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We study the influence of cooperative effects such as superradiance and subradiance on the scattering

properties of dilute atomic gases. We show that cooperative effects lead to an effective potential between two
atoms that decays as 1/r. In the case of superradiance, this potential is attractive for close enough atoms and
can be interpreted as a coherent mesoscopic effect. We consider a model of multiple scattering of a photon
among superradiant pairs and calculate the elastic mean free path and the group velocity. We study first the case
of a scalar wave which allows us to obtain and to understand basic features of cooperative effects and multiple
scattering. We then turn to the general problem of a vector wave. In both cases, we obtain qualitatively similar
results and derive, for the case of a scalar wave, analytic expressions for the elastic mean free path and for the
group velocity for an arbitrary detuning (near resonance).
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I. INTRODUCTION

Coherent multiple scattering of photons in cold atomic
gases is an important problem since it presents a path toward
the onset of the Anderson localization transition, a long-
standing and still open issue. The large resonant scattering
cross section of photons reduces the elastic mean free path to
values comparable to the photon wavelength, for which the
weak-disorder approximation breaks down, thus signaling
the onset of the Anderson localization transition [1,2]. An-
other advantage of cold atomic gases is that sources of de-
coherence and inelastic scattering such as Doppler broaden-
ing are often negligible. Moreover, propagation of photons in
atomic gases differs from the case of electrons in disordered
metals or of electromagnetic waves in suspensions of classi-
cal scatterers, for which mesoscopic effects and Anderson
localization have been thoroughly investigated [1]. This
problem is thus of great interest since it may raise new issues
in the Anderson problem, such as a change of universality
class and therefore new critical behavior. New features dis-
played by the photon-atom problem are the existence of in-
ternal degrees of freedom (Zeeman sublevels) and coopera-
tive effects such as subradiance or superradiance [3], which
lead to effective interactions between atoms [4]. These two
differences are expected to lead to qualitative changes of
both mesoscopic quantities and Anderson localization. Some
of the effects of Zeeman degeneracy have been investigated
in the weak-disorder limit [5] using a set of finite phase
coherence times [6], which reduce mesoscopic effects, such
as coherent backscattering [1,7].

The influence of cooperative effects and more specifically
of superradiance on the multiple scattering of photons has
been recently investigated [8]. It has been shown that in
atomic gases superradiance and subradiance lead to a poten-
tial between two atoms, analogous to the one considered in
[9,10], which decays as the inverse of the distance between
them. In the case of superradiance, this potential is attractive
for close enough atoms, and can be interpreted as a coherent
mesoscopic effect. The contribution of superradiant pairs to
multiple-scattering properties of a dilute gas has been calcu-
lated by using an effective propagator that describes a scalar
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wave being scattered by a pair of two-level atoms. Simple
expressions for the photon elastic mean free path and group
velocity have been derived at resonance and found to be
significantly different from those of independent atoms. To
be more specific, near resonance, as well as at resonance, the
superradiant effect leads to a finite and positive group veloc-
ity, unlike the one obtained for light interaction with inde-
pendent atoms.

In this paper we provide, for the case of a scalar wave,
closed expressions for the suprerradiant contribution to the
elastic mean free path and the group velocity for an arbitrary
(near resonance) detuning, and calculate the dependence of
the transport time on it. In addition, we estimate the maximal
interatomic separation in a superradiant pair, which accounts
for possible mechanisms that may break the pair. We also
compare the effective approach presented in [8] to a more
realistic one that takes into account the vectorial nature of
the wave.

The paper is organized as follows: In Sec. I we describe
the model, which consists of pairs of two-level atoms placed
in an external radiation field where the Doppler shift and
recoil effects are negligible. In order to investigate the influ-
ence of the cooperative effects of such pairs on the multiple
scattering of photons we briefly review, in Sec. III, Dicke
states and some of their properties. Then we calculate the
average interaction potential of a pair of atoms in a Dicke
state by averaging over the random orientations of pairs of
atoms with respect to the wave vector of a photon incident
on the atomic cloud. Next, we study the scattering of a pho-
ton by such pairs and, in Sec. IV, compare the results to the
case where a classical wave is being scattered by a pair of
atoms. This comparison allows us to find an unexpected con-
nection between superradiance and mesoscopic effects. In
Secs. V and VI, we consider the multiple scattering of pho-
tons by pairs of atoms and calculate the elastic mean free
path and the group velocity of photons in the random me-
dium. Finally, our analysis is compared to other approaches
in Sec. VII and its results are summarized in Sec. VIIL.

II. MODEL

Atoms are taken to be degenerate, two-level systems de-
noted by |g)=|j,=0,m,=0) for the ground state and |e)=|j,
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=1,m,=0, = 1) for the excited state, where j is the total an-
gular momentum and m is its projection on a quantization
axis, taken as the 7 axis. The energy separation between the
two levels, including radiative shift, is Zw,, and the natural
width of the excited level is AI'. This simple picture of a
two-level atom neglects the rather complicated energy struc-
ture of a real atom, which reflects various internal interac-
tions, e.g., Coulomb interactions, spin-orbit interactions, hy-
perfine interactions, etc. But, due to selection rules which
limit the allowed transitions between states, in some cases a
certain state may couple to only one other. Thus, the two-
level atom approximation is close to reality and not merely a
mathematical convenience.

We consider a pair of such atoms in an external radiation
field and the corresponding Hamiltonian is H=H,+V, with

2
how B
Hy= =22 (leXel- | + 2 hoaga,. (1)
=1 ke

ay, (aj,) is the annihilation (creation) operator of a mode of
the field of wave vector k, polarization &y, and angular fre-
quency w;=c|k|. The interaction V between the radiation
field and the dipole moments of the atoms is given by

2
V=- E d,-E(r), (2)
I=1

where E(r) is the electric field operator
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Q) is a quantization volume and d, is the electric dipole mo-
ment operator of the /th atom. As an odd operator, which
changes sign upon inversion, d; may be written as

d;=(gld[e)A] +(eld[g)AT (4)
where the atomic raising and lowering operators are

A7 =(leXgh: A7 =(Ig)el):- )

We assume that the typical speed of the atoms, v
=\kgTy/ u, is small compared to v,,,,=I'/k but large com-
pared to v,,;,=hk/ u, where w is the mass of the atom and 7,
is the temperature, so that it is possible to neglect the Dop-
pler shift and recoil effects. Indeed, for a temperature of T
=1073 K, the typical speed of the atom is v =0.3 m/s. Since,
for a wave number of k=10" m~! and a natural width of T
=10" 57!, v,x=1m/s and v,,;,=0.01 m/s, both assump-
tions are satisfied.

III. DICKE STATES
A. Interaction potential and lifetime

The absorption of a photon by a pair of atoms in their
ground state leads to a configuration where the two atoms,
one excited and the second in its ground state, have multiple
exchange of a photon, giving rise to an effective interaction
potential and to a modified lifetime as compared to indepen-
dent atoms. These two quantities are obtained from the ma-
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trix elements of the evolution operator U(f) between states
such as |g,e,;0). There are six unperturbed and degenerate
states with no photon, given by {|g;e,;:0).le;;¢,:0)} in a
standard basis where i,j=—1,0,1. The symmetries of the
Hamiltonian, namely, its invariance by rotation around the
axis between the two atoms, and by reflection with respect to
a plane containing this axis, allows us to use combinations of
these states that are given by

1
7)) = 6[|€1i82;0> + €lg1e4;30)] (6)
with e=+1, so that

(G 1UM)| ) = 8,;6.SE(0) (7)
and

Si(1) ={e};22:0

U(1)|e1ig2:0).
(8)
The states |¢f) may be rewritten in terms of the well-
known Dicke states |[LM), where L is the cooperation number

and M is half of the total atomic inversion [3]. For two
atoms, the singlet Dicke state is

U(1)|e1;82:0) + &(g1€5;:0

1
|00y = \’_E[|€1gz> —g1e2)] )

and the triplet Dicke states are

[11) = lejen),
1

|10) = ?[|e182> +|g1e2)],
V2

[1-1)=]g182)- (10)

The states [11) and |1—1) correspond, respectively, to both
atoms in their excited states and both atoms in their ground
states. The singlet state |00) and the triplet state |10) both
correspond to one atom in the excited state and the other in
the ground state, but |00) is antisymmetric where |10) is sym-
metric under an exchange of the atoms. Therefore, we may
rewrite (6) as |¢7)=[10;0) and |¢;)=00;0).

For times such that r>>r/c, where r is the distance be-
tween the two atoms, up to second order in the coupling to
the radiation, (8) reads

it hl's
Sf(t)ZI—%<AEf—i 2’). (11)
The two real quantities AET and I'; are, respectively, the
interaction potential and the probability per unit time of
emission of a photon by the two atoms in the state | ;). The
calculation of these two quantities requires second-order per-
turbation theory with respect to the interaction (2). For this
purpose we define an initial state where one atom is excited
and the other is in its ground state without any photon, and a
final state where the two atoms are exchanged. We also de-
fine intermediate states of two types: both atoms in their
ground states with one virtual photon present and both atoms
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in their excited states with one virtual photon present. Sum-
ming the corresponding diagrams [11] gives

. 3l cos koyr cos kgr  sin kor
AEf=e——|-pi +4; 3t 2
4 (kor) (kor)

kol"
(12)
and
re 1 3 { sin kor ( sin kor  cos k0r>]
—_— = -_— - : + 7 - 9
T 20 P ke T k) T (hr)?
(13)
where we have defined ky=w/c,
pi=1-1, ¢q;=1-3%, (14)

and r=(1,6,¢) is a unit vector along the direction joining
the two atoms. For a Am:me—mg=0 transition,

po=sin’6, go=1-3cos’h, (15)

while for a Am==1 transition,
1 2 1 2
pt:5(1+cos 0), qi:5(3 cos“6-1). (16)

At short distance kyr<<1, we obtain that FTZZF for the
superradiant state |¢;)=]10;0) and I'; =0 for the subradiant
state |¢7)=00;0).

B. Average interaction potential

For a photon of wave vector k incident on an atomic
cloud, the potential between two atoms that we shall denote
by V, is obtained from (12) by averaging over the random
orientations of the pairs of atoms with respect to k. Since,
according to (15) and (16), {g;)=0 and {p;)=2/3, we obtain
for the average potential V,

hl cos kyr
V(1) =(AE) =— e——— (17)
2 kor
and the average inverse lifetimes of Dicke states are
sin k
<rf>=r(1+e Or), (18)
kor

which retain the same features as (13) for kyr<<1.

Let us now characterize the interaction potential V,.
Whereas for a single pair of atoms the potential (12) is an-
isotropic and decays at short distance as 1/7°, a behavior that
originates from the transverse part of the photon propagator,
we obtain that, on average over angular configurations, the
potential (17) between two atoms in a Dicke state |LO) in
vacuum becomes isotropic and decays as 1/r. This behavior
coincides with the one obtained by considering the interac-
tion of two-level atoms with a scalar wave. This could have
been anticipated since in that case the transverse contribution
q; to the photon propagator averages to 0. A related behavior
for the orientation average interaction potential has been also
obtained for the case of an intense radiation field [9], and it
has recently been investigated in order to study effects of a
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long-range and attractive potential between atoms in a Bose-
Einstein condensate for far-detuned light [10]. This latter po-
tential, which is fourth order in the coupling to the radiation,
corresponds to the interaction energy between two atoms in
their ground states in the presence of at least one photon. The
average potential V, we have obtained is different from that
case: it is second order in the coupling to the radiation and it
corresponds to the interaction energy of Dicke states |LO) in
vacuum.

C. Scattering properties

In order to study the scattering properties of Dicke states
we introduce the collision operator T(z)=V+VG(z)V, where
V is given by (2) and G(z)=(z—H)™! is the resolvent where
the Hamiltonian H is the sum of (1) and (2). The matrix
element that describes the transition amplitude from the ini-
tial state |iy=|1-1;ké), where the two atoms are in their
ground states in the presence of a photon of frequency w
=c|k| and polarization &, to the final state |f)=|1-1;k’&") is

T={fIT(z=1(w - w))|i) (19)

where |k|=|k’|. By using the closure relation we may write
T as the sum of a superradiant and a subradiant contribution,
T=T"+T [12], with

T* = (fIVI¢*X %Gz =fi(w = w)) | "X *|VIi),  (20)

where |¢*) are the Dicke states |L0) in vacuum. The two
matrix elements in (20) represent the absorption and the
emission of a real photon by the pair of atoms. They are
easily obtained from (2)—(5) and lead to the following ex-
pressions for the scattering amplitudes:

1t k-r kK'-r
TH=Ae'kk )'RCOS(T>COS< 5 >G+ (21)

and

I k-r k' -r
T =Ae'kkK )'Rsin(—>sin( )G‘. (22)
2 2
We have defined r=r;-r,, R=(r;+r,)/2, and

ﬁ [ ~ Nk *
=——d*d-8)(d" -&"), (23)
E()Q

where the reduced matrix element and the corresponding unit
vector are

RTA

, j m,|d|jm,). (24)
V41 Gemeldljgmy)

QU

The propagators G* are the expectation values of the resol-
vent in the Dicke states |¢*), namely, G*=(¢*|G(% )| ¢*),
where close to resonance 6=w-wy< w,. The propagators
result from the sum of an infinite series of virtual photon
exchanges between the two atoms in the pair and are given in
terms of (12) and (13) by

= -1
Giz(ﬁé—AE1+iﬁ?> . (25)
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The average propagator is then obtained by averaging G*
over the random orientations of the pairs of atoms with re-
spect to the wave vector k of the incident photon. However,
we shall consider in a first stage the effective propagator
obtained for the case of a scalar wave. This amounts to writ-
ing for the effective propagator the expression

T r ikgyr -1
G:Z{ﬁ(5+i—i—e )] , (26)
272 kyr

where we have used (17) and (18) for the average potential
and for the average inverse lifetimes. This expression consti-
tutes a priori a rough approximation of the exact average.
We shall calculate later, in Sec. VI, the exact expression of
the average propagator and show that it is rather compli-
cated, whereas the approximate expression using a scalar
wave gives similar qualitative results. Therefore, it allows for
a better understanding of relevant physical quantities such as
the elastic mean free path and group velocity. From now on,
we thus use the scalar wave approximation in order to pro-
vide, in a rather simple way, the main features of multiple
scattering by superradiant pairs.
With the help of (26), the scattering amplitudes are

k! k-r kK'-r
TH=Ae'kk )'Rcos<7>cos< )G;r (27)

2

and

T;:Aei(k_k')'Rsin(E>sin<k T)G;. (28)
2 2
At short distances kyr <1, the subradiant amplitude T, be-
comes negligible as compared to the superradiant term 7.
Therefore, the potential (17) is attractive and decays as 1/r.
More precisely, at short distances the effective propagator G,
diverges for 6/T'=1/(2kyr) and G is purely imaginary for
S8/T'==1/(2kyr). Thus, for 8/I'<1/(2kyr) the imaginary part
of the subradiative term (28) is negligible as compared to the
imaginary part of the superradiative term (27) and for
|8] /T < 1/(2kyr) both the real part and the imaginary parts of
(28) are negligible as compared to (27).

We can interpret these results by saying that, at short dis-
tances (kor<< 1), the time evolution of the initial state

1
|(0)) = |e,£,:0) = \'_E[|¢+>+ |71, (29)

corresponds, for times shorter than 1/I", to a periodic ex-
change of a virtual photon between the two atoms at the Rabi
frequency

_(AE)-(AEY)

Q :
R %

(30)

which is much larger than I' since, with the help of (17),

r
Qp=—. 31
=i G
For larger times, the two atoms return to their ground states
and a real photon (k’é’) is emitted. At large distances
(kogr>>>1), the Rabi frequency becomes smaller than I, so
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that the excitation energy makes only a few oscillations be-
tween the two atoms, thus leading to a negligible interaction
potential.

We finally notice that the angular distribution of the light
scattered by two atoms in a superradiant state is nearly iden-
tical to that of a single atom. This follows from the fact that
at short distance kyr <1, we can neglect higher-order multi-
polar corrections so that the corresponding additional phase
shift kyr cos ¥ between waves emitted by the two atoms be-
comes negligible (¥ is the angle between the direction of the
emitted photon and the axis between the two atoms).

IV. COOPERATIVE EFFECTS AND COHERENT
BACKSCATTERING

It is interesting to derive the previous results in another
way that emphasizes the analogy with coherent backscatter-
ing [1,2]. To that purpose, we write the scattering amplitude
T defined previously in (19) as a superposition of two “clas-
sical,” scalar amplitudes T, and T, [13], each of them being
a sum of single-scattering and double-scattering contribu-
tions, that is,

T, (ei(k—k’)~r1 + tGOei(k.rl—k’~r2)) (32)

T 1-£G2
and
v (e HDT2 4y Gpelkerakir) —(33)
Here
. 47 1/2 (34)
ko 6+il'/2

is the amplitude of a scalar wave scattered by a single atom
at the origin, and the prefactor #/(1 —tzG(z)), where

eikor

Gy= (35)

4ar
accounts for the summation of the series of virtual photon
exchange between the two scatterers. We can single out in
the total amplitude 7=T,+T, the single-scattering contribu-
tion 7, and write the intensity associated with the higher-
order scattering term shown in Fig. 1 as

G,

2
[ 2C [1+cos(k+K')-(r;—ry)].
0

|T_ Ts|2=2

(36)

The structure of relation (36) is very reminiscent of that of
the so-called coherent backscattering intensity, which occurs
in the multiple elastic scattering of light. But although they
are analogous, (36) differs from coherent backscattering. In
the latter case, averaging over the spatial positions r; and r,
makes the interference term cos(k+k’)-(r;—r,) vanish in
general, with two exceptions:

(1) k+k’=0. In the direction exactly opposite to the di-
rection of incidence, the intensity is twice the classical value.
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FIG. 1. Schematic representation of the two amplitudes that de-
scribe double scattering of a scalar wave. The wavy line accounts
for the exchange of a virtual photon between the two atoms. This
diagram is analogous to the coherent backscattering in quantum
mesoscopic physics.

This phenomenon is known as coherent backscattering.

(2) ry=r,. These are closed multiple-scattering trajecto-
ries which are at the origin of the phenomenon of weak lo-
calization.

In (36) the interference term, i.e., the second term in the
square brackets, reaches its maximum value 1 for r;=r, so
that we obtain from (32), (33), and (27) that T,=T,
oc(1/2)T7;, up to a proportionality factor [13]. Thus, the total
amplitude is given by the superradiant term with no subradi-
ant contribution.

V. MULTIPLE SCATTERING AND COOPERATIVE
EFFECTS

A. Effective self-energy

We consider now multiple scattering of a photon by su-
perradiant pairs built out of atoms separated by a distance r
and coupled by the attractive interaction potential V,. This
situation corresponds to a dilute gas that is assumed to sat-
isfy

r< Ny <, (37)

where n; is the density of pairs and Ng=27/k is the atomic
transition wavelength. The limiting case (37) corresponds to
a situation where the two atoms that form a superradiant pair,
through exchange of a virtual photon, constitute an effective
scatterer, and cooperative interactions between otherwise
well-separated pairs are negligible. Let us stress that we
study here a simplified model where only pairs of atoms
have been taken into account. A more realistic model should
include higher-order terms that account for cooperative ef-
fects between more than two atoms, but we do not consider
such higher-order terms, i.e., including superradiant clusters
of three or more atoms. The purpose of the current model is
to examine the contribution of superradiant pairs to the trans-
port properties of the gas. We use the Edwards model [1,14]
to describe the medium as a discrete collection of N; super-
radiant pairs in a volume (). Each pair, located at R, is
characterized by its scattering potential u(R—R;). Therefore,
the disorder potential is given by
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20 2 2 2

FIG. 2. Pertubative expansion of the self-energy in a power
series in the parameter n,-ué. Solid lines account for the free photon
Green’s function g,. Pairs of dotted lines, connected by X, stand for
the two-point correlation function B. The first term 2, proportional
to niu%, accounts for independent scattering events, while the sec-
ond term 3,, proportional to nizug, describes interference effects
between pairs of scatterers.

N,

UR) =, u(R-R)). (38)
=1

We assume that the scattering potential is short range com-
pared to the wavelength, and we approximate it by a (con-
veniently regularized) & function potential u(R)=u,S(R). In
the limit of a high density of weakly scattering pairs, but
with a constant value of n,-ug, it can be shown [1] that the
correlation function defined by

BR-R')=n, f dR"u(R"-R)u(R"-R’)  (39)

becomes
B(R-R')=nui8(R-R’). (40)

In other words, in this limit, the Edwards model reduces to a
Gaussian white noise model characterized by the condition
(40).

The Green’s function g of a scattered photon is related to
the free photon Green’s function g, i.e., in the absence of
disorder potential, by the equation [1]

g=80+8o0Ug. (41)

Averaging (41) over disorder and using the properties of the
Gaussian model discussed above yields the Dyson equation

()a=80+802(8)u (42)

where (---); denotes averaging over the random potential.
The function 3, known as the self-energy, represents the sum
of all irreducible scattering diagrams. The pertubative expan-
sion of the self-energy in a power series controlled by the
parameter niu(z) is represented in Fig. 2.

For small values of n,u2, the main contribution is obtained
by keeping only the first term 3, which describes indepen-
dent scattering events. Therefore, the first contribution to the
self-energy is proportional to the density of scatterers and to
the average scattering amplitude, and it is given, for kor <1,
by

67n;

S1== A, ATG] (43)

0

where
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12j,+1
O et @
8
The latter quantity is obtained by averaging A in (27) over
Zeeman sublevels m that appear in its definition given by
(23) and (24). L

The additional average, denoted by - -, is taken over dis-
tances r up to a maximal value r,, which accounts for all
possible mechanisms that may break the pairs.

The value of r,, can be estimated by comparing the kinetic
energy K of a superradiant pair to its average potential en-
ergy V!. We have K=7%/ur? and from (17) we obtain that
Vi=—hI"/2kor. Minimizing the average energy

(R
E(r)=—--— (45)
urs 2kgr
with respect to r yields
fikg
kot =4—2 (46)
ul’
or
gry = 422 (47)
vmax

where the speeds v,,;, and v,,,, have been defined in Sec. II.
For typical values '=107 s~' and k,=10" m~! we obtain that
kor,,=0.05. Thus, we can use the results obtained in Sec.
IIT C and consider the superradiant term only.
For j,=0and j,=1, Ay;=1, and using (26) we rewrite (43)
as
6mmn; 1 [ dr

=— —_— 48
ol ko rmldo ST +1/(2kgr) +i (“48)

We stress again that, in our approach, a pair of atoms in a
superradiant state is considered as a single scatterer, and the
effective medium parameters are derived from X, as will be
shown in the next sections. In contrast to our treatment, oth-
ers [16,19] consider multiple scattering of a real photon by
independent atoms and use the second term 2.,, which de-
scribes interference effects between the scatterers, to calcu-
late corrections to the elastic mean free path and to the re-
fractive index of the medium. A further comparison between
these two points of view is given in Sec. VIL

B. Elastic mean free path
The elastic mean free path [, is obtained from the imagi-

nary part of the self-energy, namely,

]%Z—Imzl. (49)

e

Let us stress that (49) is equivalent, in the case of a dilute
gas, to the known formula

l,=—, (50)

where the total cross section o, is obtained for kyr <1 from
(27) by means of the optical theorem
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FIG. 3. Ratio between the elastic mean free paths /; and /, as a
function of the reduced detuning /1" for kyr,,=0.05, 0.07, and 0.1.
Away from resonance, for blue detuning, the elastic mean free path
1, becomes smaller than [ in a ratio roughly given by 1/(kr,,)>. At
resonance, the ratio between the elastic mean free paths is given by
(57).

20 —
O'e:—ﬁ—lm<T:(k=k',é=é')>m (51)
c

and (---),, represents an averaging over Zeeman sublevels.
The equivalence in this case is proven easily if one uses (44)
and the usual expression for the inverse lifetime
2,3
_ dky
3 Eoﬁ ’

(52)

where the reduced matrix element is defined in (24). There-
fore, from (48) and (49) we obtain that

1 6mn (k g) (53)
(o)~ N\

where we have defined the function

B - o
fl(u’v)_2u o L+ @+1/x)* (54)

The integral is easily carried out analytically and the explicit
expression is given in Appendix A. It is interesting to com-
pare [, to the elastic mean free path [, that corresponds to
near-resonant elastic scattering of a photon by a single atom.
The latter quantity is obtained by replacing I by I'/2 in (53)
(since the inverse lifetime of a single atom is half the one
related to a superradiant pair) and 1/x by 0 in (54) (since the
interatomic distance is taken to be infinite for a single atom)

and it is given by
i { (25)2}
I+{—=] |- 55
67n; r (53)

In Fig. 3 the ratio between these two quantities is plotted as

lp(0) =
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a function of the reduced detuning 6/I" from resonance for
several values of kyr,,.
At resonance, we obtain from (53) that

Kool
1,(0)= 56
O S, U, o
and hence
,(0) 4
—— = —(kgr,)* < 1. 57
1(0) 3(o"m) < (57)

Away from resonance, for blue detuning, the elastic mean
free path [, becomes smaller than [, in a ratio roughly given
by 1/(kor,,)>. This is a direct consequence of the existence of
the attractive potential V,.

C. Group velocity

Another important physical quantity that characterizes
multiple scattering of a photon is its group velocity v, given
in terms of the refractive index 7 by the usual relation

d
<. n+ sy (58)
Vg dw
The refractive index for a dilute medium is
7=(14+n;Re a)"?, (59)

where the dynamic atomic polarizability « is proportional to
the self-energy

1{c)\?
a:——(_> El' (60)
n;\w
Thus, we obtain that
e \2 12
n= 1—(—) ReX,| . (61)
w
Substituting (61) into (58) yields
1 2 d
i:—(l—c——Re21>. (62)
Ve 7 2wdw

From the self-energy (48), we notice that =1 for all values
of the detuning /1" and in a large range of densities n;, so
that

< by (k 5) (63)
=1- Vs 05 |
v,(8) ne 2\70T
where we have defined the characteristic density
kg T
ne=—>-— (64)
6 (Oh)

and the function

1-(v+1/x)?

[1+ v+ 1) (65)

1 2u
folu,v) = —f dx
2uly

The integration is easily performed and the explicit expres-
sion is given in Appendix A. By replacing I" by I'/2 in (63)
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FIG. 4. Group velocities v, (solid line) and v, (dotted line) as a
function of the reduced detuning &/T for n;/n,=10° and kyr,,=0.1.
The group velocity v, diverges at two symmetric values of order
unity of the reduced detuning and it takes negative values in be-
tween. The group velocity v,, near resonance, remains finite and
positive.

and 1/x by 0 in (65), we obtain the group velocity v, of light
interacting with independent two-level atoms,

c n; 1—(287)*
SN (66)

o8 n.[1+20T)]
For the typical values I'=107 s7!, k,=10" m~!, and n;

=10'" cm™3, we obtain that n;/n,=10°.

Figure 4 displays the group velocities v, and v, plotted as
a function of the reduced detuning &/T" for n;/n.=10° and
kor,,=0.1.

v, appears to diverge at quite a large and negative value
of the detuning 6/I'=-1/(2kyr,,). But near resonance it is
well behaved, meaning that it remains finite and positive. At
resonance, according to (63), the group velocity is

¢ _ i Wo 2
0.(0) =1 +47Tk3 T (kor,,)” (67)
This expression of v, differs substantially from the one
obtained for v,. For densities n;>n,, the group velocity v,
diverges at two symmetric values of order unity of the de-
tuning and it takes negative values in between (i.e., also at
resonance), as can be seen in Fig. 4. This problem was rec-
ognized a long time ago [15] and an energy velocity has been
defined which describes energy transport through a diffusive
medium [16,17]. However, the diffusion coefficient, which
will be discussed in the next section, is derived from the
group velocity and not from the energy velocity [1]. More-
over, a closed expression for the energy velocity vy has been
obtained only for the case of resonant Mie scattering [18].
The expression is similar to (67) and is given by
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P (68)
Vg ky T

It is then interesting to notice that the inclusion of coopera-
tive effects even at the lowest order, i.e., taking into account
superradiant pairs, allows one to obtain a group velocity that
is well behaved at resonance, unlike the case of resonant
scattering by independent atoms.

D. Diffusion coefficient and transport time

Diffusive transport of photons through a gas is character-
ized by the photon diffusion coefficient

D(9)= S0, (9 (69)

which combines the elastic mean free path and the group
velocity, both derived from the complex-valued self-energy
(48). The diffusion coefficient D is of great importance since
it enters into expressions of various measured physical quan-
tities, such as the transmission and the reflection coefficients
of a disordered medium [1]. In addition to these average
quantities, an incident pulse that probes a nearly static con-
figuration of scatterers may provide an instantaneous picture
of the medium that displays a random distribution of bright
and dark spots. This snapshot, known as a speckle pattern,
can be characterized by the angular-correlation function and
the time-correlation function of the light intensity (diffusing
wave spectroscopy). In the first case, the correlation function
of the transmission coefficient between two distinct direc-
tions of the transmitted wave is measured. In the second
case, the intensity of the transmitted wave is measured at
different times, so that the motion of the scatterers must be
taken into account. As pointed out before, in both cases the
diffusion coefficient plays an important role, as it enters in
the relevant expressions. Moreover, the critical behavior of
transport close to the Anderson localization transition at
strong disorder is also obtained from the scaling form of D.
Its expression, deduced from (53) and (63), depends on the
range r,, and on the detuning &/I". Since the group velocity
and the elastic mean free path are significantly modified for
superradiant states, we thus expect the diffusion coefficient
to be different from its value obtained for independent atoms.
We define the transport time by
(=142 (70)
()

At resonance and for n;>>n,, it can be rewritten with the help
of (56) and (67) as

1
Ttr(o) = E s (7 1)

in accordance with our assumption of superradiant states.
Near resonance, the transport time depends weakly on the
detuning. But, away from it, 7,. depends on the detuning and
thus on frequency, as can seen from Fig. 5 where the inverse
of the transport time T,_,l/ I" is plotted as a function of the
reduced detuning &/T for n,=10' cm™3, I'=107 s7!, and &,
=107 m™! for several values of kyr,,.
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FIG. 5. Inverse of the transport time T,_rl/ I" as a function of the
reduced detuning &/T for n;=10'"cm™, I'=10" s~!, and k,
=107 m~! for kyr,,=0.05, 0.07, and 0.1. Near resonance, the trans-

port time depends weakly on the detuning. But, away from it, 7,
depends on the detuning and thus on frequency.

VI. AVERAGE SELF-ENERGY

So far, we have used the effective approach introduced in
Sec. III C, where we have considered the case of a scalar
wave being scattered by a pair of two-level atoms. In this
simple approach, the propagator of a scalar wave (26) has
been calculated and the self-energy (43) has been obtained
by averaging (26) over the distance between the two atoms
in a pair. This effective approach leads to simple expressions
for the elastic mean free path (53) and the group velocity
(63) of the wave. In this section we calculate these quantities
for a given Am transition and kyr<< 1, while taking into ac-
count the vectorial nature of the wave. With this purpose, we
average the propagator (25) over the random orientations of
the pairs of atoms (with respect to the wave vector of the
incident photon) as well as over the distance between the two
atoms in a pair. Therefore, the average self-energy is now
given by

6mm; 1
L B J AT G*(r)dr,

ko 4mr,

(72)

where the averaging is over the interatomic axis r (over both
magnitude and orientations). The evaluation of (72) for a
Am=0 transition is rather cumbersome and it is presented in
Appendix B. By following the procedure described in the
previous section, we obtain the corresponding elastic mean
free path /, and the group velocity v,. In Fig. 6 the ratio
between [, given by (55) and /] is plotted as a function of the
reduced detuning &/T" for several values of kyr,,.

As in the effective approach, at resonance [, is found to be
larger than /), but away from resonance it becomes smaller.

In Fig. 7 the group velocity v ; is plotted as a function of
the reduced detuning &/T" for n;/n,=103 and kyr,,=0.1.

Around resonance, the group velocity v é is finite and posi-
tive, as in the scalar case, but much larger as compared to
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FIG. 6. Ratio between the elastic mean free paths [ and I, as a
function of the reduced detuning 6/1" for kyr,,=0.05, 0.07, and 0.1.
At resonance, [, is larger than /[y, but away from resonance it be-
comes smaller.

(63) and it is close to ¢. Thus, we may conclude that in both
approaches the superradiant effect leads to a finite and posi-
tive group velocity, unlike the one obtained for light interac-
tion with independent atoms. However, the group velocity of
a scalar wave is much smaller compared to the one of a
photon.

VII. DISCUSSION

In this section we compare our analysis to other ap-
proaches [16,19] where resonant multiple scattering of light
has been considered. There, using a multiple-scattering ex-
pansion for the calculation of the self-energy up to second
order in n;ug, a correction to the elastic mean free path and to

1.0086
1.0085F 1

1.0084 1

1.0083

1.0082 v'lec
g

1.0081

1.008 1
1.00791 1
1.00781 1
1.00771 1

1-0076 L L L L L L L L
-5

FIG. 7. Group velocity v; as a function of the reduced detuning
8IT for n;/n,=10° and kyr,,=0.1. Around resonance, the group ve-
locity vé:, is finite and positive and it is close to c.
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the refractive index has been obtained. In the latter approach,
no distinction has been made between the external photon
that performs multiple scattering on all atoms and virtual
photons exchanged between two atoms in a superradiant
state, leading to the average interaction potential V,. This
distinction needs to be made for dilute enough atomic gases
since in that case the average distance n;'* between atoms is
large. Moreover, in this case, the dipole-dipole interaction
induced by the external photon depends on the detuning, a
situation that corresponds to the case of intense radiation
presented in [9] but not to the current experiments made on
cold atomic clouds [20].

VIII. CONCLUSIONS

We have considered multiple scattering of a photon by
pairs of atoms that are in a superradiant state. On average
over disorder configurations, an attractive interaction poten-
tial builds up between close enough atoms, which decays as
1/r. The contribution of superradiant pairs, resulting from
this potential, to scattering properties is significantly differ-
ent from that of independent atoms. This shows up in the
behaviors of the group velocity, the elastic mean free path
and the diffusion coefficient which are different from their
values obtained for independent atoms. We have considered
the case of a scalar wave and have shown that it allows to
define an effective long-range and attractive potential for
pairs of atoms in a superradiant state. Then, we have studied
the case of a vector wave and have shown that the results
obtained in the scalar case remain qualitatively valid. We
have considered a simplified model where only pairs of at-
oms have been taken into account. A more realistic model
should include higher-order terms that account for coopera-
tive effects between more than two atoms [21]. The purpose
of the current model is to show that already for a dilute gas
in the weak-disorder limit, cooperative effects modify sig-
nificantly the transport properties of light.
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APPENDIX A

In this appendix, we establish expressions (53) and (63)
for the elastic mean free path and the group velocity. At
resonance, simple expressions for the elastic mean free path
(56) and the group velocity (67) are obtained by a pertuba-
tive expansion with respect to the small parameter kgr,,.

1. Elastic mean free path

The elastic mean free path is given by (53) in terms of the
function f| defined in (54). The integral in (54) is easily
carried out analytically, and it leads to
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1 6mn; 1 [ b a-2
= 2 - _A1+ B1+C1 N (Al)
le(ﬁ) kO aC] 2a 2a
where
a=1+(8T)? b=4T, (A2)
1
e
A;j=In , (A3)
a+bx,, + —xi
Bl=g—tan‘l(b+—xm>, (A4)
and
C1=—=k0rm<<1. (AS)

m

At resonance (6=0) we have a=1, b=0 and by expanding
(A4) with respect to kyr,, we obtain

5 ~3(1 i)
', 3x2)

ko1
87Tni (kOrm)2

(A6)
Thus,

1,(0) =

(A7)
as given in (56).

2. Group velocity

The group velocity is given by (63) in terms of the func-
tion f, defined in (65). The integral in (65) is easily carried
out analytically and it yields

c n; Fy
=1=" 2 > (AS)
v,(0) n.a"C,
where
1 1 a=-2 3 2
F1=b _—_A1+ Al ___Bl
a 4 4 2 a
—bB{+<1——>C1, (A9)
1
b+ —x,
, 2
A1=——1, (A10)
a+bxm+—xfn
and
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1
2

B;z—ﬁ.
1+(b+—xm>

(A11)
2

At resonance (6=0) we have a=1, b=0 and by expanding
(A10) and (A4) with respect to kyr,, we obtain

, 2[4
Aj=—|—5-1 (A12)
X \ X,y
and
2 4
B =—(1-—= Al3
1 xm( 3)(,2”) ( )
Thus,
c 2 n;
=1+ =—(kor,,)%, Al4
20~ 5 o) (A14)
as given in (67).
APPENDIX B

The aim of this appendix is to calculate the average self-
energy (72) for a Am=0 transition in the case where kyr < 1.
First, we average the superradiative propagator (25) over the
orientation of the inter-atomic axis and obtain analytical ex-
pressions for its real and imaginary parts. Then, by averaging
over the interatomic distance up to r,,, we obtain the average
self-energy (72).

For a Am=0 transition and kyr<1, the superradiative
propagator (25) may be written with the help of (12) and (13)
as

|
—(1 +cos?6
3coso—1 21 TS0

alG* = é+§ + +i|
r 4 (kor)3 kor

(B1)

where the interatomic axis is r=(r, 6, ¢). Averaging over the
orientations

1
Al{(G*) = i J AI'G*d cos Ode (B2)
T

yields for the imaginary part

P
AT Im(G* = -2 (B3)
B
and for the real part
Al Re(G*y = W_P + W, 0, (B4)

where we have defined

2
b 1 ln(l +2Bcos(y/2)+,82>, (B5)
84,8 cos(y/2) \1-2Bcos(y/2)+ B
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1 1-
ST SR
4A,B sin(y/2) \ 2 23 sin(v/2)
and
Wt =- \e”A_z(cos vyF1). (B7)

The auxiliary parameters are given by

,3=<C2>”4, 7=cos‘1<— 5y ) (B8)

Az 2\3’A2C2
where
s 9 (3 1)2 (B9)
=———|——=+—-1,
27 16(kor)2\ (kgr)? 2
5 3(3 1)[25 3(1 1)}
=—\—=+7 ||l =+ —\z-7=] |
2T dkgr\ (kg2 2/ T 7 2kgr\2  (kor)?
(B10)
and
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A2 () e
T4 T 2kgr\2 (ker)?) |

Finally, we average (B3) and (B4) over the interatomic
distance up to r,,,

— 1 (™™ P+
AT Im(G*) = — — f a2
'mJo B

(B12)
and
- 1 'm
AT Re(GT) = — f dr(W.P+W,0).  (B13)
'mJo

The integrals can be evaluated numerically and give the av-
erage self-energy (72) since

f #0G*(r)dr = hT(G"). (B14)

4arr,
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