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We present an analysis of the magnetic response of a mesoscopic superconductor, i.e., a superconducting
sample of dimensions comparable to the coherence length and to the London penetration depth. Our approach
is based on special properties of the two-dimensional Ginzburg-Landau equations, satisfied at the dual point
(k=1/\/2). Closed expressions for the free energy and the magnetization of the superconductor are derived. A
perturbative analysis in the vicinity of the dual point allows us to take into account vortex interactions, using
a scaling result for the free energy. In order to characterize the vortex/current interactions, we study vortex
configurations that are out of thermodynamical equilibrium. Our predictions agree with the results of recent
experiments performed on mesoscopic aluminum disks.

[. INTRODUCTION an additional superconducting quantum of flux into the disk.
For larger fields, or equivalently for higher density of vorti-
The ability to detect and manipulate vortices with greatces, both the period and the height of the jumps become
sensitivity in systems of small size such as mesoscopismaller, a behavior related to the interactions between the
superconductofsor atomic condensatedas generated an Vvortices and to transitions between stable vortex configura-
outgrowth of interest in the mechanism of creation and antions, with the same number of vortices.
nihilation of vortices and in the study of stable and meta- The magnetization shows also a hysteretic behavior de-
stable vortex configurations. In particular, recent advances ipending on the direction of the field sweep, due to the pres-
the technique of Hall magnetometrizave allowed to mea- ence of a confining energy barriéhe absence of remanent
sure the magnetization of small superconducting samplegiagnetization precludes pinning effecte some metastable
containing only a few vortices? These experiments are con- states, the sample may exhibit even a paramagnetic re$ponse
ducted on aluminum disks well below the superconductingvhereas in thermodynamic equilibrium a superconductor is
transition temperature, whereas previous measurements wesi@magnetic.
performed only in the vicinity of the normal/superconductor These experimental results have led to a renewed interest
phase boundary® In addition the magnetization measure- in the theory of mesoscopic superconductors. Numerical
ments in Ref. 1 are carried out on an individual disk and notomputations have shown that the phenomenological
on an ensemble of disks as in Ref. 6. The raduand the Ginzburg-Landau theory is well suited to describe a super-
thicknessd of the sample used in the experiments are com<conducting sample in the mesoscopic regime, even far from
parable to the superconducting characteristic lengths, i.e., tHge critical temperature. These works have revealed physical
London penetration length\(70 nm and the coherence phenomena that play an important role in such systéonsa
length (¢=250 nm. Such a sample can neither be consid-review see Ref. ){ such as the role of surface barriers for
ered to be macroscopic, nor microscopic. The system falls/ortex nucleation and hysteresis;' the interplay between
rather, in amesoscopicgegime where surface effects are of vortex-vortex and vortex-edge interactions that explains vor-
the same order of magnitude as the bulk effects. Thus, théex structures in mesoscopic diss)the transition between
magnetic response of a mesoscopic superconducting disk @giant multiple vortex state and a state with several vortices
an applied field depends strongly on its size and is vengarrying a unit quantum of flu¥
different from that of a macroscopic superconductor. When The Ginzburg-Landau free energy of a superconductor in-
the radiusR of the sample is much smaller than the coher-volves two fields, thécomple® order parametes=|y|e'X
ence length £, no vortex can nucleate, the normal/ and the vector potentiah. The minimization of this free
superconductor phase transition is second order and the magrergy leads to a set of two coupled nonlinear partial differ-
netizationM, as a function of the external applied figtth,  ential equations fo andA, involving the two characteristic
has a nonlinear behavig¢nonlinear Meissner effec). If R lengthsh and ¢&. But the solutions depend only on one rel-

is comparable t&, the superconducting phase transition iSeyant number, the phenomenological Ginzburg-Landau pa-
first order and a bistable hysteresis region appears in thgymeterx defined by

M-H, curve. ForR greater tharé, the phase transition is

again second order, and when the applied field exceeds a A

critical valueH ,, the magnetization curve exhibits a series of k=g )
discontinuous jumps corresponding to the successive entry of

vortices into the sample. This qualitative interpretation isA macroscopic superconductor is said to be of type k if
supported, at least for low applied magnetic fields, by the<1/\/2 and of type Il ifx>1/\/2. A macroscopic supercon-
periodicity of the jumps which corresponds to the entrance ofluctor of type Il admits a stable Abrikosov vortex lattice
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phase when the applied field, lies between the first pen- vortices in the system is low. However, some important fea-
etration field and the upper critical field For aluminum,x  tures such as the nonlinear Meissner effect in a fractional
is smaller than /2, hence a macroscopic sampleAdfis a  fluxoid disk, the variation of the amplitude and the period of
type | superconductor. the jumps in theM-H, curve could not be described. More-
Analytical studies of the Ginzburg-Landau equations inover, in Ref. 28, we discussed only the case wikiemuch
two-dimensional systems require the use of various approxiarger than and did not obtain the different regimes of the
mations since, in general, exact solutions cannot be founthagnetization curve when the rafi¢ is varied.
due to the nonlinearity. One approach is to linearize the In this paper, we study the Ginzburg-Landau free energy
equations assumirg/|<1, and to decouple them by suppos- F not only at the dual poink=1/y2 but also in its vicinity
ing that the magnetic fiel® in the sample is equal to the where vortices start to interact weakRTaking into account
applied field H,. This approach describes correctly the nonlinear effects, our calculations describe the magnetic re-
superconducting-normal phase boundaty?®but fails to ~ sponse of the sample as its size changes, providing an under-
explain the behavior of the sample deep inside the supercostanding of the nonlinear Meissner effect and of the mul-
ducting state. For example, in the linearized theory, all thdivortex state. We shall also study nonequilibrium vortex
vortices are at the center of the difkand therefore one configuration in order to determine the interaction between a
cannot study the role of surface barriers, the interaction bevortex and edge currents.
tween vortices, and the fragmentation of a giant vortex into The plan of this paper goes as follows. In Sec. Il, some
unit vortices. In addition, the critical fields corresponding tobasic features of the Ginzburg-Landau theory of supercon-
the successive entrance of vortices into the sample do netuctivity are recalled. In Sec. lll, after studying the case of
scale correctly with the size of the systémg., experimen- an infinite system, we generalize the Bogomol'nyi's ap-
tally, the entrance fieldH, of the first vortex scales @8~!  proach to a finite size superconductor and calculate its free
whereas the linear theory predictsRa? dependendge Of  energy at the dual point. This result is applied to an infinite
course, in the vicinity of the upper critical fiefithe linear- ~ cylinder in Sec. IV. The case of a mesoscopic disk is studied
ized theory agrees quantitatively with the experimental rein Sec. V and magnetization curves are obtained for systems
sults. of different sizes. In Sec. VI, we obtain the free energy and
A second approach is to use the London equation whiclthe magnetization of a cylindrically symmetric system when
can be derived from the Ginzburg-Landau equations by sup is close to the dual point. The surface energy barrier for a
posing that y| =1 everywhere except on a finite number of one vortex state out of thermodynamic equilibrium is calcu-
isolated points, called vortices, whelegy|=0. London’s lated in Sec. VII. In the last section we discuss our results
equation is valid rigorously when the parametegoes to ~ and suggest some further generalizations. Some mathemati-
infinity, i.e., for extreme type Il superconductors in which cal details are included in the two appendixes.
vortices are indeed pointlike. Many theoretical results have
been derived from the London equation, such as discrete Il. THE GINZBURG-LANDAU THEORY
nucleation of flux lines in a thin cylind&r® or in a thin OF SUPERCONDUCTIVITY
disk >?°the existence of surface energy barrit¥étand the _ _
computation of polygonal ring configurations of vortices in We recall here some basic fefatures of the Ginzburg-
finite sample€223 However, whenx—, the minimum en- Landau_theory and define our notations. The order parzi\meter
ergy is obtained for one flux quantum per voA®% and  #=|/€'X is a complex number and the potential vecfor
vortices have a hard-core repulsive interaction impeding theatisfiesV x A=B, whereB is the local magnetic induction.
formation of a giant vortex state. Moreover, the surface enThe two characteristic lengths and ¢ appear as phenom-
ergy barriers calculated from London’s equation are quantienological parameters. In this work, we measure lengths
tatively different from those obtained by numerically solving units of\ \2, the magnetic field in units apy/4w\?2 and the
the Ginzburg-Landau equatioffsin fact, the experimental vector potential in units ofsg/2\2m\ where the flux quan-
conditions are far off the London limit, although thil  tum ¢, is given by ¢,=hc/2e. The Ginzburg-Landau free
disks are likely to have an effective greater than its mea- energy 7, defined as the difference of the free energigs,
sured valuéof 0.28(in a thin disk, one can argue, following — F<(B)—F«(0), is measured in units ofi2/4m whereH,

Ref. 19, that the effective London length is of the order ofy,, thermodynamic field satisfied.= v2x(do/4m\2). In
\2/d, and this results in a higher value &j. these unitsF is given by ¢

We follow another approach, less explored in the litera-
ture, based on an exact result for the two-dimensional 1 ..
Ginzburg-Landau equations. In an infinite plane they reduce fZJ §|B|2Jr <AL=y +[(V=iA) ], (2
to first order differential equations that can be decoupled @
when the parametex takes the special value \i2, called  where the integration is over the superconducting dorfiain
the dual poinf*?27At that point, the free energy is a topo- The Ginzburg-Landau equations that minimiZebecome
logical invariant of the system. In Ref. 28, we generalized

in

this method to a finite domain with boundaries; this enabled —(V=iA)2y=2k2p(1—|y|?), (3)
us to classify solutions with different number of vortices and
to derive analytical expressions for the free energy and the VXB=2J. (4)

magnetization of a mesoscopic disk as a function of the ap- . _ . _ .
plied field. Our results agreed qualitatively with the experi-Equation(4) is the Maxwell-Ampee equation with a current
mental data, and even quantitatively when the number ofiensityj = Im(y* V) —|4|?A. The unusual factor 2 that ap-
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pears on the right-hand side of this equation is due to the

units we use, since the prefactor of the kinetic energy termin ~ G=F— Hef B=F—H27m¢,=F—4ma’pep,. (11)

Eq. (2) is equal to unity. The current density is related to the o

superfluid velocityo ¢ by In a normal sampleyy=0 andB=H,. Therefore, the Gibbs
free energyGy of a normal sample is given by

>

- J sz
US_|¢|2_VX A ® GN=FN—HeJQB=FN—ZTraZ¢g. (12

Outside the superconducting samples=0. The boundary At thermodynamic equilibrium, the superconductor selects

condition on the surface of the superconductor is obtained b%‘ne state of minimal Gibbs free energy. The quantity that we
requiring that the normal component of the current density, '

vanishes(superconductor-insulator boundary conditfn are interested in, and which is measured in experiments, is
P y the magnetizatioM of the superconductor due to the applied

(V—iA) =0 ©) field given by 4rM=B—H,. It is obtained, at thermody-
\A)Pla= namic equilibrium and up to a constant equal to the super-
heren is the unit vector normal at each point to the surfaceconducting condensation energy, from the difference of the
of the superconductor. (dimensionlessGibbs energies

The London fluxoid is the quantityj{| |2+ A), that is G=Gg— Gy=F+ 2malg2— 4maldody (13)
identical toV}. Sincey is the phase of the univalued func-

tion ¢, the circulation of the London fluxoid along a closed YSing the thermodynamic relatigh

contourC is quantized=3° 1 4G
P o M=o (14
3£ —+A|dl= 3£VX~d|=27Tn. (7)
e\ P :

Ill. FREE ENERGY OF A SUPERCONDUCTOR
The integern is the winding number of the phase of the AT THE DUAL POINT
system along the contodrand is a topological characteristic
of the system.

In this study, the superconducting sample is either an in

We now study the particular case of the dual point, de-
fined by k=1/\/2. For this value of the Ginzburg-Landau
finite cylinder or a thin disk, with cross section of radiRs parameter, the free energ) of a two dimensional domain

: ,28
placed in an external magnetic field parallel to its axis. Sincé) can be written &
R is an important parameter, we define the dimensionless

i 1 I
quantity ]—'=f {—(B—l+|¢|2)2+|D¢|2 + 3§ (J+A)dl,
al2 90

N2 . (15
=R ®  where the operatorD is defined asD=d,+id,—i(A,

' . ' i . )
a is supposed to be small compared téypically a~  in d()lr?uya)in?;]d the second integral is over the boundary of the

the experimenjsunless stated otherwise. The flux created by
the external and uniform magnetic field, (expressed in
units of ¢o/4m\?) through the cross sectiomR? of the
sample is equal torR?H(po/4mA2%)=(H./2a%) ¢y. The If we suppose that the domaf is infinite and supercon-
flux ¢, in units of the flux quantumy, is thus given by  ducting at large distancésj.e.,|#|—1 at infinity, then the
boundary integral in Eq(15) is identical to the fluxoid. Us-

A. The case of an infinite system

He ing the quantization property7), we obtain
¢e:_2- 9
2a 1 2\2 2
. . . F=2 n+f =(B—1+ +|D . 16
We emphasize that, in the units we have chosen, thedjux i Q 2( 4%+ 1Dy (18

of a magnetic field through a surfac€l is obtained viathe  The free energy is thus minimum when Bogomolnyi

following formula: equation® are satisfied, that is when,
' sase 2 & id Dy=0 (17
~—| B.ds=— ¢ A.dl 10 :
& 27TJQ 2w Jao (19
B=1—|y|% (18)

An extra factor 1/Zr appears here becauBés given in units
of ¢o/dm\2, the surface in units of 22 and the flux in units Thus, the total free energy results only from the boundary
of do. term in Eq.(15) and is a purely topological number:

Since we are studying a superconductor in an applied ex- F=2mn (19
ternal field, the relevant thermodynamic potential is the '
Gibbs free energys obtained fromF via a Legendre trans- The free energy is proportional to the number of vortices: at
formation the dual point, vortices do not interact with each othe&r
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FIG. 1. The sample cross-section is divided into two subdo- FIG. 2. Behavior of the order parameter and the magnetic field

mains by the circlel’. The arrows indicate the direction of the @t the dual point for a cylinder of radius 2042 containing one
Current. VOrteX.

This fact can also be deduced from the study of the full Numerical solutions of the Ginzburg-Landau equations in
(nonloca) elasticity of a vortex-lattice: at the dual point, the @ two dimensional superconductor, with cylindrical symme-
repulsive and the attractive contributions to the effective inlry, clearly show the separation of the sample cross section
teraction potential cancel each other exactly and all elastito two distinct subdomains. In Fig. 2, we have plotted the
moduli vanish identically’* order parameter and the magnetic field in a cylinder of radius
R=10\ 2 with one vortex at the center. These two quanti-
ties vary only near the center and near the edge: there is a
whole intermediate region in whidly| andB remain almost

In a finite system with boundaries, vortices do not interacrconstant_ When the system is |arge enough, these constant
with each other at the dual point but they are repelled by th§alues are, to an excellent precision, identical to the
edge currents. Therefore, at thermodynamic equilibrium, alhsymptotic values of 4| and B in an infinite system. The
vortices Collapse into a gial’lt vortex state. Since the Supercurrent vahishes for a value offor which dB/dr:O, and
conductor under discussion has a circular cros ssection, thigis determines the radius of the cirde In Fig. 2, this
giant vortex(or multivortex is located at the center and the ¢orresponds approximately te=5.5, though practically, the
system is invariant under cylindrical symmetry. Infiaite  cjrcle T can be placed anywhere in the saturation region
size mesoscopic superconductor at the dual point, the boungzhere the current is infinitesimally small.
ary integral, in Eq(15), cannot be identified with the fluxoid  Ajthough the Bogomol'nyi equationd.7),(18) do not ge-
becausgy| is in general different from 1 on the boundary of nerically minimize the Ginzburg-Landau free energy in an
the system. This quantity is no more a topological integer buprpitrary domain with boundaries, we compared the behavior
a continuously varying real number. The two terms of Eq.of || andB in the bulk subdomaiif; and we noticed that
(15? cannot, therefore, be minimizestparatelyto obtain the  Eq.(18), B= 1_|¢|2, is still satisfied up to numerical preci-
optimal free energy. In Ref. 28, we found a method 1o cir-gjon (see Fig. 3 Hence, if the system is large enough so that

cumvent this difficulty: if the system is invariant under cy- | ;| and B have relaxed to their asymptotic values near the
lindrical symmetry, i.e., all the vortices are at the center of

the disk, then the current density has only an azimuthal com-
ponentj,. The curreny, has opposite signs near the center — -y
(where the vortex is locateédand at the edge of the disk =)
(where Meissner currents oppose the penetration of the ex
ternal field. Hence, there exists a circlE on which j,
vanisheg® Along T, we have

B. Finite size systems

- 0.5¢ 1
j+A=¢T+A=€X and therefore .
3@ (J+A)dl=2mn. (20)
r
0 .

The domainQ) can thus be divided into two subregiofis 0 f 10
=0,UQ,, such that the boundary betwe€h and (), is
the circleI". By convention, we call); the bulk and the FIG. 3. Comparison betweeB and 1—||? in a cylinder of

annular ringQ), the boundary regiofsee Fig. L radius 10\ 2 containing one vortex.
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boundary of()4, as discussed above, the Bogomol'nyi equa-modulus of the order parameter has a constant vajuever

tions provide an excellent approximationly . (A rigorous
proof of the fact that the Bogomol'nyi equations are not

a ring of width 8, included in{), and thatA andB decay
sexponentially with a characteristic length from their

even locally, the true minimizers of the Ginzburg-Landaupoundary value to their bulk value. Clearly, our approxima-
free energy, requires analycity arguments and can be foungbn will be valid only if the width of(2, is large enough

in Refs. 32,33. Thus, using Eqs15) and(20), we conclude
that at the dual point the free energy(f can be calculated
as that of an infinite domain, namely,

F(Qy)=2mn. (21

We also emphasize that the flux iy is quantized and one
has

1

B=n.
27 J)a,

(22)

To calculate 7((),), the identity (15) valid at the dual
point is of no use anymore, sin¢g| is in general different
from 1 at the boundary, and the boundary integral in (&)
cannot be identified to the fluxoid. We therefore have to g
back to the definitiorf2) of the Ginzburg-Landau free energy
which becomes at the dual point

BZ R . 1— 2\2
f(n»:f — + (V)2 + ]9l Vx— A2+ U
0,2 2

(23

The assumption of cylindrical symmetry implies thgt
=n6 whered is the polar angle and the number of vortices

present at the center of the disk. Examining again Fig. 2, we
observe that in(),, the order parameter and the magnetic

"hus, using the fact thaB? decrease exponentially with a

field vary from their values on the edge to their saturatio
values over a region of width, which is of order 1 in units
of /2. (Indeed, one has for a thick systef=\ at the dual
point. For a thin film of thicknesd, 5=\2/d in the London
limit. >
which d=\, both expressions indicate thétis of order 1)

The lengthé therefore represents the typical distance over

which the integrand in Eq23) has a non-negligible value.

Since we are considering a mesoscopic regime in

compared to 1. We first remark that our ansatz is compatible
with the boundary condition6), which reduces here to
dy¢/dR=0 and that it allows us to neglect the curvature term
(V|4])? in Eq.(23). To evaluate the term proportional to the
superfluid velocityv(r) (5), we first notice that, due to the
Meissner effect, it decreases from the boundany=aR with

a behavior well described by

Us(r):US(R)e_(R_r)/(s (24

with vg(R)=a(n— ¢y). To obtain the last equality we used
that the boundary value of the vector potential ﬁ$R)

=a¢bﬁ0, where ¢y, is the total flux through the system.
Hence, for a constant amplitudk, of the order parameter,
Jve have

1 S L(E
27 710)= el WodRI+ (101 5 [ 5
25

The magnetic contribution in Eq23) is obtained from

the typical magnitude§ of the magnetic field i), deter-
mined using Eqs(10) and(22) as

_1 _l
“27 )08 2a )0,

1
B+ —

o—
=n+ -B.
5 QzB n aB (26)

characteristic lengtl$/2, we estimate the contribution of the
magnetic energy to-({},) as being
1

ﬁf 0,

After substituting this expression into E@®5) we minimize

B2 § B2 a

?:E?:E(n_¢b)2- (27)

With the help of this observation, we shall estimate 7({),) with respect toyy. The optimal variational value of
F(Q») using a variational ansatz: we shall consider that they, is given by

o
0

Inserting these expressions in Eg5), we obtain the varia-
tional free energyF((,):

AvZ(R)—Bui(R) if |a(n—¢p)|<\2,

1
—FAOQ)={ & 1
277 ( 2) Ug(R)

22 Zas if |a(n—¢p)|>12

(29

with A and B defined by

1, a’ _
,_ | 1= 5vi(R)=1= - (n=¢p)* if [a(n— )| =12,

if [a(n—¢y)|>2.

28)
[
A= 0 1 !
~2a\tT 28
B= 0 30
~sa (30)

The total free energy of the mesoscopic superconductor
containingn vortices, at the dual point, is thus
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1 ¢ b
> F(N, o) Hom o= 36
2 ¢ 4m\? 2\2mn¢ (36
2 4 :
. Avg(R)—Buvd(R) if |a(n—¢p)[<V2, This is precisely the formula for the thermodynamic critical
=N sl2a+v2(R)/4as if |a(n—dp)|> 2. field of a superconductbt (which, for a cylindrical super-

conductor withk<1/\/2, is the same as the upper critical
(3D field). The magnetizatioM of the cylinder satisfies the lin-
This energy is the sum of two contributior($} a bulk term  ear Meissner effect
proportional ton which is a topological quantity at the dual
point and (ii)) a boundaryterm, reminiscent of the well- M= i 9G(n, de) —H,(1-ca)
known “Little and Parks” free enerdy (this boundary term 27 dge €
can be given a geometric interpretation in terms of a geode-

sic curvaturé®34.

with

c=4-5 . (37)

1
1+—
25°
IV. FREE ENERGY AND MAGNETIZATION
OF A CYLINDER AT THE DUAL POINT The macroscopic restitis — M =H,; the finite-size correc-
tion to the susceptibility is proportional 2.

Thus, the well-known results for an infinite superconduct-
ing cylinder can easily be retrieved from the dual point ap-
proach. We now proceed to the study of the magnetic re-
gponse of a thin disk.

We now apply the relation€1) to the simple case of an
infinitely long superconducting cylinder of radils>\, ly-
ing in an external fielH, directed along its axis. There are
two contributions to the total flux, : the flux of n vortices
present at the center of the sample and a fraction of th

applied flux¢, localized near the boundary and proportional
to MR (due to the Meissner effectHence, V. A MESOSCOPIC DISK AT THE DUAL POINT

H To modelize the experimental sample of Refs. 1, 4, we
; e consider a mesoscopic disk of thicknessmaller thar¢ and
$p=n+2ace with Pe=2 2" (32 \. Because the diskFiJs very thin, we take the orderrf)arameter
) o and the magnetic field to be constant across the thickthess
The exact numerical coefficient in front of the teap, does  of the samplé® This enables us to study the disk as an
not affect the result of our calculation; we take it equal to 2,effective two-dimensional system. However, unlike the case
the value obtained in the London ||rﬁﬁ:The total free en- of a |0ng Cy”ndrica' samp'e, strong demagnetization effects
ergy, using Eq(31) and the fact thav(R)=—2a’¢., IS are present in a thin disk. The valueBhear the edge of the

given by disk is larger than the applied field, because geometric
1 demagnetization effects induce a distortion of the flux lihes.
—F(N, o) Hence the continuity conditioB(R)=H, (32) valid for a
27 '

long cylinder does not apply to describe a thin disk.
: In order to find a more suitable choice for the boundary
4 2_ pa4p 4 2
4a’(Ade—4a’Bd) if a |¢e|$1/‘/§’ condition for a thin disk, we notice that the higher value
=n+4y 6§ a° 2 . o of the magnetic field at the boundary, a feature which has
at 5% it a | el >11V2. been obtained from numerical computatidns results
from a demagnetization facto¥ close to one, such that

(83 H=HJ/1- A in the Meissner phase. The flux lines are dis-
Using Eqs.(11) and(33), the Gibbs free energg(n, é.), of torted by the sample and they pile up near the edge of the

a cylinder containingn vortices at the dual point is given by diSk- To describe this, we shall thus take as boundary condi-
tion for a thin disk, the expression proposed in Ref. 28 which

1 consists in taking the potential-vector at the edge of the disk
Eg(n,¢e)=n(1—232¢>e)+ P(de), (34  equal to its applied value, i.e.,
whereP(¢,) is a polynomial in¢, that does not depend on A(R)= d)eaﬁg (38
n. Hence, all the curve§(n, ¢.) meet at or
1 _
b=—. (35) o= e (39
2a?

Again, this relation does not mean that the fi@ds uni-
For values of¢, less than this critical value, the free energy form and equal to its external strength. A more refined value
is minimized if there are no vortices. At,=1/2a2 all vor-  for the boundary condition could have been obtained by
tices are nucleated simultaneously and the sample becomasing the expressiaV=1— (7/2)(d/R) in the limit d<R of
normal. This value corresponds to a critical applied fidld a flat disk. Then,H=(2R/wd)H, or equivalently ¢,
which is equal to 1 in our units, or restoring the units back,=(46/d) ¢.. But, sinceé=d, we shall use for convenience
and recalling thak=1/\2 the simpler boundary condition given above.
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Substitutingvs(R) =a(n— ¢,) in (31), the free energyr(n, ¢.) of a thin disk containing vortices is found to be

Aa(n—¢e)2—Bat(n—¢e)* if al(n—pe)|<V2,

1
—F(n,p)=n+4{ S a

. (40)
2 22t az(N—®e? i al(n—do)|>2

and the corresponding Gibbs free energy is obtained using B. Mesoscopic disk with vortices

Eq. (13). In our previous work® we obtained an expression  \we now consider a disk witR=¢. The Gibbs free en-
which can be retrieved from EG40) by taklnga?;l and by o4y differenceg(n, ¢.) of the disk withn vortices is given
neglecting the magnetic energy as well as dieterm. De- 1, "Fq (13). The entrance fieldH,, of the n-th vortex is ob-

spite these crude approximations, our analytical result§- db ving th ti _ 1 hich
agreed satisfactorily with experimental data, though the)ﬁaslirrl]eg E(;/.(Szl%)\mr]gdugeiqtga 1af(N, pe) =GN = Lipe) which,

could neither describe the behavior of a disk with a radius

smaller tham\ and &, nor its behavior whem is increased.

We apply our present approach to a thin disk with a raéus 5-a
much smaller thag, and then we consider the caRe- €.

1 2 2
1+§ [(n_l_(f’e) _(n_d’e) ]

3
a
A. Fractional fluxoid disk and nonlinear Meissner effect - Z[(n_ 1- ¢e)4_ (n— ¢e)4]a (43

We now consider a disk small enough so that no vortice

can nucleate, i.e., its radiis less thar¢ (such a system is ?Jsmg the following change of variable :

sometimes called &actional fluxoiddisk’). If there are no 1 vy

vortices, the domair{); is empty andQ=(,. Since the Ppe=n— §+ %a (44
radius of() is small with respect to both andé&, we can no

longer use the expressi¢#0) for the free energy, but we can we obtain an equation for

assume that the amplitude/| of the order parameter has a

uniform valuey all over the disk and that the magnetic field 2 1 y®

equals the external applied fieB=H.. Moreover, in the 5 + ﬁ y— r} (45

absence of vorticed] y=0, and we can choose the Landau
gaugeA(r)=rB/2. Starting from Eq(23), and after mini- (a terma®/8 has been neglected in comparison jo The
mizing the free energy with respect tg), we find the dif-  solution of Eq.(45) that satisfiey=0 (becausep.=0) de-
ference between the free energies of the superconducting aR@nds on the value of the paramegeiOne can show that the
the normal states to be polynomial P(y)=(1+1/26*)y—y%/4—2/5 always has a
positive root. We retain only the smaller positive rogtof
G ¢§ 2 A Eq. (45) because in thermodynami.c _equilibrium, the system
pP 7(1— Z¢e) if age= V2, always chooses the state with minimal Gibbs free energy.
Restoring the usual units, and using E44), the nucleation
fields are found to be

g
— =0 otherwise. (41)

21 1

From Eq.(14) we deduce the magnetizatitvhof the sample:

1 96 1 a? .\
B —zme‘i( 5 %e) I age=\2,
EI0.5
M=0 otherwise. (42

The curve representing this magnetization is a cubic. The
upper critical field is¢.=1/a, i.e., HexR™1; this scaling
agrees with the linear analysis of Ref. 16 in the lilRK .

The transition between the superconducting phase and the or
normal phase is of second order. In Fig. 4, we plot the rela- 0 05
tion (42) for —M as a function of the external flug.. The ap N2
dots represent the experimental points obtained from Ref. 4. ¢
The analytical curve has been scaled so that the maximum FIG. 4. Magnetization of a fractional fluxoid disk. Comparison
value of the magnetization and the critical flux coincide with between the experimental measureméResf. 8 (for R=0.31 um)
the corresponding experimental data. and the theoretical curve taken from the express$is).
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1 - ' ' the fractional fluxoid disk, and the different regimes obtained
by increasingR could not be explained because we neglected
subdominant terms that are retained here.

It has been observed experimentally that the period and
the height of the jumps cease to be constant when the num-
ber of vortices increases. These effects are related both to
. interactions between the vortices and between vortices and
5, 0.5¢ ) 1 edge currents. The purpose of the next section is to take into

1 account these interactions and to obtain a better estimate for
the free energy and the magnetization of a mesoscopic disk.

VI. WEAKLY INTERACTING VORTICES IN THE
VICINITY OF THE DUAL POINT

) , , So far we have obtained analytical expressions for the
0 10 20 30 free energy and the magnetization of a thin superconducting
0, disk at the dual pointWhen the Ginzburg-Landau parameter
has the special value=1/\/2 vortices do not interact. This
éact, discussed in Refs. 25,29,31, implies that the bulk free
energy does not depend on the location of the vortices. How-
ever, whenk is away from the dual point, the vortices start
interacting among themselves; therefore the bulk free energy
ceases to be a purely topological integeand the vortex
Yo ¢o I %o interaction energy must be taken into account. Because of
27T\/ER)\ 27R?’ this interaction the vortices are no longer necessarily placed
at the center of the disk: in an equilibrium configuration, the
cylindrical symmetry can be broken and the optimal free
Hyoq=Hq+ nﬂ. (46) energy may correspond to geometrical patterns such as regu-
mR? lar polygons, polygons with a vortex at the center, or even
rings of polygong?326|t is the competition between the
interaction amongst vortices and the interaction between vor-
tices and edge currents that determines the shape of the equi-

FIG. 5. Behavior of the magnetization of a disk with radius 10
N2, at the dual point. Dots represent the numerical solution an
the solid curve the expressi¢h4d) together with Eq(31). The only
free paramete$ has been taken t6=0.76\.

Hl:

When the applied fieldH, lies betweerH,, andH,,, ,, the
disk contains exactly vortices and its magnetization is cal-
culated using Eq(14). In Fig. 5, we have plotted the mag- libri : :
o 2 : ibrium configuration.
netization of a mesoscopic disk wifR=10\2 both from g

N ical soluti f the Ginzb Land i Analytical studies were mostly carried out in the limait
exact numerical solutions of the inzburg-Landau equations , ., 5,4 \yere based on the London equatidi?3for which
and from the expressiofl4). The agreement is very satis-

factory. For larger values of the numberof vortices, a vortices are point-like and have a hard-core repulsfone
discrepancy between the theoretical and the numerical exs-haII study a regime where is slightly different than 12,

pressions appears which results from the interaction betweep, ’ & F€9ime where vortices interageakly We shall deter-

the vortices and the edge currents that we have neglectdd"e 10 the leading order i 1/y/2), the interaction en-
until now. ergy of the vortices.

The expressiori3l) is also in good agreement with pre-
vious experimental and numerical resuttfs A nonlinear
Meissner behavior still exists before the nucleation of the In order to obtain an estimate for the free energy of a
first vortex as well as between successive jumps. The fieldystem of interacting vortices, we have solved numerically
H, of nucleation of the first vortex scales RS'. The tran-  the Ginzburg-Landau equations for a cylindrically symmetric
sition between a state with vortices to a state withn(  infinite system withn vortices located at the centéthese
+1) vortices is of first order since the entrance of a newequations are explicitly written in Appendix)AThe free
vortex induces a jump in the magnetization. These jumps arenergy per vortex is plotted in Fig. 6 as a function«gffor
of constant height and have a perigg/7R?. If we use the n=1, 2, 3, 5, and 10. At the dual point, the free energy per
experimental values of Ref. 1 f@& and\ we obtain a value vortex is equal to 1 and is independentrofall the curves
for the period of the jumps which is in very good agreementpass through this point. When is different from 14/2 the
with the experimental value. interaction between the vortices changes the value of the free

If Ris smaller than a threshold value, the system is anergy. One can deduce from Fig. 6 that vortices attract each
fractional fluxoid disk with a second order phase transition.other for « less than 1y2 while they repel each other when
If R=1, a vortex can nucleate in the disk and a first orderx= 1/\/5_
transition occurs. WheiR increases, the number of jumps  From our numerical results we observed that in the vicin-
increasesasR?). These qualitative changes of behavior with ity of the dual point, the free energ§(«,n) satisfies the
increasingR, which are the important features obtained fromfollowing scaling behavior:
the present model, have been indeed observed in experiments
carried out on disks of different sizes. In an earlier sttftly,
we obtained satisfactory values for the nucleation fields but

A. The interaction energy

1
S Flem=n(xy2)". (47)
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FIG. 6. Behavior of the free energy per vortexn= F/2mn as FIG. 7. Magnetization curve of a disk of radius 12, as a

a function of2« for different values of, the number of vortices.  function of the applied field fok\2=0.9. Dots represent the nu-

At the self-dual point/2«x=1, the energyF(n) =nZ(1) so that the m_erlcal solution and the solid curve the express{idd) together

interaction energy between the vortices vanishes identically. with Egs.(50),(47). The only free parametef has been taken to be
6=0.76\.

We note that the relatio®7) is exact at the dual point. For
n=1, F(«,1) is nothing but the self-enerdy of a vortex. In  and the boundary contribution, obtained via a variational an-

the vicinity of the dual point we can write satz is now given by
1 1 Avi(R)—B(k)ve(R) if |a(n—¢e)|=<2x,
—HkrkD=1+a(l)(«ky2—1). 48 —FQ,)=
27 ted (Wev2=1) 48 2 (€22) k2sla+vi/4as it |a(n— ¢e)|>2k,

The values of the functior(n), as determined from numeri- (50
cal computations, fon ranging from 1 to 30 are given in whereA is still given by the relatior{30) while B(x) is now
Table 1. given byB(k) = 8/16ax?.

We can now derive an approximation for the free energy The magnetization curve of Fig. 7 shows both the nhumeri-
of an vortices configuration located at the center of the diskcg| results and a plot of the magnetization deduced from Eq.
and for k close to 1//2. Since this configuration is cylindri- (50 using Eq.(14). We notice that the magnetization of a
cally symmetric, one can again use the cirtldo separate mesoscopic disk is modified when the interactions between
the system into two subdomair§®; and (), and then esti- vortices are taken into account. The period and the amplitude
mate separately the two contributions to the total free energysf the jumps are not constant anymore; in addition, the non-
From our numerical scaling result, we deduce a formula follinearity of the curve between two successive jumps is en-
the bulk free energy of a finite system which is valid for hanced. These important features of tfleH, curve were
close to the dual point. Expanding Eg.7) in the vicinity of  observed in previous experimental and numerical redfits.
the dual point, we obtain Here we have shown that these features are a consequence of

vortex interactions.

if(nl):nﬂxﬁ— 1)na(n), (49)
2m B. Two-body interaction energy
TABLE |. The numerical values of the functioa(n) for n The exponent(n) in the relationg47) or (49) allows us
ranging from 1 to 30. to describe the interacting potential between vortices. It is
interesting to compare the resu#t7) with the energy o
No. a(n) No. a(n) No. a(n) vortices obtained by assuming a two-body interaction. In this
case the energy of the whole systemrofiortices can be
1 0.417 11 0.785 21 0.841  \yritten as a sum of two terms
2 0.544 12 0.794 22 0.845
3 0.613 13 0.802 23 0.847 1 n(n—1)
4 0.658 14 0.809 24 0.850 S =Nt ——U(0), (51
5 0.690 15 0.815 25 0.853
6 0.715 16 0.821 26 0.855  wherel/s represents, as noted before, the self-energy of a
7 0.734 17 0.826 27 0.857  vortex andl{, the two body interaction potential. Using the
8 0.750 18 0.830 28 0.859 data of Ref. 29, we can estimate these two energies to the
9 0.764 19 0.834 29 0.860 leading order in (<\/§—1). We obtained
10 0.775 20 0.838 30 0.862

Us=1+B1(k\2—1) with B,~0.4, (52)
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U(r)=Ba(k 22— 1)min[ 1,ex% —C(r— %)H (53)

with B,=3 and C=3. From this analysis, and assuming
only two-body interaction, we derive an approximate value
for the free energy of a configuration withvortices placed

at the same point:

n(n—1)

1
EF(K,n):nus‘l‘ 2 Z/{|(0)

zn+(;<\/§—1)n

n—1
,31"‘,327)- (54

If we compare this relation to the previous expresdi49)
we find that instead of the sublinear functiafin) we have a
linear behavioB; +[ (n—1)/2] B,. Hence, the functioma(n)
takes into account not only two-body interactions among Q
vortices but also multiple interactions which are present for
values ofk around the dual point unlike the large limit
where only the two-body contribution remains. FIG. 8. The separation of a system without cylindrical symme-
try in two subdomains by a curvé.
VIl. VORTEX /EDGE INTERACTIONS IN SYSTEM
WITHOUT CYLINDRICAL SYMMETRY only one connected compongntn Ref. 36, we present a

) ) ) numerical construction of. In the sequel of this work we
In this section, we calculate the energy at the dual point obg;me that" exists, that it encircles all the vortices, and

a system with only one vortex that is not located at the centegynsists of one or many simple closed curves. We shall call
of thg (_j|sk. Suc_h a configuration is not in thermodynamicyo crvel the separatrix
equilibrium and its free energy can be related to a surface Using T', the domainQ can be decomposed in two re-
energy barrier(analogous to the classical Bean-Livingston gionsQ; ar,ldQZ such thati) Q,UQ,=Q, (i) Q; contains
barrier in the London limjt We first show that even when all the vortices (2, may have multiply éonnected compo-
the cyIindri_caI symmetry is broken, _the system can still benents, (iii) Q, contains the edge of the disky) the sepa-
separated into bulk and edge domains. ratrix I' is the boundary betweefl; and (), and is every-
where normal to the current density.
A. Bulk and edge domains. The curvel’ The remarkable property of the separatrix implies that

We have seen in Sec. Il B that when one or more vorticelongI' one can write
are located at the center of the disk, there exists a dirade
which the current vanishes identically. This circle allowed us ag (+Aydl = 3(; (—+5\
to define a bulk and an edge domain and to identify the bulk r J r\|y]?
energy with the fluxoid. .

If all the vortices are not placed at the center of the disksince alond’, j-dl=0. Since the separatrix is the boundary
(i.e., the configuration is not cylindrically symmeiritere is  of (4, the property(55) ensures that the total magnetic flux
in general no curve of zero current. However the cuiveas  through (), is quantized. Hence, at the dual point, we can
now the following property: at each poiM of I' the current  again use the method of Bogomoln'yi and find the free en-
J is normal tol'. The existence of such a curve is shown by€rdy of{}; to be a purely topological number, just as for an
the following argument. Consider a disk with only one vor- infinite domain, even if the cylindrical symmetry is broken.
tex V situated at a point different from the center of the disk.

Take a line segment joining the vort&kto the closest point B. Free energy of one vortex: the surface energy barrier

Son the boundary of the disfsee Fig. 8 The component of As before, we estimate the contributigif(),) to the total
the current density normal to théS segment changes itS e energy via a variational ansatz, taking the modulus of
sign when one goes froivi to S. Hence, there exists a point he order parameter to be constant. To obtain a qualitative

M along this segment where the current either vanishes or iyt for the surface energy barrier we neglect the magnetic
parallel toVS. To draw the curvd” we start fromM in a energy so that, at the dual point, we have

direction orthogonal to th¥’ S segment, and theh is con-
(1-[¢1*?
2

>

J
|

dl= 3@%-& (55)
T

structed via infinitesimal steps by imposing that at a point 1 R .
M’=M+dM, very close tdM, the direction ofl" is orthogo- 57 (Q2)~ L) |12V x— Al?+
nal to the direction of the current M. 2

Although we lack a general proof, we believe on topologi- S
cal grounds that for vortices at arbitrary positions, there al- ~ 5[¢§<v§>+(1— )], (56)
ways exists d" curve which is everywhere orthogonal to the
current (one should note thaf does not necessarily have where
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1 . VIIl. CONCLUSION

In this work, we have obtained analytical results for the
free energy and the magnetization of a mesoscopic supercon-
ductor. We have used a known exact solution for the two-
dimensional Ginzburg-Landau equations in an infinite plane,
valid at the dual point, to study a finite system with bound-
aries. With the help of numerical simulations, we have car-
ried out a perturbative calculation in the vicinity of the dual
point. This approach enabled us to study thermodynamically
stable states but also metastable stétesobtain a surface
energy barrier This model gives theoretical insights into the
physical mechanisms involved in the experimental results of
Refs. 1,4 and our analytical results agree quantitatively with

. experimental measurements. In fact, other related thermody-
0o 0.5 1 namic quantities such as the surface tension measuring the
X thermodynamic stability of vortex states can also be com-

FIG. 9. Confining energy of a vortex inside a disk due to edgeputed along this way and one could generalize to two-

currents. dimensional systems previous results, already known in one

dimension’®
) do . . 5 More generally, we believe that a theoretical study in the
(v5)= f 5 IVX—AR)] (57 vicinity of the dual point provides a lot of information about

_ ) _ the Ginzburg-Landau equations. Although one usually relies
is the superfluid velocity square averaged over the boundary, eyact results derived from London’s equation, one should
of the disk. As before, we have replaced the integral 6vgr o yare of the fact that these results agree with numerical
by a line integral along the boundary of the samfple., the ¢ lations of Ginzburg-Landau equations only wheris

disk of radiusR) multiplied by an effective lengtid. The 5146 (typically x=50). We verified that the behavior we
function y appearing in Eq(56) is the phase of the order tnq in the vicinity of the dual point, such as the scaling of

parameter, and the vector potential is, as before, equal to i§ s free energy, remains valid wherranges from 0.1 to 10
value on the boundary of the sample. Optimizing ES6) 414 this interval of values is indeed relevant for many con-
with respect tojs we find that ventional superconductors.

Energy
o
L

) <U§) Our study can be extended in many directions. The scal-
Yo=1-—— (58)  ing results in the vicinity ofx=1/\2 were derived from

numerical simulations: a systematic perturbative expansion

1 1) 5 <v§>2 around the dual point would put them on a more rigorous

57(92) ~%a (ve)— 4 (59 basis. Secondly, a linear stability analysis of the cylindrically

5 _ . symmetrical solutiofl should allow to understand the frag-
for (vg)= 2. The phase functiog and the vector potential '\ antation transition between a giant vortex and unit vortices.

near the edge of the disk are calculated in Appendix B. USgince the separatrik exists even for vortex configurations

ing these results, we obtaifor n=1): breaking cylindrical symmetry, our approach can be used to
asd analyze hysteretic behavior of metastable states, and to study

a(1-¢e)*~ 7 (1= ¢e)4) polygonal vortex configurations found numerically in meso-
scopic superconductors?

1 Q)= o
Eﬂ z)—z—a

+f(x,a,¢e—1)6. (60)
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APPENDIX A: THE GINZBURG-LANDAU EQUATIONS F 1/a B2
IN A CYLINDRICALLY SYMMETRIC SYSTEM P = Jo rdr(? + K2(1— f4)) . (A9)
For a cylindrically symmetric system, we can uge
=f(r)e"? and,&:A(r)Ae(, wheren is a non-negative integer APPENDIX B: PHASE AND VECTOR POTENTIAL
which represents the number of vortices at the center of the OF AN OFF CENTERED CONFIGURATION
system. We also define the superfluid velocitys WITH ONE VORTEX
=vs(r)ey, Where In this appendix we measure the distances in unif®, b
N the disk has unit radius. Suppose that the vortex is located at
vs(r)=(——A(r)). (A1) @ distancex from the center of the disk (@x<1). The
r phasex(p,#) of the order parameter satisfidge=0 every-
In this case the Ginzburg-Landau equations are where on the disk except on the vortex with boundary con-
dition n-Vy=0
d’f  1df Using the image method, the phagép,6) at a point
2¢ . ! ’ . .
ﬁ"' T a_vsf— —2xk?f(1-12), (A2) " |ocated at a distancg from the center of the diskwith O
<p=<1) is given by’
d/1d :
e = 2 exp(i #) —x
ol artren | =20 ") x(p,a>=lmln(Ll>, BY)
p expif) —x

It is convenient to define the quantify(r)=rvg(r). The

magnetic fieldB = B(r)éZ is given in terms ofp(r) by :«ﬁ?,i;%r:mo(ie;qoljﬁ,zgi&magmary part of a complex-valued
~ldp 2 .
B(r)y=———. (A4) 1—x sinéd
r dr tany(p,0)= .
. . . . . 1+x2 cosf—(p+p HI(x+x71)
We obtain finally two coupled ordinary differential equations
On the boundary of the dislp=1, and one finds that

(B2)

f"=—2k?f(1—12)+p?f2/r2—1'Ir, (A5)
, ax 1-x° 1 aX_O ©3)
p"=2pf=+p'lr, (A6) 99 1+x%1-2x/(1+x3)cosh’ 9P
. . -y 71 .
with the following boundary conditions at=a™ - for n#0: therefore
= ’ -1 =
f(0)=0, f'(a™h=0, f 46 Lo -
p(0)=n, p(a H)=n—g, (A7) 27 W XLOF=T e
for a disk and The vector potentia,ﬁ(R) at the boundary of the sample
f(0)=0, f’(a H)=0, is a function of the polar anglé since the vortex is not at the
center of the disk. We determin@(R) from the following
p(0)=n, p'(a !)=-2ag, (A8)  conditions:
for a cylinder. These are the equations we have solved nu- .. . .
merically using the relaxation methd8From the analysis of V-A=0, é A(R)-dI= ¢,
the equationgA6) we deduce the following behavior in the 9
vicinity of the center of the disk: and on the boundam(R)-n=0. The following choice:
N _r2 R N
f~r" and p~r< when r—0. A(R) = ¢V x (B5)

The free energy?) is then given in terms of the solution valid near boundary of the system, satisfies these require-
of EqQ. (A6) by ments.
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