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Dual point description of mesoscopic superconductors
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~Received 5 June 2000!

We present an analysis of the magnetic response of a mesoscopic superconductor, i.e., a superconducting
sample of dimensions comparable to the coherence length and to the London penetration depth. Our approach
is based on special properties of the two-dimensional Ginzburg-Landau equations, satisfied at the dual point
(k51/A2). Closed expressions for the free energy and the magnetization of the superconductor are derived. A
perturbative analysis in the vicinity of the dual point allows us to take into account vortex interactions, using
a scaling result for the free energy. In order to characterize the vortex/current interactions, we study vortex
configurations that are out of thermodynamical equilibrium. Our predictions agree with the results of recent
experiments performed on mesoscopic aluminum disks.
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I. INTRODUCTION

The ability to detect and manipulate vortices with gre
sensitivity in systems of small size such as mesosco
superconductors1 or atomic condensates2 has generated a
outgrowth of interest in the mechanism of creation and
nihilation of vortices and in the study of stable and me
stable vortex configurations. In particular, recent advance
the technique of Hall magnetometry3 have allowed to mea
sure the magnetization of small superconducting sam
containing only a few vortices.1,4 These experiments are con
ducted on aluminum disks well below the superconduct
transition temperature, whereas previous measurements
performed only in the vicinity of the normal/superconduc
phase boundary.5,6 In addition the magnetization measur
ments in Ref. 1 are carried out on an individual disk and
on an ensemble of disks as in Ref. 6. The radiusR and the
thicknessd of the sample used in the experiments are co
parable to the superconducting characteristic lengths, i.e.
London penetration length (l570 nm! and the coherence
length (j5250 nm!. Such a sample can neither be cons
ered to be macroscopic, nor microscopic. The system fa
rather, in amesoscopicregime where surface effects are
the same order of magnitude as the bulk effects. Thus,
magnetic response of a mesoscopic superconducting dis
an applied field depends strongly on its size and is v
different from that of a macroscopic superconductor. Wh
the radiusR of the sample is much smaller than the coh
ence length j, no vortex can nucleate, the norma
superconductor phase transition is second order and the
netizationM, as a function of the external applied fieldHe ,
has a nonlinear behavior~nonlinear Meissner effect7,8!. If R
is comparable toj, the superconducting phase transition
first order and a bistable hysteresis region appears in
M -He curve. ForR greater thanj, the phase transition is
again second order, and when the applied field excee
critical valueH1, the magnetization curve exhibits a series
discontinuous jumps corresponding to the successive ent
vortices into the sample. This qualitative interpretation
supported, at least for low applied magnetic fields, by
periodicity of the jumps which corresponds to the entrance
PRB 620163-1829/2000/62~18!/12427~13!/$15.00
t
ic

-
-
in

es

g
ere
r

t

-
he

-
s,

e
to
y
n
-

ag-

he

a
f
of

s
e
f

an additional superconducting quantum of flux into the di
For larger fields, or equivalently for higher density of vor
ces, both the period and the height of the jumps beco
smaller, a behavior related to the interactions between
vortices and to transitions between stable vortex configu
tions, with the same number of vortices.

The magnetization shows also a hysteretic behavior
pending on the direction of the field sweep, due to the pr
ence of a confining energy barrier~the absence of remanen
magnetization precludes pinning effects!. In some metastable
states, the sample may exhibit even a paramagnetic respo4

whereas in thermodynamic equilibrium a superconducto
diamagnetic.

These experimental results have led to a renewed inte
in the theory of mesoscopic superconductors. Numer
computations have shown that the phenomenolog
Ginzburg-Landau theory is well suited to describe a sup
conducting sample in the mesoscopic regime, even far fr
the critical temperature. These works have revealed phys
phenomena that play an important role in such systems~for a
review see Ref. 7!, such as the role of surface barriers f
vortex nucleation and hysteresis,9–11 the interplay between
vortex-vortex and vortex-edge interactions that explains v
tex structures in mesoscopic disks,10,9 the transition between
a giant multiple vortex state and a state with several vorti
carrying a unit quantum of flux.12

The Ginzburg-Landau free energy of a superconductor
volves two fields, the~complex! order parameterc5ucueix

and the vector potentialAW . The minimization of this free
energy leads to a set of two coupled nonlinear partial diff
ential equations forc andAW , involving the two characteristic
lengthsl and j. But the solutions depend only on one re
evant number, the phenomenological Ginzburg-Landau
rameterk defined by

k5
l

j
. ~1!

A macroscopic superconductor is said to be of type I ifk
,1/A2 and of type II ifk.1/A2. A macroscopic supercon
ductor of type II admits a stable Abrikosov vortex lattic
12 427 ©2000 The American Physical Society
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phase when the applied fieldHe lies between the first pen
etration field and the upper critical field.13 For aluminum,k
is smaller than 1/A2, hence a macroscopic sample ofAl is a
type I superconductor.

Analytical studies of the Ginzburg-Landau equations
two-dimensional systems require the use of various appr
mations since, in general, exact solutions cannot be fo
due to the nonlinearity. One approach is to linearize
equations assumingucu!1, and to decouple them by suppo
ing that the magnetic fieldB in the sample is equal to th
applied field He . This approach describes correctly th
superconducting-normal phase boundary,5,6,14–16but fails to
explain the behavior of the sample deep inside the super
ducting state. For example, in the linearized theory, all
vortices are at the center of the disk16 and therefore one
cannot study the role of surface barriers, the interaction
tween vortices, and the fragmentation of a giant vortex i
unit vortices. In addition, the critical fields corresponding
the successive entrance of vortices into the sample do
scale correctly with the size of the system~e.g., experimen-
tally, the entrance fieldH1 of the first vortex scales asR21

whereas the linear theory predicts aR22 dependence!. Of
course, in the vicinity of the upper critical field16 the linear-
ized theory agrees quantitatively with the experimental
sults.

A second approach is to use the London equation wh
can be derived from the Ginzburg-Landau equations by s
posing thatucu51 everywhere except on a finite number
isolated points, called vortices, whereucu50. London’s
equation is valid rigorously when the parameterk goes to
infinity, i.e., for extreme type II superconductors in whic
vortices are indeed pointlike. Many theoretical results ha
been derived from the London equation, such as disc
nucleation of flux lines in a thin cylinder17,18 or in a thin
disk,19,20the existence of surface energy barriers,13,21and the
computation of polygonal ring configurations of vortices
finite samples.22,23 However, whenk→`, the minimum en-
ergy is obtained for one flux quantum per vortex24,25 and
vortices have a hard-core repulsive interaction impeding
formation of a giant vortex state. Moreover, the surface
ergy barriers calculated from London’s equation are qua
tatively different from those obtained by numerically solvin
the Ginzburg-Landau equations.26 In fact, the experimenta
conditions are far off the London limit, although thinAl
disks are likely to have an effectivek greater than its mea
sured value1 of 0.28~in a thin disk, one can argue, followin
Ref. 19, that the effective London length is of the order
l2/d, and this results in a higher value ofk).

We follow another approach, less explored in the lite
ture, based on an exact result for the two-dimensio
Ginzburg-Landau equations. In an infinite plane they red
to first order differential equations that can be decoup
when the parameterk takes the special value 1/A2, called
the dual point.24,25,27At that point, the free energy is a topo
logical invariant of the system. In Ref. 28, we generaliz
this method to a finite domain with boundaries; this enab
us to classify solutions with different number of vortices a
to derive analytical expressions for the free energy and
magnetization of a mesoscopic disk as a function of the
plied field. Our results agreed qualitatively with the expe
mental data, and even quantitatively when the numbe
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vortices in the system is low. However, some important f
tures such as the nonlinear Meissner effect in a fractio
fluxoid disk, the variation of the amplitude and the period
the jumps in theM -He curve could not be described. More
over, in Ref. 28, we discussed only the case whereR is much
larger thanj and did not obtain the different regimes of th
magnetization curve when the ratioR/j is varied.

In this paper, we study the Ginzburg-Landau free ene
F not only at the dual pointk51/A2 but also in its vicinity
where vortices start to interact weakly.29 Taking into account
nonlinear effects, our calculations describe the magnetic
sponse of the sample as its size changes, providing an un
standing of the nonlinear Meissner effect and of the m
tivortex state. We shall also study nonequilibrium vort
configuration in order to determine the interaction betwee
vortex and edge currents.

The plan of this paper goes as follows. In Sec. II, so
basic features of the Ginzburg-Landau theory of superc
ductivity are recalled. In Sec. III, after studying the case
an infinite system, we generalize the Bogomol’nyi’s a
proach to a finite size superconductor and calculate its
energy at the dual point. This result is applied to an infin
cylinder in Sec. IV. The case of a mesoscopic disk is stud
in Sec. V and magnetization curves are obtained for syst
of different sizes. In Sec. VI, we obtain the free energy a
the magnetization of a cylindrically symmetric system wh
k is close to the dual point. The surface energy barrier fo
one vortex state out of thermodynamic equilibrium is calc
lated in Sec. VII. In the last section we discuss our resu
and suggest some further generalizations. Some mathem
cal details are included in the two appendixes.

II. THE GINZBURG-LANDAU THEORY
OF SUPERCONDUCTIVITY

We recall here some basic features of the Ginzbu
Landau theory and define our notations. The order param
c5ucueix is a complex number and the potential vectorAW

satisfies¹W 3AW 5BW , whereBW is the local magnetic induction
The two characteristic lengthsl and j appear as phenom
enological parameters. In this work, we measure length
units oflA2, the magnetic field in units off0/4pl2 and the
vector potential in units off0/2A2pl where the flux quan-
tum f0 is given byf05hc/2e. The Ginzburg-Landau free
energyF, defined as the difference of the free energiesF
5FS(B)2FS(0), is measured in units ofHc

2/4p whereHc

the thermodynamic field satisfiesHc5A2k(f0/4pl2). In
these units,F is given by

F5E
V

1

2
uBu21k2u12ucu2u21u~¹W 2 iAW !cu2, ~2!

where the integration is over the superconducting domainV.
The Ginzburg-Landau equations that minimizeF, become

2~¹W 2 iAW !2c52k2c~12ucu2!, ~3!

¹W 3BW 52W. ~4!

Equation~4! is the Maxwell-Ampe`re equation with a curren
densityW5Im(c* ¹W c)2ucu2AW . The unusual factor 2 that ap
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PRB 62 12 429DUAL POINT DESCRIPTION OF MESOSCOPIC . . .
pears on the right-hand side of this equation is due to
units we use, since the prefactor of the kinetic energy term
Eq. ~2! is equal to unity. The current density is related to t
superfluid velocityvW s by

vW s5
W

ucu2
5¹W x2AW . ~5!

Outside the superconducting sample,c50. The boundary
condition on the surface of the superconductor is obtained
requiring that the normal component of the current den
vanishes~superconductor-insulator boundary condition13!:

~¹W 2 iAW !cu n̂50 ~6!

heren̂ is the unit vector normal at each point to the surfa
of the superconductor.

The London fluxoid is the quantity (W/ucu21AW ), that is
identical to¹W x. Sincex is the phase of the univalued func
tion c, the circulation of the London fluxoid along a close
contourC is quantized:13,30

R
CS W

ucu2
1AW D dW l 5 R

C
¹W x•dW l 52pn. ~7!

The integern is the winding number of the phase of th
system along the contourC and is a topological characterist
of the system.

In this study, the superconducting sample is either an
finite cylinder or a thin disk, with cross section of radiusR,
placed in an external magnetic field parallel to its axis. Sin
R is an important parameter, we define the dimension
quantity

a5
lA2

R
~8!

a is supposed to be small compared to 1~typically a; 1
10 in

the experiments! unless stated otherwise. The flux created
the external and uniform magnetic fieldHe ~expressed in
units of f0/4pl2) through the cross sectionpR2 of the
sample is equal topR2He(f0/4pl2)5(He /2a2)f0. The
flux fe , in units of the flux quantumf0, is thus given by

fe5
He

2a2
. ~9!

We emphasize that, in the units we have chosen, the fluxfb

of a magnetic fieldBW through a surfaceV is obtained via the
following formula:

fb5
1

2pEV
BW •dW S5

1

2p R
]V

AW •dW l ~10!

An extra factor 1/2p appears here becauseB is given in units
of f0/4pl2, the surface in units of 2l2 and the flux in units
of f0.

Since we are studying a superconductor in an applied
ternal field, the relevant thermodynamic potential is t
Gibbs free energyG obtained fromF via a Legendre trans
formation
e
in

y
y

e

-

e
ss

y

x-
e

G5F2HeE
V

B5F2He2pfb5F24pa2fefb . ~11!

In a normal sample,c50 andB5He . Therefore, the Gibbs
free energyGN of a normal sample is given by

GN5FN2HeE
V

B5FN22pa2fe
2 . ~12!

At thermodynamic equilibrium, the superconductor sele
the state of minimal Gibbs free energy. The quantity that
are interested in, and which is measured in experiments
the magnetizationM of the superconductor due to the applie
field given by 4pM5B2He . It is obtained, at thermody
namic equilibrium and up to a constant equal to the sup
conducting condensation energy, from the difference of
~dimensionless! Gibbs energies

G5GS2GN5F12pa2fe
224pa2fefb ~13!

using the thermodynamic relation13

2M5
1

2p

]G
]fe

. ~14!

III. FREE ENERGY OF A SUPERCONDUCTOR
AT THE DUAL POINT

We now study the particular case of the dual point, d
fined by k51/A2. For this value of the Ginzburg-Landa
parameter, the free energy~2! of a two dimensional domain
V can be written as25,28

F5E
V
F1

2
~B211ucu2!21uDcu2G1 R

]V
~W1AW !dW l ,

~15!

where the operatorD is defined asD5]x1 i ]y2 i (Ax
1 iAy) and the second integral is over the boundary of
domainV.

A. The case of an infinite system

If we suppose that the domainV is infinite and supercon-
ducting at large distances,25 i.e., ucu→1 at infinity, then the
boundary integral in Eq.~15! is identical to the fluxoid. Us-
ing the quantization property~7!, we obtain

F52pn1E
V
S 1

2
~B211ucu2!21uDcu2D . ~16!

The free energy is thus minimum when Bogomol’n
equations25 are satisfied, that is when,

Dc50, ~17!

B512ucu2. ~18!

Thus, the total free energy results only from the bound
term in Eq.~15! and is a purely topological number:

F52pn. ~19!

The free energy is proportional to the number of vortices
the dual point, vortices do not interact with each other.25,29
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12 430 PRB 62E. AKKERMANS, D. M. GANGARDT, AND K. MALLICK
This fact can also be deduced from the study of the
~nonlocal! elasticity of a vortex-lattice: at the dual point, th
repulsive and the attractive contributions to the effective
teraction potential cancel each other exactly and all ela
moduli vanish identically.31

B. Finite size systems

In a finite system with boundaries, vortices do not inter
with each other at the dual point but they are repelled by
edge currents. Therefore, at thermodynamic equilibrium,
vortices collapse into a giant vortex state. Since the su
conductor under discussion has a circular cros ssection,
giant vortex~or multivortex! is located at the center and th
system is invariant under cylindrical symmetry. In afinite
size mesoscopic superconductor at the dual point, the bo
ary integral, in Eq.~15!, cannot be identified with the fluxoid
becauseucu is in general different from 1 on the boundary
the system. This quantity is no more a topological integer
a continuously varying real number. The two terms of E
~15! cannot, therefore, be minimizedseparatelyto obtain the
optimal free energy. In Ref. 28, we found a method to c
cumvent this difficulty: if the system is invariant under c
lindrical symmetry, i.e., all the vortices are at the center
the disk, then the current density has only an azimuthal c
ponentu . The currentu has opposite signs near the cen
~where the vortex is located! and at the edge of the dis
~where Meissner currents oppose the penetration of the
ternal field!. Hence, there exists a circleG on which u
vanishes.28 Along G, we have

W1AW 5
W

ucu2
1AW 5¹W x and therefore

R
G
~W1AW !dW l 52pn. ~20!

The domainV can thus be divided into two subregionsV
5V1øV2 , such that the boundary betweenV1 and V2 is
the circle G. By convention, we callV1 the bulk and the
annular ringV2 the boundary region~see Fig. 1!.

FIG. 1. The sample cross-section is divided into two sub
mains by the circleG. The arrows indicate the direction of th
current.
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Numerical solutions of the Ginzburg-Landau equations
a two dimensional superconductor, with cylindrical symm
try, clearly show the separation of the sample cross sec
into two distinct subdomains. In Fig. 2, we have plotted t
order parameter and the magnetic field in a cylinder of rad
R510lA2 with one vortex at the center. These two quan
ties vary only near the center and near the edge: there
whole intermediate region in whichucu andB remain almost
constant. When the system is large enough, these con
values are, to an excellent precision, identical to
asymptotic values ofucu and B in an infinite system. The
current vanishes for a value ofr for which dB/dr50, and
this determines the radius of the circleG. In Fig. 2, this
corresponds approximately tor .5.5, though practically, the
circle G can be placed anywhere in the saturation reg
where the current is infinitesimally small.

Although the Bogomol’nyi equations~17!,~18! do not ge-
nerically minimize the Ginzburg-Landau free energy in
arbitrary domain with boundaries, we compared the beha
of ucu andB in the bulk subdomainV1 and we noticed that
Eq. ~18!, B512ucu2, is still satisfied up to numerical preci
sion ~see Fig. 3!. Hence, if the system is large enough so th
ucu and B have relaxed to their asymptotic values near

- FIG. 2. Behavior of the order parameter and the magnetic fi
at the dual point for a cylinder of radius 10lA2 containing one
vortex.

FIG. 3. Comparison betweenB and 12ucu2 in a cylinder of
radius 10lA2 containing one vortex.
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PRB 62 12 431DUAL POINT DESCRIPTION OF MESOSCOPIC . . .
boundary ofV1, as discussed above, the Bogomol’nyi equ
tions provide an excellent approximation inV1 . ~A rigorous
proof of the fact that the Bogomol’nyi equations are n
even locally, the true minimizers of the Ginzburg-Land
free energy, requires analycity arguments and can be fo
in Refs. 32,33.! Thus, using Eqs.~15! and~20!, we conclude
that at the dual point the free energy ofV1 can be calculated
as that of an infinite domain, namely,

F~V1!52pn. ~21!

We also emphasize that the flux inV1 is quantized and one
has

1

2pEV1

B5n. ~22!

To calculateF(V2), the identity ~15! valid at the dual
point is of no use anymore, sinceucu is in general different
from 1 at the boundary, and the boundary integral in Eq.~15!
cannot be identified to the fluxoid. We therefore have to
back to the definition~2! of the Ginzburg-Landau free energ
which becomes at the dual point

F~V2!5E
V2

B2

2
1~¹ucu!21ucu2u¹W x2AW u21

~12ucu2!2

2
.

~23!

The assumption of cylindrical symmetry implies thatx
5nu whereu is the polar angle andn the number of vortices
present at the center of the disk. Examining again Fig. 2,
observe that inV2, the order parameter and the magne
field vary from their values on the edge to their saturat
values over a region of widthd, which is of order 1 in units
of lA2. ~Indeed, one has for a thick systemd.l at the dual
point. For a thin film of thicknessd, d.l2/d in the London
limit.19 Since we are considering a mesoscopic regime
which d.l, both expressions indicate thatd is of order 1.!
The lengthd therefore represents the typical distance o
which the integrand in Eq.~23! has a non-negligible value.

With the help of this observation, we shall estima
F(V2) using a variational ansatz: we shall consider that
-

,

nd

o

e

n

n

r

e

modulus of the order parameter has a constant valuec0 over
a ring of width d, included inV2 and thatAW and BW decay
exponentially with a characteristic lengthd from their
boundary value to their bulk value. Clearly, our approxim
tion will be valid only if the width ofV2 is large enough
compared to 1. We first remark that our ansatz is compat
with the boundary condition~6!, which reduces here to
dc/dR50 and that it allows us to neglect the curvature te
(¹ucu)2 in Eq. ~23!. To evaluate the term proportional to th
superfluid velocityvs(r ) ~5!, we first notice that, due to the
Meissner effect, it decreases from the boundary atr 5R with
a behavior well described by

vs~r !5vs~R!e2(R2r )/d ~24!

with vs(R)5a(n2fb). To obtain the last equality we use
that the boundary value of the vector potential isAW (R)
5afbûu , where fb is the total flux through the system
Hence, for a constant amplitudec0 of the order parameter
we have

1

2p
F~V2!5

d

2a
@c0

2vs
2~R!1~12c0

2!2#1
1

2pEV2

B2

2
.

~25!

The magnetic contribution in Eq.~23! is obtained from
the typical magnitudeB̄ of the magnetic field inV2 deter-
mined using Eqs.~10! and ~22! as

fb5
1

2pEV
B5

1

2pEV1

B1
1

2pEV2

B5n1
d

a
B̄. ~26!

Thus, using the fact thatB2 decrease exponentially with
characteristic lengthd/2, we estimate the contribution of th
magnetic energy toF(V2) as being

1

2pEV2

B2

2
5

d

2a

B̄2

2
5

a

4d
~n2fb!2. ~27!

After substituting this expression into Eq.~25! we minimize
F(V2) with respect toc0. The optimal variational value o
c0 is given by
c0
25H 12

1

2
vs

2~R!512
a2

2
~n2fb!2 if ua~n2fb!u<A2,

0 if ua~n2fb!u.A2.

~28!
ctor
Inserting these expressions in Eq.~25!, we obtain the varia-
tional free energyF(V2):

1

2p
F~V2!5H Avs

2~R!2Bvs
4~R! if ua~n2fb!u<A2,

d

2a
1

1

4ad
vs

2~R! if ua~n2fb!u.A2

~29!

with A andB defined by
A5
d

2a S 11
1

2d2D ,

B5
d

8a
. ~30!

The total free energy of the mesoscopic supercondu
containingn vortices, at the dual point, is thus
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1

2p
F~n,fb!

5n1H Avs
2~R!2Bvs

4~R! if ua~n2fb!u<A2,

d/2a1vs
2~R!/4ad if ua~n2fb!u.A2.

~31!

This energy is the sum of two contributions:~i! a bulk term
proportional ton which is a topological quantity at the dua
point and ~ii ! a boundary term, reminiscent of the well-
known ‘‘Little and Parks’’ free energy13 ~this boundary term
can be given a geometric interpretation in terms of a geo
sic curvature28,34!.

IV. FREE ENERGY AND MAGNETIZATION
OF A CYLINDER AT THE DUAL POINT

We now apply the relations~31! to the simple case of an
infinitely long superconducting cylinder of radiusR.l, ly-
ing in an external fieldHe directed along its axis. There ar
two contributions to the total fluxfb : the flux of n vortices
present at the center of the sample and a fraction of
applied fluxfe localized near the boundary and proportion
to l/R ~due to the Meissner effect!. Hence,

fb5n12afe with fe5
He

2a2
. ~32!

The exact numerical coefficient in front of the termafe does
not affect the result of our calculation; we take it equal to
the value obtained in the London limit.17 The total free en-
ergy, using Eq.~31! and the fact thatvs(R)522a2fe , is
given by

1

2p
F~n,fe!

5n1H 4a4~Afe
224a4Bfe

4! if a2ufeu<1/A2,

d

2a
1

a3

d
fe

2 if a2ufeu.1/A2.

~33!

Using Eqs.~11! and~33!, the Gibbs free energy,G(n,fe), of
a cylinder containingn vortices at the dual point is given b

1

2p
G~n,fe!5n~122a2fe!1P~fe!, ~34!

whereP(fe) is a polynomial infe that does not depend o
n. Hence, all the curvesG(n,fe) meet at

fc5
1

2a2
. ~35!

For values offe less than this critical value, the free ener
is minimized if there are no vortices. Atfe51/2a2 all vor-
tices are nucleated simultaneously and the sample beco
normal. This value corresponds to a critical applied fieldHe
which is equal to 1 in our units, or restoring the units ba
and recalling thatk51/A2
e-

e
l

,

es

,

He5
f0

4pl2
5

f0

2A2plj
. ~36!

This is precisely the formula for the thermodynamic critic
field of a superconductor13 ~which, for a cylindrical super-
conductor withk<1/A2, is the same as the upper critic
field!. The magnetizationM of the cylinder satisfies the lin
ear Meissner effect

2M5
1

2p

]G~n,fe!

]fe
5He~12ca! with

c542dS 11
1

2d2D . ~37!

The macroscopic result13 is 2M5He ; the finite-size correc-
tion to the susceptibility is proportional toR21.

Thus, the well-known results for an infinite supercondu
ing cylinder can easily be retrieved from the dual point a
proach. We now proceed to the study of the magnetic
sponse of a thin disk.

V. A MESOSCOPIC DISK AT THE DUAL POINT

To modelize the experimental sample of Refs. 1, 4,
consider a mesoscopic disk of thicknessd smaller thanj and
l. Because the disk is very thin, we take the order param
and the magnetic field to be constant across the thickned
of the sample.28 This enables us to study the disk as
effective two-dimensional system. However, unlike the ca
of a long cylindrical sample, strong demagnetization effe
are present in a thin disk. The value ofB near the edge of the
disk is larger than the applied fieldHe because geometric
demagnetization effects induce a distortion of the flux line9

Hence the continuity conditionB(R)5He ~32! valid for a
long cylinder does not apply to describe a thin disk.

In order to find a more suitable choice for the bounda
condition for a thin disk, we notice that the higher valu
of the magnetic field at the boundary, a feature which h
been obtained from numerical computations,35 results
from a demagnetization factorN close to one, such that13

H5He/12N in the Meissner phase. The flux lines are d
torted by the sample and they pile up near the edge of
disk. To describe this, we shall thus take as boundary co
tion for a thin disk, the expression proposed in Ref. 28 wh
consists in taking the potential-vector at the edge of the d
equal to its applied value, i.e.,

AW ~R!5feaûu ~38!

or

fb5fe ~39!

Again, this relation does not mean that the fieldB is uni-
form and equal to its external strength. A more refined va
for the boundary condition could have been obtained
using the expressionN.12(p/2)(d/R! in the limit d!R of
a flat disk. Then, H.(2R/pd)He or equivalently fb
.(4d/d)fe . But, sinced.d, we shall use for convenienc
the simpler boundary condition given above.
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Substitutingvs(R)5a(n2fe) in ~31!, the free energyF(n,fe) of a thin disk containingn vortices is found to be

1

2p
F~n,fe!5n1H Aa2~n2fe!

22Ba4~n2fe!
4 if au~n2fe!u<A2,

d

2a
1

a

4d
~n2fe!

2 if au~n2fe!u.A2
~40!
sin
n

ul
e
iu

s

ce

n
a
ld

u

a
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la

f.
u

ith

m
gy.

n

and the corresponding Gibbs free energy is obtained u
Eq. ~13!. In our previous work,28 we obtained an expressio
which can be retrieved from Eq.~40! by takingd51 and by
neglecting the magnetic energy as well as thea3 term. De-
spite these crude approximations, our analytical res
agreed satisfactorily with experimental data, though th
could neither describe the behavior of a disk with a rad
smaller thanl andj, nor its behavior whenR is increased.
We apply our present approach to a thin disk with a radiuR
much smaller thanj, and then we consider the caseR.j.

A. Fractional fluxoid disk and nonlinear Meissner effect

We now consider a disk small enough so that no vorti
can nucleate, i.e., its radiusR is less thanj ~such a system is
sometimes called afractional fluxoiddisk7!. If there are no
vortices, the domainV1 is empty andV5V2. Since the
radius ofV is small with respect to bothl andj, we can no
longer use the expression~40! for the free energy, but we ca
assume that the amplitudeucu of the order parameter has
uniform valuec0 all over the disk and that the magnetic fie
equals the external applied fieldB5He . Moreover, in the
absence of vortices,¹W x50, and we can choose the Landa
gaugeA(r )5rB/2. Starting from Eq.~23!, and after mini-
mizing the free energy with respect toc0, we find the dif-
ference between the free energies of the superconducting
the normal states to be

G
2p

5
fe

2

4 S 12
a2

4
fe

2D if afe<A2,

G
2p

50 otherwise. ~41!

From Eq.~14! we deduce the magnetizationM of the sample:

2M5
1

2p

]G
]fe

5
1

2 S fe2
a2

2
fe

3D if afe<A2,

M50 otherwise. ~42!

The curve representing this magnetization is a cubic. T
upper critical field isfe51/a, i.e., He}R21; this scaling
agrees with the linear analysis of Ref. 16 in the limitR!j.
The transition between the superconducting phase and
normal phase is of second order. In Fig. 4, we plot the re
tion ~42! for 2M as a function of the external fluxfe . The
dots represent the experimental points obtained from Re
The analytical curve has been scaled so that the maxim
value of the magnetization and the critical flux coincide w
the corresponding experimental data.
g
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B. Mesoscopic disk with vortices

We now consider a disk withR>j. The Gibbs free en-
ergy differenceG(n,fe) of the disk withn vortices is given
by Eq. ~13!. The entrance fieldHn of the n-th vortex is ob-
tained by solving the equationG(n,fe)5G(n21,fe) which,
using Eq.~40!, reduces to

2

d
5aS 11

1

2d2D @~n212fe!
22~n2fe!

2#

2
a3

4
@~n212fe!

42~n2fe!
4#, ~43!

Using the following change of variable :

fe5n2
1

2
1

y

2a
~44!

we obtain an equation fory

2

d
5S 11

1

2d2D y2
y3

8
~45!

~a term a2/8 has been neglected in comparison to 1!. The
solution of Eq.~45! that satisfiesy>0 ~becausefe>0) de-
pends on the value of the parameterd. One can show that the
polynomial P(y)5(111/2d2)y2y3/422/d always has a
positive root. We retain only the smaller positive rooty0 of
Eq. ~45! because in thermodynamic equilibrium, the syste
always chooses the state with minimal Gibbs free ener
Restoring the usual units, and using Eq.~44!, the nucleation
fields are found to be

FIG. 4. Magnetization of a fractional fluxoid disk. Compariso
between the experimental measurements~Ref. 8! ~for R50.31mm!
and the theoretical curve taken from the expression~42!.
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H15y0

f0

2pA2Rl
1

f0

2pR2 ,

Hn115H11n
f0

pR2
. ~46!

When the applied fieldHe lies betweenHn and Hn11, the
disk contains exactlyn vortices and its magnetization is ca
culated using Eq.~14!. In Fig. 5, we have plotted the mag
netization of a mesoscopic disk withR510lA2 both from
exact numerical solutions of the Ginzburg-Landau equati
and from the expression~14!. The agreement is very satis
factory. For larger values of the numbern of vortices, a
discrepancy between the theoretical and the numerical
pressions appears which results from the interaction betw
the vortices and the edge currents that we have negle
until now.

The expression~31! is also in good agreement with pre
vious experimental and numerical results.1,7 A nonlinear
Meissner behavior still exists before the nucleation of
first vortex as well as between successive jumps. The fi
H1 of nucleation of the first vortex scales asR21. The tran-
sition between a state withn vortices to a state with (n
11) vortices is of first order since the entrance of a n
vortex induces a jump in the magnetization. These jumps
of constant height and have a periodf0 /pR2. If we use the
experimental values of Ref. 1 forR andl we obtain a value
for the period of the jumps which is in very good agreem
with the experimental value.

If R is smaller than a threshold value, the system i
fractional fluxoid disk with a second order phase transiti
If R.1, a vortex can nucleate in the disk and a first ord
transition occurs. WhenR increases, the number of jump
increases~asR2). These qualitative changes of behavior w
increasingR, which are the important features obtained fro
the present model, have been indeed observed in experim
carried out on disks of different sizes. In an earlier study28

we obtained satisfactory values for the nucleation fields

FIG. 5. Behavior of the magnetization of a disk with radius
lA2, at the dual point. Dots represent the numerical solution
the solid curve the expression~14! together with Eq.~31!. The only
free parameterd has been taken tod50.76l.
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the fractional fluxoid disk, and the different regimes obtain
by increasingR could not be explained because we neglec
subdominant terms that are retained here.

It has been observed experimentally that the period
the height of the jumps cease to be constant when the n
ber of vortices increases. These effects are related bot
interactions between the vortices and between vortices
edge currents. The purpose of the next section is to take
account these interactions and to obtain a better estimate
the free energy and the magnetization of a mesoscopic d

VI. WEAKLY INTERACTING VORTICES IN THE
VICINITY OF THE DUAL POINT

So far we have obtained analytical expressions for
free energy and the magnetization of a thin superconduc
disk at the dual point.When the Ginzburg-Landau paramet
has the special valuek51/A2 vortices do not interact. This
fact, discussed in Refs. 25,29,31, implies that the bulk f
energy does not depend on the location of the vortices. H
ever, whenk is away from the dual point, the vortices sta
interacting among themselves; therefore the bulk free ene
ceases to be a purely topological integern and the vortex
interaction energy must be taken into account. Becaus
this interaction the vortices are no longer necessarily pla
at the center of the disk: in an equilibrium configuration, t
cylindrical symmetry can be broken and the optimal fr
energy may correspond to geometrical patterns such as r
lar polygons, polygons with a vortex at the center, or ev
rings of polygons.10,23,26 It is the competition between th
interaction amongst vortices and the interaction between
tices and edge currents that determines the shape of the
librium configuration.

Analytical studies were mostly carried out in the limitk
→` and were based on the London equation17,20,23for which
vortices are point-like and have a hard-core repulsion.13 We
shall study a regime wherek is slightly different than 1/A2,
i.e., a regime where vortices interactweakly. We shall deter-
mine, to the leading order in (k21/A2), the interaction en-
ergy of the vortices.

A. The interaction energy

In order to obtain an estimate for the free energy o
system of interacting vortices, we have solved numerica
the Ginzburg-Landau equations for a cylindrically symmet
infinite system withn vortices located at the center~these
equations are explicitly written in Appendix A!. The free
energy per vortex is plotted in Fig. 6 as a function ofk, for
n51, 2, 3, 5, and 10. At the dual point, the free energy p
vortex is equal to 1 and is independent ofn: all the curves
pass through this point. Whenk is different from 1/A2 the
interaction between the vortices changes the value of the
energy. One can deduce from Fig. 6 that vortices attract e
other fork less than 1/A2 while they repel each other whe
k>1/A2.

From our numerical results we observed that in the vic
ity of the dual point, the free energyF(k,n) satisfies the
following scaling behavior:

1

2p
F~k,n!5n~kA2!a(n). ~47!

d
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We note that the relation~47! is exact at the dual point. Fo
n51, F(k,1) is nothing but the self-energyUS of a vortex. In
the vicinity of the dual point we can write

1

2p
F~k,1!511a~1!~kA221!. ~48!

The values of the functiona(n), as determined from numeri
cal computations, forn ranging from 1 to 30 are given in
Table I.

We can now derive an approximation for the free ene
of a n vortices configuration located at the center of the d
and fork close to 1/A2. Since this configuration is cylindri
cally symmetric, one can again use the circleG to separate
the system into two subdomainsV1 and V2 and then esti-
mate separately the two contributions to the total free ene
From our numerical scaling result, we deduce a formula
the bulk free energy of a finite system which is valid fork
close to the dual point. Expanding Eq.~47! in the vicinity of
the dual point, we obtain

1

2p
F~V1!5n1~kA221!na~n!, ~49!

FIG. 6. Behavior of the free energy per vortexF/n5F/2pn as
a function ofA2k for different values ofn, the number of vortices
At the self-dual pointA2k51, the energyF(n)5nF(1) so that the
interaction energy between the vortices vanishes identically.

TABLE I. The numerical values of the functiona(n) for n
ranging from 1 to 30.

No. a(n) No. a(n) No. a(n)

1 0.417 11 0.785 21 0.841
2 0.544 12 0.794 22 0.845
3 0.613 13 0.802 23 0.847
4 0.658 14 0.809 24 0.850
5 0.690 15 0.815 25 0.853
6 0.715 16 0.821 26 0.855
7 0.734 17 0.826 27 0.857
8 0.750 18 0.830 28 0.859
9 0.764 19 0.834 29 0.860

10 0.775 20 0.838 30 0.862
y
k

y.
r

and the boundary contribution, obtained via a variational
satz is now given by

1

2p
F~V2!5H Avs

2~R!2B~k!vs
4~R! if ua~n2fe!u<2k,

k2d/a1vs
2/4ad if ua~n2fe!u.2k,

~50!

whereA is still given by the relation~30! while B(k) is now
given byB(k)5d/16ak2.

The magnetization curve of Fig. 7 shows both the nume
cal results and a plot of the magnetization deduced from
~50! using Eq.~14!. We notice that the magnetization of
mesoscopic disk is modified when the interactions betw
vortices are taken into account. The period and the amplit
of the jumps are not constant anymore; in addition, the n
linearity of the curve between two successive jumps is
hanced. These important features of theM -He curve were
observed in previous experimental and numerical result1,8

Here we have shown that these features are a consequen
vortex interactions.

B. Two-body interaction energy

The exponenta(n) in the relations~47! or ~49! allows us
to describe the interacting potential between vortices. I
interesting to compare the result~47! with the energy ofn
vortices obtained by assuming a two-body interaction. In t
case the energy of the whole system ofn vortices can be
written as a sum of two terms

1

2p
F5nUS1

n~n21!

2
UI~0!, ~51!

where US represents, as noted before, the self-energy o
vortex andUI the two body interaction potential. Using th
data of Ref. 29, we can estimate these two energies to
leading order in (kA221). We obtained

US511b1~kA221! with b1.0.4, ~52!

FIG. 7. Magnetization curve of a disk of radius 10lA2, as a
function of the applied field forkA250.9. Dots represent the nu
merical solution and the solid curve the expression~14! together
with Eqs.~50!,~47!. The only free parameterd has been taken to be
d50.76l.
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UI~r !5b2~kA221!minH 1,expF2CS r 2
1

k D G J ~53!

with b2. 1
4 and C. 1

2 . From this analysis, and assumin
only two-body interaction, we derive an approximate va
for the free energy of a configuration withn vortices placed
at the same point:

1

2p
F~k,n!5nUS1

n~n21!

2
UI~0!

.n1~kA221!nS b11b2

n21

2 D . ~54!

If we compare this relation to the previous expression~49!
we find that instead of the sublinear functiona(n) we have a
linear behaviorb11@(n21)/2#b2. Hence, the functiona(n)
takes into account not only two-body interactions amo
vortices but also multiple interactions which are present
values ofk around the dual point unlike the largek limit
where only the two-body contribution remains.

VII. VORTEX ÕEDGE INTERACTIONS IN SYSTEM
WITHOUT CYLINDRICAL SYMMETRY

In this section, we calculate the energy at the dual poin
a system with only one vortex that is not located at the ce
of the disk. Such a configuration is not in thermodynam
equilibrium and its free energy can be related to a surf
energy barrier~analogous to the classical Bean-Livingst
barrier in the London limit!. We first show that even whe
the cylindrical symmetry is broken, the system can still
separated into bulk and edge domains.

A. Bulk and edge domains. The curveG

We have seen in Sec. III B that when one or more vorti
are located at the center of the disk, there exists a circleG on
which the current vanishes identically. This circle allowed
to define a bulk and an edge domain and to identify the b
energy with the fluxoid.

If all the vortices are not placed at the center of the d
~i.e., the configuration is not cylindrically symmetric! there is
in general no curve of zero current. However the curveG has
now the following property: at each pointM of G the current
W is normal toG. The existence of such a curve is shown
the following argument. Consider a disk with only one vo
tex V situated at a point different from the center of the dis
Take a line segment joining the vortexV to the closest point
Son the boundary of the disk~see Fig. 8!. The component of
the current density normal to theVS segment changes it
sign when one goes fromV to S. Hence, there exists a poin
M along this segment where the current either vanishes o
parallel toVS. To draw the curveG we start fromM in a
direction orthogonal to theVS segment, and thenG is con-
structed via infinitesimal steps by imposing that at a po
M 85M1dM, very close toM, the direction ofG is orthogo-
nal to the direction of the current atM 8.

Although we lack a general proof, we believe on topolo
cal grounds that for vortices at arbitrary positions, there
ways exists aG curve which is everywhere orthogonal to th
current ~one should note thatG does not necessarily hav
e

g
r

f
er
c
e

e

s

s
lk

k

.

is

t

-
l-

only one connected component!. In Ref. 36, we present a
numerical construction ofG. In the sequel of this work we
assume thatG exists, that it encircles all the vortices, an
consists of one or many simple closed curves. We shall
the curveG the separatrix.

Using G, the domainV can be decomposed in two re
gionsV1 andV2 such that~i! V1øV25V, ~ii ! V1 contains
all the vortices (V1 may have multiply connected compo
nents!, ~iii ! V2 contains the edge of the disk,~iv! the sepa-
ratrix G is the boundary betweenV1 and V2 and is every-
where normal to the current density.

The remarkable property of the separatrix implies th
alongG one can write

R
G
~W1AW !dW l 5 R

G
S W

ucu2 1AW D dW l 5 R
G
¹W x•dW l ~55!

since alongG, W•dW l 50. Since the separatrix is the bounda
of V1, the property~55! ensures that the total magnetic flu
throughV1 is quantized. Hence, at the dual point, we c
again use the method of Bogomoln’yi and find the free e
ergy of V1 to be a purely topological number, just as for a
infinite domain, even if the cylindrical symmetry is broken

B. Free energy of one vortex: the surface energy barrier

As before, we estimate the contributionF(V2) to the total
free energy via a variational ansatz, taking the modulus
the order parameter to be constant. To obtain a qualita
result for the surface energy barrier we neglect the magn
energy so that, at the dual point, we have

1

2p
F~V2!'E

V2

ucu2u¹W x2AW u21
~12ucu2!2

2

'
d

2a
@c0

2^vs
2&1~12c0

2!2#, ~56!

where

FIG. 8. The separation of a system without cylindrical symm
try in two subdomains by a curveG.
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^vs
2&5E du

2p
u¹W x2AW ~R!u2 ~57!

is the superfluid velocity square averaged over the bound
of the disk. As before, we have replaced the integral overV2
by a line integral along the boundary of the sample~i.e., the
disk of radiusR) multiplied by an effective lengthd. The
function x appearing in Eq.~56! is the phase of the orde
parameter, and the vector potential is, as before, equal t
value on the boundary of the sample. Optimizing Eq.~56!
with respect toc0 we find that

c0
2512

^vs
2&

2
, ~58!

1

2p
F~V2!5

d

2a S ^vs
2&2

^vs
2&2

4 D ~59!

for ^vs
2&<A2. The phase functionx and the vector potentia

near the edge of the disk are calculated in Appendix B.
ing these results, we obtain~for n51):

1

2p
F~V2!5

d

2a S a~12fe!
22

a3

4
~12fe!

4D
1 f ~x,a,fe21!d. ~60!

The function f (x,a,fe21) determines the dependence
the free energy on the positionx of the vortex; hence, it
measures the interaction energy between the edge cur
and the vortex as a function of its position. It is given by

f ~x,a,fe21!5
2ax2

12x2
~fe21!2S 12a2

~fe21!2

12x2 D .

~61!

From this expression, we observe that the edge currents
to confine the vortex inside the system. In Fig. 9 the surf
energy as a function of the positionx of the vortex is plotted.
According to Eq.~58!, only the increasing part of the curv
is physical. We nevertheless plot the curve defined by
~61! in the whole range 0<x<1 in order to emphasize th
similarity between our result and the well-known Bea
Livingston surface barrier effect that was first derived us
the London theory.21,13

FIG. 9. Confining energy of a vortex inside a disk due to ed
currents.
ry
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VIII. CONCLUSION

In this work, we have obtained analytical results for t
free energy and the magnetization of a mesoscopic super
ductor. We have used a known exact solution for the tw
dimensional Ginzburg-Landau equations in an infinite pla
valid at the dual point, to study a finite system with boun
aries. With the help of numerical simulations, we have c
ried out a perturbative calculation in the vicinity of the du
point. This approach enabled us to study thermodynamic
stable states but also metastable states~to obtain a surface
energy barrier!. This model gives theoretical insights into th
physical mechanisms involved in the experimental results
Refs. 1,4 and our analytical results agree quantitatively w
experimental measurements. In fact, other related thermo
namic quantities such as the surface tension measuring
thermodynamic stability of vortex states can also be co
puted along this way and one could generalize to tw
dimensional systems previous results, already known in
dimension.38

More generally, we believe that a theoretical study in t
vicinity of the dual point provides a lot of information abou
the Ginzburg-Landau equations. Although one usually re
on exact results derived from London’s equation, one sho
be aware of the fact that these results agree with nume
simulations of Ginzburg-Landau equations only whenk is
large ~typically k>50). We verified that the behavior w
found in the vicinity of the dual point, such as the scaling
the free energy, remains valid whenk ranges from 0.1 to 10
and this interval of values is indeed relevant for many co
ventional superconductors.

Our study can be extended in many directions. The s
ing results in the vicinity ofk51/A2 were derived from
numerical simulations: a systematic perturbative expans
around the dual point would put them on a more rigoro
basis. Secondly, a linear stability analysis of the cylindrica
symmetrical solution37 should allow to understand the frag
mentation transition between a giant vortex and unit vortic
Since the separatrixG exists even for vortex configuration
breaking cylindrical symmetry, our approach can be used
analyze hysteretic behavior of metastable states, and to s
polygonal vortex configurations found numerically in mes
scopic superconductors.9,10
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APPENDIX A: THE GINZBURG-LANDAU EQUATIONS
IN A CYLINDRICALLY SYMMETRIC SYSTEM

For a cylindrically symmetric system, we can usec

5 f (r )einu andAW 5A(r )êu wheren is a non-negative intege
which represents the number of vortices at the center of
system. We also define the superfluid velocityvW s

5vs(r )êu , where

vs~r !5S n

r
2A~r ! D . ~A1!

In this case the Ginzburg-Landau equations are
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2f 522k2f ~12 f 2!, ~A2!
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~rvs! D52vsf

2. ~A3!

It is convenient to define the quantityp(r )5rvs(r ). The
magnetic fieldBW 5B(r )êz is given in terms ofp(r ) by

B~r !52
1

r

dp

dr
. ~A4!

We obtain finally two coupled ordinary differential equatio

f 9522k2f ~12 f 2!1p2f 2/r 22 f 8/r , ~A5!

p952p f21p8/r , ~A6!

with the following boundary conditions atr 5a21 for nÞ0:

f ~0!50, f 8~a21!50,

p~0!5n, p~a21!5n2fe ~A7!

for a disk and

f ~0!50, f 8~a21!50,

p~0!5n, p8~a21!522afe ~A8!

for a cylinder. These are the equations we have solved
merically using the relaxation method.39 From the analysis of
the equations~A6! we deduce the following behavior in th
vicinity of the center of the disk:

f ;r n and p;r 2 when r→0.

The free energy~2! is then given in terms of the solutio
of Eq. ~A6! by
.
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1k2~12 f 4! D . ~A9!

APPENDIX B: PHASE AND VECTOR POTENTIAL
OF AN OFF CENTERED CONFIGURATION

WITH ONE VORTEX

In this appendix we measure the distances in units ofR, so
the disk has unit radius. Suppose that the vortex is locate
a distancex from the center of the disk (0<x,1). The
phasex(r,u) of the order parameter satisfiesDx50 every-
where on the disk except on the vortex with boundary c
dition n̂•¹W x50

Using the image method, the phasex(r,u) at a point
located at a distancer from the center of the disk~with 0
<r<1) is given by20

x~r,u!5Im lnS r exp~ iu!2x

r exp~ iu!2x21D , ~B1!

where Im denotes the imaginary part of a complex-valu
function. Or equivalently

tanx~r,u!5
12x2

11x2

sinu

cosu2~r1r21!/~x1x21!
. ~B2!

On the boundary of the disk,r51, and one finds that

]x

]u
5

12x2

11x2

1

122x/~11x2!cosu
,

]x

]r
50 ~B3!

therefore

E du

2p
u¹W x~1,u!u25a2

11x2

12x2
. ~B4!

The vector potentialAW (R) at the boundary of the sampl
is a function of the polar angleu since the vortex is not at the
center of the disk. We determineAW (R) from the following
conditions:

¹W •AW 50, R
]V

AW ~R!•d lW5fe

and on the boundaryAW (R)•n̂50. The following choice:

AW ~R!5fe¹W x ~B5!

valid near boundary of the system, satisfies these requ
ments.
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