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Abstract. The quantum dynamics of an electron in a uniform magnetic field is studied for
two-dimensional geometries corresponding to integrable cases. The WKB approximations of
the energies and the eigenfunctions of the semi-infinite plane and the disk are obtained. These
analytical solutions are shown to be in excellent agreement with the numerical results obtained
from the Schodinger equations even for the lowest levels. It is shown for strong fields that the
coalescence of the caustics with the boundary has to be taken into account in order to describe
the gradual transition in the spectrum from Landau-like levels into edge levels.

1. Introduction

The aim of this work is to present some analytical methods to obtain the energy spectrum
and eigenfunctions of non-interacting electrons constrained to a two-dimensional domain
with boundaries and submitted to a uniform perpendicular magnetic field.

This problem is relevant to various situations in condensed matter physics. In the low
magnetic field regime, defined by the conditidn<« ®,, where ® is the magnetic flux
through the system an@lg = hc/e is the quantum flux, recent experiments [1] performed
on small metallic systems showed the importance of the effect of the boundaries. It actually
determines the nature of the zero-field classical motion being either integrable or chaotic.
The magnetic susceptibility has been shown using numerical and semiclassical methods to
present large fluctuations and to be reduced with respect to the Landau value in the chaotic
case, whereas it is enhanced in the integrable case [2, 3]. In the opposité® [imitby of
high fields, we are in the so-called integer quantum Hall effect (IQHE) regime, where the
edge states associated with the boundary play a prominent role [4]. In this work, we shall
concentrate on the problem of non-interacting electrons constrained by hard walls to move
on the semi-infinite plane or on a disk.

The classical dynamics allows for a natural distinction between bulk and edge states.
A first semiclassical method is based on the Einstein—Brillouin—Keller (EBK) quantization
rules [5] and preserves this bulk and edge states splitting, by giving different quantization
rules for each of them. This approximation is further improved for the semi-infinite plane
by constructing the asymptotically matched WKB wavefunction and then finding its zeros
corresponding to the energy levels. The calculation is not new [6], however we present
it in detall, as it serves as a starting point for the WKB approximation for the disk. The
spectrum and eigenfunctions of the disk are found using the comparison equation method
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Figure 1. Semi-infinite cylinder in the magnetic field.

(for general references, see [7, 8]), also called the Miller—Good method [9], which is used to
map the problem onto the semi-infinite plane’s one. The semiclassical results obtained are
found by comparison with numerical calculations to give surprisingly good approximations
of the lowest levels. They are valid for any strength of the magnetic field, thus providing
us with a way to study more particularly both the IQHE and the low-field regimes.

2. The semi-infinite plane in the magnetic field

In this section the spectrum of an electron in the semi-infinite plane in a magnetic field is
approximated, first by using the EBK quantization rules and then by building the matched
WKB wavefunction. To introduce the semiclassical language, we begin by considering the
classical dynamics.

2.1. The classical dynamics

We consider a spinless particle of charge (e > 0) and mass: constrained by a hard wall
to move in the semi-infinite plane. A uniform magnetic figddis applied perpendicular
to the plane. Cartesian coordinates are defined such that-thés is perpendicular to
the boundary and the motion is confined to positive values.oft will be convenient to
consider the boundary having a finite lendthand therefore we impose periodic boundary
conditions in they-direction. The particle can then be regarded as if it moves on the
semi-infinite cylinder represented in figure 1.
In the Landau gaugel = (0, Bx), the Hamiltonian of the particle is:
2

H= % (pxz +(py+ ng) ) . @)
The momentum ip = (mx, my — eBx/c). The total energyE and they-componentp,
of the momentum are constants of motion, therefore the problem is integrable. In the four-
dimensional phase space of the Cartesian coordinates and the corresponding momenta, each
family of classical trajectories are winding on an invariant torus defined by the two constants
of motion. The ensemble of trajectories splits naturally into two families: those that do not
touch the boundary (bulk trajectories), and others (edge trajectories). Bulk trajectories of
energyE go anticlockwise in circles of radius = /2E/mw? (Wwherew = eB/mc is the
cyclotron frequency) with their centre farther thanfrom the edge. They have momenta
py < —/2mE. Edge trajectories have momenta/2mE < p, < +/2mE and undergo
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specular reflections on the boundary before closing a circle so that the cyclotron orbit centre
begins drifting along the edge (see figure 1). Increaginat fixed energy, the bulk tori in
phase space are transformedvat= —+/2mE in a discontinuous way into edge tori.

2.2. The EBK quantization

We now consider the quantum-mechanical version of the same problem. Dirichlet boundary
conditions are imposed on the wavefunctidiix, y):

v(0,y) =0. 2

The application of the EBK quantization rules for integrable systems leads to the
quantization of the two action variablds and I,. The action/, corresponding to the
motion along they-axis (parallel to the boundary) is quantized by:

1 pyL _
Iyzgygpydyzz)—nznyh 3)

with n, € Z. The motion along the-axis (perpendicular to the boundary) is different for
the bulk and edge states, therefore their quantization also differs. The energies of the bulk
states are found from

1 1 (% 2 E _ 1
L= Px z_/ dx\/z’"E—<Pv+EBx)=—=h ny + - 4
21 T Jo T ¢ w 2
wheren, € N. For the edge states the EBK quantization gives
1 [ m
I, = Ix(%-O) = _/ dx\/ZmE (py + - B)C)
T Jo

2E [°
= | e VEETD =R 5)

TW Jgo—

where

, 2mn
fo= 0 = AL (6)

mawre LN/2mE

For the bulk trajectorieséf < —1), the Maslov index i%; we obtain degenerate Landau
levels E = how(n, + %) which correspond to states that are completely insensitive to the
presence of the boundary. For the edge trajectotigé & 1), the integration range is
restricted because of the reflection from the boundary, and the Maslov ind%x:i'rsce

there is one turning point (Maslov inde}9 and one reflection (Maslov inde%< associated

to a change of sign of the wavefunction). The energies are solutions of (5) and (6). They
are non-degenerate and bounded belovlubyanr%) for eachn,. Note thatE — oo when

& — 1. There is a singularity in the EBK spectrum, separating bulk and edge energies.
This result is clearly incorrect: as noted in [4], the energy levels should rise steadily from
values close to the Landau levels up to infinity.

2.3. Matching the WKB wavefunctions

Once the motion in the-direction is integrated, the Sdidinger equation together with

the boundary condition (2) reduces to a one-dimensional Sturm-Liouville problem. A
systematic WKB analysis is well developed for those kinds of problems and improves the
preceding EBK approach.
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We introduce the dimensionless variables= v/2x /I3 and % = v/2p,/mwlp, where
Ip = v/hc/eB is the magnetic length. Using (1), the Sgtinger equation for the one-
dimensional wavefunctiop(¥) = e '?¥/" W (x, y) reads:

di2 ' ho
Letus set = hw/2E. A subsequent change of varialfle= \/e/2(x+%x0)—1 = x/r.+&—1
gives:

@ E 1
(52 + 75— 36 +702) o =0 ©

Ef'E) — E*+26)f(E)=0 (8)

where f(§) = ¢(X). Equation (7) is a Weber equation, and its solution which vanishes at
infinity is given (up to an arbitrary constant) by:

@(X) =D _1(x + Xo) 9

where D, (1) is the parabolic cylinder function [10, 11]. Using (9) and condition (2) one
can obtain the spectrum numerically. The Dirichlet boundary condition (2) is

Q) = f(o—1D =0 (10)

in the new variables. Since the solutioifisof equation (8) depend only oa, without

this condition the energies would be proportionalito {Landau levels). However, this
condition makes the rescaled energiegiow depend on the (energy-dependent) parameter
&. They are given by an implicit equation of the form:

E 1 h 11
— = o= = hy. () (11)
whereé&g is given by (6), and the label, refers to different ‘energy bands’. In the infinite
L limit, h,, () gives the appropriate energy bands (in this liggitvaries continuously).

Our purpose in this section is to use a semiclassical approximation in order to find
explicit analytical expressions for the energies. As noted by Isihara and Ebina [6], for small
€ (i.e. large energies), (8) is a standard example of equation where the WKB method is
applicable. It has two turning points & = 0 and&, = —2. Sufficiently far from them,
the WKB function is given by the following asymptotic expression [10]:

1 r¢
.ﬂws@)=(§2+2§YJM(C+exp<E/AdgV@TF-Fa>
1 ¢
+C_ exp(— g/ dgu/s/(s/+2)>> (12)

where C, and C_ are arbitrary constants. In the vicinity of the turning points this
approximation breaks down. The potentigf + 2%) is then linearized in equation (8) and
the resulting Airy equation can be solved exactly. One obtains the approximate solution
Sfwka (§) by matching the corresponding Airy solutions for each turning point with the WKB
solutions (12) valid to the right, between, and to the left of them. This matching procedure
has to be accomplished from the right to the left [10].

The function fiyks (§) consists of five branches, related to the five overlapping intervals
in which the WKB and Airy approximations are valid.

(i) The first branch has a domain defined gy %3, where expression (12) holds
[10]. The vanishing of the wavefunction at infinity fix€s. = 0, and we can set arbitrarily
C_ = 1. Thus, the first branch of the WKB function is:

1 ré
fv‘vl&s<s>=<sz+2s)‘1/“exp( - /O dg’ s/<s’+2>). (13)
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It is always non-zero, so there are no solutions of (8) and (10¥ger 1 >> €23,

(i) The second branch approximates the exact solution near the first turning point, i.e.
for |€] « 1, where&? 4 2& can be linearized and replaced by i equation (8). It
consists therefore of a linear combination of two independent Airy function$ &mnd Bi¢)
with + = 213 /%3, When& is such tha?® « & « €%5, t is large so the asymptotic
approximations of Airy functions can be used, and we can approximate the exponential in
(13) by exm—2ﬂ§3/2/3e). We match for sucl§’s the solution of the linearized equation
with £ (€) and determine the unknown constants of the linear combination. This gives:

1/3
fuie €) = (Zﬁa Ai (fz—jgs) : (14)
The energies are found by imposing the Dirichlet condition (10) on this solution:
E a, 8/2
= = I, (50) = <2$ ;2) 0<1l-6<1 (15)

where thea,, are the(n, + 1)th zeros of the Airy function Ai). These energies are
associated with the ‘whispering gallery’ orbits (see figure 1) which are concentrated in a
very narrow region near the boundary. We note that they can be obtained from a ‘generalized
EBK rule’ by lettingn, be such that, + 3 = 2(—a,,)¥2/3x in (5), instead of an integer.
There are no energies fgg > 1, since the real zeros of A)(are negative.

(iii) Between the two turning point%; and &, expression (12) holds again and to
determine the constantS, and C_ we do the matching W|thf\,(\,zf<B(é) in the interval
—€?5 « £ « —€%/3, This gives fore « —e?3 andé +2>> €%/3 :

3 (€)= 2(—£2 — 25)" 1/4sm< / 4’V _EE +2) + 4) (16)

The argument of the sine 81, (§ + 1)/h + 7 /4, wherel, (¢ + 1) is the classical action (5)
for the edge motion, and is also given by the following formula:

L,(E+1) = (arcco§ EVJ1-—¢ ) a7

Thus, as expected we obtaln the EBK quantization (5k§dvetween but not too close to 1
and —1. The comparison of the energies derived within the WKB approximation with the
exact ones found numerically is shown in figur@@for the second and third branches.
(iv) This branch represents the function in the vicinity of the second turning point
& = —2. Repeating the scheme of matching with the previous third branch, we obtain for
€+ 2| < 1:
1/3

2 213
fuks (&) = (2\;1—/6 <sm(2 >A| ( 2/3(§ + 2)> + cos(2 ) Bi ( T ¢+ 2))) .
(18)

Thus the energie& /hw = 1/2¢ for |& + 1] < €%/3 are given by:
. Bi(-Z@&+D)
tan2— —— " . (29)
€ A (-Z+D)
These energies correspond either to edge trajectories which nearly complete full circles
before being reflected or to bulk trajectories nearly touching the boundary (see figure 1).

In figure 2p) we see that, for the lowest bamqd = 0, the energies of the fourth branch
become closer beloyy ~ —0.5 to the exact energies than those of the third branch.
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Figure 2. (a) The energy spectrum far, = O: the full
curve is the exact spectrum, triangles represent the zeros
of the second branch and circles represent the zeros of
the third branch. if) Same asg). Crosses represent the
zeros of the fourth branchc) Same asd). Triangles

?,(, represent the zeros of the fifth branch.
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(v) The fifth branchf,o\s () is derived in a similar way. Forg — 2> %3
®) (g2 ~1/4 (Gin (T g Ye [ 2 ds' VEETD) T\ gl/e [P ds' VEETD)
Foiks (€) = (62 +26)7/ (sin( 2 ) e /< +2c0s( ) ek ).
(20)

The equation to be solved for the energies is:

1 1
> tan;—6 =— exp(z <— arccosli—&o) — £0,/£2 — 1)) —&—1> €25 (21)

When |&q| is large, the r.h.s. of this equation is a large number so that the argument of
the tangent on the Lh.s. is to a good approximatiortime a half-integer. Thus for

|&o| sufficiently large, the energies are very close to the Landau levels given by (4), i.e.
1/2¢ ~n, + % The solutions of the energy equations for the fourth and fifth branches and
the exact energies are shown in figure)2(

The graphs in figures aj—(c) show a very good agreement between the exact calculation
and the matched WKB approximation even for the lowest energies. The distinction between
the bulk and edge states disappears and the spectrum rises gradualbyfrarto infinitely
large edge energies.
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3. The disk in magnetic field

In this section we study a similar problem to that of the previous section but for a geometry
of a disk with centreO and radiusR. The magnetic fieldB is applied in thez-direction
perpendicular to the disk. We first discuss the classical dynamics of this system and then
compute the semiclassical eigenfunctions and spectrum. Finally, we briefly discuss the
charge transport by introducing an Aharonov—Bohm flux line at the okigin

3.1. Classical dynamics

For the disk geometry, a convenient choice fdris given by the symmetric gauge
A= %Breg, where(r, 6) are polar coordinates arg}, e, the corresponding unit vectors.
The two momenta canonically conjugatedrt@ndé are p, = mi- and py = mr2(6 — )
the z-component of the angular momentum. In the symmetric gauge the Hamiltonian of the
particle reads:
1 1 2
H=%<pr2+ﬁ(p9+%r2)). (22)

Since py and the energy are conserved by reflection on the boundary, we again deal with
an integrable system.

Let us introduce the dimensionless radjus= R/r. and momentuni, = p,/mawr?,
wherer, = \/2E/ma? is the cyclotron radius. Setting = mw?r?/2 in (22) and using
the fact thatp? > 0, one can show thdt has to be smaller thaé, and that trajectories
of energy E and angular momentury are inside the annulugyin < r < rmax With
Fmin = re| — 1+ /1= 2| andrmax = r.(1 + /1= 2I;). One must have,, < R. This
implies —p2/2 — po < .. If po < 1, the conditior, < —pZ2/2+ po also has to be fulfilled.
In the opposite casgy > 1, the trajectories of energy split into two families: for angular
momenta—p§/2 —po < I, < —p§/2 + po, rmax = R and the particle bounces off the
boundary (edge trajectories); for momentas/2 + po < I, < % rmax < R and the particle
follows a circle of radius.. without touching the boundary (bulk trajectories) (see figure 3).
If po < 1, all trajectories of energy are of the edge type. Since in quantum mechanics
hw/2 is a lower bound for the energy of our system, this situation is relevant in particular
for disks of radiiR smaller than the magnetic length= //mw. This weak field or small
system limit has been extensively studied before (see for exampe [3] and references therein).

Trajectories with positive values of angular momenta enclose (and turn around) the
origin O (see figure 3). In fact, for such values Bf rmax < 2r.. The valuel/, = 0 is
associated with trajectories having a turning peigt, in the radial direction equal to zero.
For pg > 1, the upper valué, = % is associated with bulk trajectories centred @n Note
that the two turning points in the radial directiof,, andrmax, coalesce wheh — %—. In
virtue of these classical considerations, one can expect the semiclassical spectrum to differ
noticeably for positive and negative values of the angular momentum.

3.2. Semiclassical wavefunction

Let us now formulate the quantum-mechanical problem. Since the system is invariant by
rotation along Qz), we choose wavefunctiong(r, ) = ¢(r)€!? having well-defined values
Il of the angular momentum alon@¢). ¢(r) satisfies the radial Schdinger equation:

R [ d? 1d 1  mer?\?
{_E(W+?d_r>+w<lh+ > )—E}w(r)zo. (23)
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oﬁe

Figure 3. The classical motion for the disk in magnetic field: bulk trajectories are shown in
(a)—(c) and edge trajectories im),(€). The circlesr = rmin andr = rmax are represented with
shaded lines. The angular momentéuris negative in 4),(d), it is positive in g),(c),(e) and
equal to in (e).

The Dirichlet boundary conditiop(R) = 0 is imposed on this wavefunction. Equation (23)
has an exact solution remaining finite at the origin, given (up to an arbitrary multiplicative

constant) by:
11| 2 2
r r 1+14|1 E r
=|—) exp| —— Fi\—————=—,1+|l]; 24
o(r) <)»B) P( 4)%) 1 1( 5 = + |1 2A%> (24)

where 1 F1(v, w; u) is the confluent hypergeometric function [11]. The spectrum can be
computed numerically by finding the zeresof this function foru = R?/212 [12].

As a result of the singularity at the origin due to the centrifugal potefftfgl/2mr? in
(23), the WKB method cannot be applied directly to solve this equation. One can handle
this problem by performing a Langer transformation [43k —In(r2/r?). In fact, when
this change of variable is made in (23), one obtains a new equation with no pole in the
potential and no first derivative. An easy way to handle the singularity of the potential at
the origin is to use a method developed byrian and Fiman [8, ch 1]. This method,
called by its authors the phase-integral method with unspecified basis, can be regarded to
be a generalization of the Langer transformation. Both methods can be used, for example,
to justify the celebrated Langer substitution [14] in the case of the radial equation of the
hydrogen atom. As we shall see, in our case (two dimensions) Langer substitution is unnec-
essary. We first transform equation (23) in order to eliminate the first derivative and to have
dimensionless quantities. Let = hw/2E, po = R/r. andl, = Ih/mor? = In. Making
the change of variablg = r/r. and settingp(r) = ¢(p) = p~?y(p) in (23), we obtain:

5= (—%Qz(p) - 4—;> y(p) (25)
where Q%(p) = —p?/4+ 1 -1, — I2/p%. The boundary conditions are:
y(po) =0 [!iinop‘%y(p) < 0. (26)
For smally, the last term in the parenthesis on the r.h.s. of (25) can be neglected as com-

pared with the first (the interested reader is referred to [8] for the justification of this point).
Let us setu = 2(1—1,) andc = /1 — (2I,/a)2. Far from the zeropmin = ~/a(1 —¢) and
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pmax = ~a(L+ ¢) of Q%(p), the approximate solution of (25) is [8]:

1 P
y(p) = |Q2(p>|1/4(c+ exp(; f dp’\/—QZ(p’)>
l 14
+C- exp( o / do" v/ —Qz(p’)>> (27)

whereC, andC_ are arbitrary constants. If > % Q2(p) < 0 for all p’s and thus approx-
imation (27) is valid everywhere. The integral in the exponentials diverges at zero and (26)
implies thatC, = 0 andC_ = 0. There are therefore no semiclassical solutions of (25) and
(26) for suchl,’s, and we can restrict our discussion to the classically allowed régiQn%.

As noted above, whepg > 1 the two turning pointspmin and pmax, tend to coalesce as
I, —> %; but it is well known that the standard WKB or phase-integral analysis fails to give
approximations valid no matter how close they are to the turning points. We are thus led
to use the so-called comparison equation method [7, 8] which gives uniform approximation
for this case. The main motivation to use this method is that it connects our problem nicely
with the previously solved problem of the semi-infinite plane. The approximate solution of
(25) is written in terms of a functiorf (o) solution of a simpler equation. We shall choose
this simpler ‘comparison equation’ to be:

2
% = (02 - %) f(@) (28)

wheree is a parameter to be determined later. The solutigm) of (25) is obtained by
multiplying f (o) by a slowly varying amplitude and allowing its argumentto depend
weakly onp. In other words, we look for solutions of the forgp) = A(p)f(o(p)).
The equation obeyed by the mapping functiefip) becomes simpler if we choose
A(p) = (d—")*l/z, and reads:

1 do do \Y? & [do\ V?
2Q(p)+ (dp> (6 (p)> (dp> dp? (5) ' (29)

If (g—;) /2 varies suffisciently slowly and if is small enough, the second term on the r.h.s.
and the second term on the |.h.s. of equation (29) can be neglected:

2Q (p) =~ <d—(;> (2 -0 (p)) (30)

(for more detalls and justifications of this approximation see [8]).
Let us define by analogy with (5) the classical radial action variablg) for

Pmin < £ < Pmax

P
L(p) = / \/ZmE - = lh + e, ) = — do’ O(p). (31)
Te Pmin 2 T

Pmin

For +£p > +a(1 £ ¢), Q%(p) is negative and the action is purely imaginary:

2
Lp) = 2 do’ V—0%("). (32)

T J Ja(lEe)
An easy calculation gives:

2 2 1 2
er(p)zi - (2 —1) +arccod = - 2
h 4u a c ac
1—¢? 1
—V1=¢2 arccos(% — Z) ) (33)



6540 D Spehner et al

This formula is correct for alp’s if one definesv/1 —u2 = —iv/u?2 -1 if |u| > 1 and
arccosu) = Fiarccoshi|u|) if u > 1.
For the above analysis to be meaningful, the mappirg o has to be one to one, i.%%

andg—g must never vanish. From (30) and assum%gg< 0, it follows thato (omin) = 1/4/€

ando (pmax) = —1/+/€. By integrating (30) and making the change of variable /eo—1,
we obtain if p < pmax:

7 0
Ir(p)=% 3 )dév—$($+2)=1x(é(p)+l) (34)
s(p
where&(p) = /eo(p) — 1 and/,(§ + 1) is the action of the semi-infinite plane (see (5)),
which is given by (17) for alk’s (with the same conventions as above for the square root
and the arccos functions). i > pmax SO that&é(p) < —2, (34) is still correct if the upper
bound of integration 0 is replaced by2. Using (31), (32), (34) and (17) one can show
that the mapping function takes the following forms whetends to 0,00, pmin and pmax
respectively:

1/2

Jea(p) = |2elln (pp. ) if p < Pmin (35)

Jeo(p) ~ — i’) it o> a (36)
2/3 2 2

JEa(p)qﬂ:(&) (—”—+1:Fc) if |2 —1+cl<clFo). (37)
A4AF o a a

The parameter is obtained by setting = pmax andé (omax) = —2in (34). Letd(l) =0
forl <0 and 1 forl > 0, then

1 1
— = — —16(). 38
2% = 2 0 (38)
The comparison equation (28) is transformed into equation (8) by means of a change
of variable ¢ = .,/eoc — 1. Moreover, using (30) and (35), one can show that

(do/dp) Y2 ~ pY212In(p/pmin)/11** when p — 0. The second condition in (26) implies
that p=Y/2(do /dp) Y2 f (o (p)) has a finite limit whernp — 0, and therefore thaf (o) — 0
wheno — oco. We can thus use the results of section 2 to determinate the approximate
solution of (25) and (26). It is given (up to an arbitrary multiplicative constant) by:

_ 2_o 1/4
%f))g(m) ke (E(0)) (39)

where&(p) = /eo(p) — 1 and fiyks (§) is the WKB solution of (8) vanishing at infinity
and satisfying the boundary condition (10) wih = £(0o) + 1 = /€o (pg). Using (13),
(14), (16), (18), (20) and (37), the semiclassical wavefunction of the disk is obtajnied (
a small parameter):

ywke (0) = (

p(p) = (—p?Q%(p))~¥* eXp(;l:nIr(p)) if p < Pmin— 1

_ 27 Al a~/2c i 0? 1
= @ - \\aa-on <_7+ _C)

if pmin—1 < o < pmin+7

. T T .
= 2(p2Q2(p>)‘1/4sm(ﬁlr(p> + Z> if pmin + 1 < < Prmax— 1
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2/3
_ N AW a/2c 0?
@+ Ao Sm(Z) A ((4(1+6)M> (7 - 1_C))

23, 5
+cos B| p——l—c
4(l—|—c)y, a
<

if pmax— 1 < P < Pmax+ 1 = (—p?Q%(p)) Y4

{sm(2 )exp(—;lnl (p)> —|—2005(2 )exp( 1, (p))}

if o> pmax+ 1. (40)

This semiclassical approximation of equation (23) becomes better as the magnetic field
tends to zero. In fact, in this limit the energi€smust tend to their finite zero-field values
and thereforeu = hw/2E approaches zero. The semiclassical analysis is thus expected to
work particularly well for low fields.

3.3. The semiclassical spectrum

Let No = mwR?/2h be the magnetic flux through the disk in units of the quantum dbgx
The energy 12¢ in (38) must coincide with the semi-infinite plane energy (11). Fixig

n, andl, the energy level€ /how = 1/2u of the disk are thus given by solving the two
coupled equations:

1
— =h, 16
2 (&) +100) 1)

I.(£0) = L((2No)*?).

The second equation is obtained by setting= po = (2Nou)¥? and & = &(pg) + 1
in (34). As for the semi-infinite plane there are no levils(é) with & > 1, we must
have pg > Pmin. Equivalently, the angular momentuim satisfies the classical conditions
—pO/Z po <[, <3 if po > 1 and— ,00/2 oo < I < p§/2+po if po < 1. Using
(41), we see that if < 0 the energies /hiw = 1/2u > ny + % 5 are associated with values
of & very close to 1, i.e. with values gfy and !/, nearly equal toomin, and p0/2 F po
respectively. These energies correspond to the whispering gallery orbits, i.e. to the second
branch ofhm (&0). An approximation for these high energies can be obtained by taking
I, = —p¢/2 F po. Sincel, = In and p2 = 2Ngu this implies:
E
ho
This expression is valid for large negative value$.dh other words, for suchis the energy
E (for fixed R) varies like (|/| — Ny)? with the magnetic field; this quadratic variation is
indeed observed on the numerical spectrum showed in figure 5. Noté, that0O when
| - —o0.

Figure 4 shows forNy = 20 andn, = 0 the semiclassical energies calculated
numerically by solving the coupled equations (41) and by using (17), (33) and results
of section 2. The comparison with the exact numerical spectrum (full curve) show a
surprisingly good agreement for these low energies and NighFrom the above arguments
(sections 2.2 and 3.1), it is clear that gf > 1, the EBK quantization rules give an
incorrect gap in the spectrum. The discontinuous transition from bulk to edge levels in
the EBK spectrum (dotted curve) occurs Wheyl= pmax, i.e. whenl, = —p3/2 + po; the

~ _ _ 2
~ 4N<1>(|l| No)2. (42)
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Figure 4. The energy spectrum of the disk as functionFigure 5. The energy spectrum of the disk as function
of the angular momentumMg = 20): circles represent of the magnetic flux. The energy in the vertical axis
the zeros of the third branch, pluses represent the zerissin units of Z12/mR?.

of the fourth branch and triangles represent the zeros of

the fifth branch. The full and dotted curves represent

respectively the exact and the EBK spectrum.

EBK energies(1/2u)esk tend tol, (pmax) + 10() = n, +16(1) + % when pg = Pmax—
whereas they are equal to the Landau levelst [6(1) + % if po > pmax- The value of
the angular momentum separating the edge and bulk levels is thus given fortithieand

byl = —Ng + \/4Nq>(nx +16(1) + %). One can conclude that the EBK rules (or any
trace formula based on them) badly reproduce the spectrum foNpig. Blaschke and
Brack [15] did independently reach similar conclusions using periodic orbits techniques in
a recent work. These authors calculated the density of states of the disk in magnetic field
by replacing the Maslov index by a smooth function they determine numerically.

Let us discuss in more details the IQHE and low-field regimes.

3.3.1. The IQHE regim&Vey > 1. For negative values of the angular momentdm
such that|l/| > N, the levels can be approximated as in equation (42). Incredsing
pé/a = (1/Nep +1l|/No)~t moves away from its minimum value?,,/a = 1 — ¢, so that

we go towards lower energies. Whegn/a is between but not too close to-dc and 1+ ¢

and ifn, < Ng, the energy 12 = 1/2¢ is much smaller thatNg. This corresponds to
values of]l| of the order ofN4. For such|/|'s one hasog/a ~ No¢/|l| and the action, (og)

can be quantized according to the EBK rules (see the item (iii) of section 2.3). Increasing
further [, the states transform gradually into Landau-like states located far apart from the
boundary. For angular momentauch thatl/| < Ne, p3/a is large and thusy is a large
negative number (see (36)). It follows from the analysis of section 2/thdko) is close

to the Landau levet, + % In other words, levels with small angular momeififa< N
practically do not feel the boundary. For negatii® the level is close to the,th Landau

level, for positivel's it is close to the(n, + [)th Landau level. Since, > 0, there are no

bulk levels with positive angular momenta- n near thenth Landau level. This fact can

be seen on the exact spectrum shown in figure 5 by following the levels Breg0. Each
time n is decreased by one, one level of positivis removed. One finds fat the upper

bound!, < 5/, which again gives the classical conditibn< % whenn — oc.
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3.3.2. The low-field regim&s « 1. Whenw — 0, the exact energies of the states of
angular momentuni approach their zero-field valugsy = Ezjlz/ZmRz, where j; are the
zeros of the Bessel function of orde(note that due to the time-reversal symmetry, states
with oppositel are degenerate in energy Bt= 0, i.e. j; = j_;). For small fields and fixed

I, u =hw/2E = O(w), I, = I and pp = (2Neu)Y/? are small. By expanding the action
I.(p) in (33) for p = pp up to second order in the field we find

27 1— -1 2N
——_I,(po) = 2\/z0 — 1 — 2 arccoszo Y/?) + "% (5Z — _q’)

Rl Vzo—1 !
3 2\ [8z%° Nodbz
(03 (54
(zo— 1 0 2 7 ;
N2 12 8 o
+o5(—20-3+=—-—) ) +0'sz/) (43)
3l 20 20

where z = 2No/ul? = 2mR2E/R%1?, im0z = 20, 82 = z —zo andi + j > 3.
Since ul,.(po) = ul,(§9) — 0 whenw — 0, one can deduce from (38) and (17) that
& — 1 whenw — 0. Therefore we can use in this limit the ‘generalized EBK rules’
developed in part (ii) of section 2.3 to quantize the actiaipg). Takingw = 0 in (43), we
obtain that the square root energ@%Ron/E2 = \/1270 is equal to the first term of the
uniform asymptotic expansion of the zeros of the Bessel function of érder. it satisfies
(see [11)):

I, _
z E(p % _ i1z — 1 - 1] arccoszg %) = 2(~a, )2 (44)

Our semiclassical analysis gives thus the exact zero-field energies up to higher terms in
this asymptotic expansion, i.e. with an error of the order of 1% for the lowest energies
(including those withl = 0) [11]. As noted in [16], by using the EBK rules to quantize
the action (i.e. replacing the r.h.s. of (44) hyn, + %)) good approximations of the exact
zero-field energies are already obtained. We can conclude (in accordance with [15]) that the
corrections to the EBK spectrum provided by a proper treatment of the whispering gallery
orbits are small. For small but non-ze#g the action/, (pg) remains quantized through the
same rules and is equal (in this approximation) to its zero-field value (44). It immediately
follows from (43) thatsz = 2N4 /I + O(w?). Substituting this value into the action we
obtain the energies up to second ordemwin

2 2 2
2’”_1; E_ j2+2Ne + No <1+ Ziz) + O(w®). (45)

h 3 Ji

This result agrees with recent semiclassical perturbative calculations at low fields [17].
However, it does not coincide with the exact second-order perturbation theory result of
Dingle [18], where a different factor multiplying/2 in (45) was obtained (the two ex-
pressions being asymptotically equal for large energies). This discrepancy should affect the
magnetic susceptibility, which is a measure of the field dependence of the levels, for low
Fermi energies. If the energy is sufficiently large, one can however use (45) to study the
level crossings at lowg’s. The valuesV, at which there are level crossings are given by
the solutions of the second degree equation:
2N2 (1?2 [
=" (? - ﬁ) +2No( — D) + j§ — j; =0 (46)

where j;, and j;, are zeros of the Bessel functions of order respectilebndl,.
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3.4. Charge transport

Suppose that one introduces an Aharonov—Bohm flux line through the @rigimd studies

the transport of charges induced by varying the #uxThe vector potential is changed by
A— Ag+ %89, where Ay is the vector potential created by the uniform magnetic field.
The Schédinger equation for this system is still of the form (23) but witheplaced by

[ 4+ o, wherea = ¢/®g. Therefore all our results still apply modulo this substitution. The
spectrum is identical fox’s which differ by integer values (gauge invariance). Changing
continuously the flux is equivalent to an electromotive force (e.m.f.) through the system.
Considera varying continuously from 0 to 1. Then all eigenstates and energies of the
system evolve adiabatically. Edge levels lower their energies and fadl atl) into the

level situated just below them. Bulk levels are almost not affected except those with positive
[, whose energieg€ ~ ho(n, +1+a + %) are increased byw, the electron jumping from

one Landau-like level into another. Introducing the Fermi endtgyfor an independent
electron gas at zero temperature, we see that the effect of changing the flux by one unit is
to removen electrons from the centre of the disk and to transfer them to the boundary if
Er is between theith and the(n + 1)th Landau level (as in Laughlin’s argument [4]). This
conclusion is not specific to the disk geometry, since it is due to pogittates which are
almost insensitive to the boundary whaf, > 1.

4. Conclusion

We have presented a semiclassical calculation of the energy spectrum and the eigenfunctions
of an electron in a perpendicular and uniform magnetic field for the half-plane and the disk
geometries. These situations are the simplest to describe features due to the presence of
both a perpendicular field and a boundary. In fact, explicit calculations can be made in both
cases using the existence of a constant of motion resulting from the symmetry of the system
(namely the momentum in the direction parallel to the boundary for the half-plane, and the
angular momentum for the disk). One can then reduce these two-dimensional problems into
one-dimensional ones and use asymptotic methods to solve them.

Because of the inherent splitting between bulk and edge classical trajectories, the EBK
guantization rules fail to give the correct gradual transition between Landau-like bulk levels
and edge levels. As noted in [15], a more correct semiclassical approach must take into
account the coalescence of the caustics with the boundary due to edge orbits making nearly
full circles before being reflected or to bulk orbits nearly touching the boundary. This
removes the EBK gap between the bulk and edge energies and results in a semiclassical
spectrum which approximates surprisingly well the lowest levels, as far as we checked from
our numerical calculations. Under usual boundary conditions (such as the Dirichlet case
considered here), the notion of edge and bulk states is no longer well-defined as in classical
mechanics; to restore a precise meaning of such a dichotomy in quantum mechanics and
describe for instance the transition from edge to bulk states in the context of the IQHE, one
has to consider more general boundary conditions [19] pertaining to the family defined by
Atiyah et al [20].

The extension of our results to general (non-integrable) billiards with smooth boundaries
could be made by using the more elaborate path-integration semiclassical methods, or, for
almost circular billiards, by expanding the wavefunction on the WKB disk wavefunction.
The existence in zero-field of regimes of localization of the wavefunction in the angular
momentum space was shown recently for almost circular billiards with a rough boundary
[21]. The most general approach would be to try to derive a specific trace formula for
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billiards in magnetic field wich takes the coalescence of the caustics with the boundary
into account. Recent works [22] on the diffraction contribution to the semiclassical spectral
density for general billiards in zero-field can be of relevance to this problem.
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