ� nx + 1
2 are associated with values

of ξ0 very close to 1, i.e. with values ofρ0 and lz nearly equal toρmin and−ρ2
0/2∓ ρ0

respectively. These energies correspond to the whispering gallery orbits, i.e. to the second
branch ofhnx (ξ0). An approximation for these high energies can be obtained by taking
lz = −ρ2

0/2∓ ρ0. Sincelz = lµ andρ2
0 = 2N8µ this implies:

E

h̄ω
' 1

4N8
(|l| −N8)2. (42)

This expression is valid for large negative values ofl. In other words, for suchl’s the energy
E (for fixed R) varies like(|l| − N8)2 with the magnetic field; this quadratic variation is
indeed observed on the numerical spectrum showed in figure 5. Note thatlz → 0 when
l→−∞.

Figure 4 shows forN8 = 20 and nx = 0 the semiclassical energies calculated
numerically by solving the coupled equations (41) and by using (17), (33) and results
of section 2. The comparison with the exact numerical spectrum (full curve) show a
surprisingly good agreement for these low energies and highN8. From the above arguments
(sections 2.2 and 3.1), it is clear that ifρ0 > 1, the EBK quantization rules give an
incorrect gap in the spectrum. The discontinuous transition from bulk to edge levels in
the EBK spectrum (dotted curve) occurs whenρ0 = ρmax, i.e. whenlz = −ρ2

0/2+ ρ0; the
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Figure 4. The energy spectrum of the disk as function
of the angular momentum (N8 = 20): circles represent
the zeros of the third branch, pluses represent the zeros
of the fourth branch and triangles represent the zeros of
the fifth branch. The full and dotted curves represent
respectively the exact and the EBK spectrum.

Figure 5. The energy spectrum of the disk as function
of the magnetic flux. The energyE in the vertical axis
is in units of 2h̄2/mR2.

EBK energies(1/2µ)EBK tend to Ir(ρmax) + lθ(l) = nx + lθ(l) + 3
4 when ρ0 → ρmax−,

whereas they are equal to the Landau levelsnx + lθ(l) + 1
2 if ρ0 > ρmax. The value of

the angular momentum separating the edge and bulk levels is thus given for thenx th band

by l = −N8 +
√

4N8(nx + lθ(l)+ 3
4). One can conclude that the EBK rules (or any

trace formula based on them) badly reproduce the spectrum for bigN8’s. Blaschke and
Brack [15] did independently reach similar conclusions using periodic orbits techniques in
a recent work. These authors calculated the density of states of the disk in magnetic field
by replacing the Maslov index by a smooth function they determine numerically.

Let us discuss in more details the IQHE and low-field regimes.

3.3.1. The IQHE regimeN8 � 1. For negative values of the angular momentuml
such that|l| � N8, the levels can be approximated as in equation (42). Increasingl,
ρ2

0/a = (1/N8µ+ |l|/N8)−1 moves away from its minimum valueρ2
min/a = 1− c, so that

we go towards lower energies. Whenρ2
0/a is between but not too close to 1− c and 1+ c

and if nx � N8, the energy 1/2µ = 1/2ε is much smaller thanN8. This corresponds to
values of|l| of the order ofN8. For such|l|’s one hasρ2

0/a ' N8/|l| and the actionIr(ρ0)

can be quantized according to the EBK rules (see the item (iii) of section 2.3). Increasing
further l, the states transform gradually into Landau-like states located far apart from the
boundary. For angular momental such that|l| � N8, ρ2

0/a is large and thusξ0 is a large
negative number (see (36)). It follows from the analysis of section 2 thathnx (ξ0) is close
to the Landau levelnx + 1

2. In other words, levels with small angular momenta|l| � N8
practically do not feel the boundary. For negativel’s, the level is close to thenx th Landau
level, for positivel’s it is close to the(nx + l)th Landau level. Sincenx > 0, there are no
bulk levels with positive angular momental > n near thenth Landau level. This fact can
be seen on the exact spectrum shown in figure 5 by following the levels fromB = 0. Each
time n is decreased by one, one level of positivel is removed. One finds forlz the upper
boundlz 6 n

2n+1, which again gives the classical conditionlz 6 1
2 whenn→∞.
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3.3.2. The low-field regimeN8 � 1. Whenω → 0, the exact energies of the states of
angular momentuml approach their zero-field valuesE0 = h̄2j2

l /2mR
2, wherejl are the

zeros of the Bessel function of orderl (note that due to the time-reversal symmetry, states
with oppositel are degenerate in energy atB = 0, i.e.jl = j−l). For small fields and fixed
l, µ = h̄ω/2E = O(ω), lz = lµ andρ0 = (2N8µ)1/2 are small. By expanding the action
Ir(ρ) in (33) for ρ = ρ0 up to second order in the field we find

2π

h̄|l|Ir(ρ0) = 2
√
z0− 1− 2 arccos(z0

−1/2)+ 1− z−1
0√

z0− 1

(
δz− 2N8

l

)
+(z0− 1)−3/2

((
−1+ 3

z0
− 2

z2
0

)(
δz2

4
− N8δz

l

)
+N

2
8

3l2

(
−z0− 3+ 12

z0
− 8

z0
2

))
+O(ωiδzj ) (43)

where z = 2N8/µl2 = 2mR2E/h̄2l2, limω→0 z = z0, δz = z − z0 and i + j > 3.
SinceµIr(ρ0) = µIx(ξ0) → 0 whenω → 0, one can deduce from (38) and (17) that
ξ0 → 1 whenω → 0. Therefore we can use in this limit the ‘generalized EBK rules’
developed in part (ii) of section 2.3 to quantize the actionIr(ρ0). Takingω = 0 in (43), we
obtain that the square root energy

√
2mR2E0/h̄

2 =
√
l2z0 is equal to the first term of the

uniform asymptotic expansion of the zeros of the Bessel function of orderl, i.e. it satisfies
(see [11]):

πIr(ρ0)

h̄
= |l|

√
z0− 1− |l| arccos(z−1/2

0 ) = 2
3(−anx )3/2. (44)

Our semiclassical analysis gives thus the exact zero-field energies up to higher terms in
this asymptotic expansion, i.e. with an error of the order of 1% for the lowest energies
(including those withl = 0) [11]. As noted in [16], by using the EBK rules to quantize
the action (i.e. replacing the r.h.s. of (44) byπ(nx + 3

4)) good approximations of the exact
zero-field energies are already obtained. We can conclude (in accordance with [15]) that the
corrections to the EBK spectrum provided by a proper treatment of the whispering gallery
orbits are small. For small but non-zeroω, the actionIr(ρ0) remains quantized through the
same rules and is equal (in this approximation) to its zero-field value (44). It immediately
follows from (43) thatδz = 2N8/l + O(ω2). Substituting this value into the action we
obtain the energies up to second order inω:

2mR2E

h̄2 = j2
l + 2lN8 + N

2
8

3

(
1+ 2l2

j2
l

)
+O(ω3). (45)

This result agrees with recent semiclassical perturbative calculations at low fields [17].
However, it does not coincide with the exact second-order perturbation theory result of
Dingle [18], where a different factor multiplyingN2

8 in (45) was obtained (the two ex-
pressions being asymptotically equal for large energies). This discrepancy should affect the
magnetic susceptibility, which is a measure of the field dependence of the levels, for low
Fermi energies. If the energy is sufficiently large, one can however use (45) to study the
level crossings at lowN8’s. The valuesN8 at which there are level crossings are given by
the solutions of the second degree equation:

2N2
8

3

(
l21

j2
l1

− l22

j2
l2

)
+ 2N8(l1− l2)+ j2

l1
− j2

l2
= 0 (46)

wherejl1 andjl2 are zeros of the Bessel functions of order respectivelyl1 and l2.
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3.4. Charge transport

Suppose that one introduces an Aharonov–Bohm flux line through the originO, and studies
the transport of charges induced by varying the fluxφ. The vector potential is changed by
A→ A0+ φ

2πr eθ , whereA0 is the vector potential created by the uniform magnetic field.
The Schr̈odinger equation for this system is still of the form (23) but withl replaced by
l + α, whereα = φ/80. Therefore all our results still apply modulo this substitution. The
spectrum is identical forα’s which differ by integer values (gauge invariance). Changing
continuously the fluxφ is equivalent to an electromotive force (e.m.f.) through the system.
Considerα varying continuously from 0 to 1. Then all eigenstates and energies of the
system evolve adiabatically. Edge levels lower their energies and fall (atα = 1) into the
level situated just below them. Bulk levels are almost not affected except those with positive
l, whose energiesE ' h̄ω(nx + l + α+ 1

2) are increased by ¯hω, the electron jumping from
one Landau-like level into another. Introducing the Fermi energyEF for an independent
electron gas at zero temperature, we see that the effect of changing the flux by one unit is
to removen electrons from the centre of the disk and to transfer them to the boundary if
EF is between thenth and the(n+1)th Landau level (as in Laughlin’s argument [4]). This
conclusion is not specific to the disk geometry, since it is due to positivel states which are
almost insensitive to the boundary whenN8 � 1.

4. Conclusion

We have presented a semiclassical calculation of the energy spectrum and the eigenfunctions
of an electron in a perpendicular and uniform magnetic field for the half-plane and the disk
geometries. These situations are the simplest to describe features due to the presence of
both a perpendicular field and a boundary. In fact, explicit calculations can be made in both
cases using the existence of a constant of motion resulting from the symmetry of the system
(namely the momentum in the direction parallel to the boundary for the half-plane, and the
angular momentum for the disk). One can then reduce these two-dimensional problems into
one-dimensional ones and use asymptotic methods to solve them.

Because of the inherent splitting between bulk and edge classical trajectories, the EBK
quantization rules fail to give the correct gradual transition between Landau-like bulk levels
and edge levels. As noted in [15], a more correct semiclassical approach must take into
account the coalescence of the caustics with the boundary due to edge orbits making nearly
full circles before being reflected or to bulk orbits nearly touching the boundary. This
removes the EBK gap between the bulk and edge energies and results in a semiclassical
spectrum which approximates surprisingly well the lowest levels, as far as we checked from
our numerical calculations. Under usual boundary conditions (such as the Dirichlet case
considered here), the notion of edge and bulk states is no longer well-defined as in classical
mechanics; to restore a precise meaning of such a dichotomy in quantum mechanics and
describe for instance the transition from edge to bulk states in the context of the IQHE, one
has to consider more general boundary conditions [19] pertaining to the family defined by
Atiyah et al [20].

The extension of our results to general (non-integrable) billiards with smooth boundaries
could be made by using the more elaborate path-integration semiclassical methods, or, for
almost circular billiards, by expanding the wavefunction on the WKB disk wavefunction.
The existence in zero-field of regimes of localization of the wavefunction in the angular
momentum space was shown recently for almost circular billiards with a rough boundary
[21]. The most general approach would be to try to derive a specific trace formula for
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billiards in magnetic field wich takes the coalescence of the caustics with the boundary
into account. Recent works [22] on the diffraction contribution to the semiclassical spectral
density for general billiards in zero-field can be of relevance to this problem.
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