PHYSICAL REVIEW B, VOLUME 63, 064523

Mesoscopic superconductors in the London limit: Equilibrium properties and metastability
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We present a study of the behavior of metastable vortex states in mesoscopic superconductors. Our analysis
relies on the London limit within which it is possible to derive closed analytical expressions for the magnetic
field and the Gibbs free energy. We consider in particular the situation where the vortices are symmetrically
distributed along a closed ring. There, we obtain expressions for the confining Bean-Livingston barrier and for
the magnetization which turns out to be paramagnetic away from thermodynamic equilibrium. At low tem-
perature, the barrier is high enough for this regime to be observable. We propose also a local description of
both thermodynamic and metastable states based on elementary topological considerations; we find structural
phase transitions of vortex patterns between these metastable states and we calculate the corresponding critical
fields.
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[. INTRODUCTION the magnetization, involving the appearance and the disap-
pearance of the surface barrier.

A significant amount of work has been recently devoted Once the existence of metastable states is established, a
to the study of aluminum superconducting disks in a mesoeriterion to classify them is required. The number of vortices
scopic regime, in which the size of the sample is comparablés a simple topological number but it is not precise enough to
with both the coherence lengthand the London penetration distinguish between all different types of states. Projection
depth\. In a first set of experimenitshe magnetization of methods into eigenstates of the linearized theory produce a
such systems was measured at thermodynamic equilibriunset of integers that were proposed as classifying numbers to
Beyond the Meissner state, a series of discontinuous jumpsharacterize a given metastable vortex Stated that would
appear when the applied magnetic field is increased. Thigeneralize quantum numbers to a nonlinear theory. However,
behavior corresponds to the entrance of individual quantizethese numbers are nongeneric and it is not obvious to relate
vortices in the sample. A quantitative understanding of thehem to the geometric features of a given pattern. A more
phenomena involved can be achieved through a numericgleometrical path will be followed here to present a topologi-
study of the Ginzburg-Landau equatidns. Analytical  cal description of vortex patterns. Our study is based on an
progress can be made if one considers special limits of thesmnalogy between a configuration of vortices and a dynamical
equationgsuch as the linear limfthe London regiméZor  system, obtained by interpreting the superconducting current
the Bogomol'nyi dual poirt!9. In later experiment$! it as the localphase-spagevelocity of a particle. The Hamil-
was noticed that when sweeping down the applied field théonian of the associated dynamical system turns out to be the
sample exhibits a paramagnetic Meissner effect, i.e., it has magnetic field. We shall show that a configuration of vorti-
paramagnetic magnetization. Such a behavior previouslges can be characterized by the critical points of the magnetic
found in highT,, superconductoté had been interpreted as a field (or equivalently the points where the current vanighes
special feature of these materials. However, its occurrence ithe number of critical points of a given typ@naxima,
aluminum disks calls for a less specific explanation whichminima, saddle poinjswill provide a natural set of topologi-
results from the role played by metastable states at temperaal invariant integers associated with a configuration. This
tures well below the critical temperatuté. geometrical analysis reveals the existence of structural tran-

This work is devoted to the study of metastable states in aitions between states with tlsamenumber of vortices: in-
mesoscopic superconductor. We shall investigate vortex patleed, the number and the nature of the critical points can
terns in a thin cylinder placed in a magnetic field parallel tovary abruptly when the applied field exceeds some specific
its axis. Our analysis will be carried on in the London re-values, inducing topological phase transitidn&or a simple
gime, i.e., in the limitx>1, wherex is the Ginzburg-Landau polygonal configuration of vortices, we calculate the corre-
parameter. Using known restitsor the magnetization of an sponding transition fields. These topological changes are in
infinite cylinder with a circular cross section of radidswe  fact best visualized using a “dual” description of a system
derive, in the mesoscopic regimee., when the London of vortices, closely related to the paramagnetic Meissner ef-
length is much larger thaR), closed expressions for the fect: there exists a special closed culvefirst introduced in
magnetic field and the free energy that are suitable for anaRef. 10, which is everywhere orthogonal to the current lines
lytical calculations. They allow us to obtain the Bean-and which passes through the critical points of the system.
Livingston barrier and to calculate the series of matchingTherefore any structural change affecting the critical points,
fields (critical fields corresponding to the entrance of Ml will manifest itself in a topological change of the shapd of
vortex). The paramagnetic Meissner state can then be exFhis curve thus provides an efficient and elegant tool to char-
plained using a simple scenario for the hysteretic behavior o&cterize vortex patterns and to understand qualitatively the
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topological transitions between different configurations. We study a superconductor in an applied external figld
The plan of this article goes as follows. In Sec. Il, we the relevant thermodynamic potential is the Gibbs free en-

recall how the London free energy can be obtained as a limiérgy G obtained fromF via a Legendre transformation

of the Ginzburg-Landau theory. In Sec. Ill, we present the

solution of London equation in the case of an infinite circular G=F—-QhB, 5)

cylinder (details of the calculations are given in Appendixes

A and B). Section IV is devoted to the mesoscopic limit: we . ™~ ~ R 4 o .

calculate the magnetic field and the free energy, study thg'reCt'od Bis glven_by the averaging the magnetic induction

Bean-Livingston barrier, and obtain the matching fields. The?Ver the cross section

paramagnetic Meissner state is obtained in Sec. V. Section 1

VI is devoted to the topological investigation of vortex pat- B= —f h(r)d?r, (6)

terns: we show that the critical points characterize a configu- Q

ration and we demonstrate the existence of topological phasghere the magnetic induction is always mdirection: i

transitions. In the second part of Sec. VI, the dual description |

of a configuration of vortices, via the cur¥g is introduced "~

to providega better understanding of the transitions between In the normal phase, we haye=0, B=h,, andFs(h)

patterns. Section VIl contains some concluding remarks and I n(h) =€h%/2. Therefore the corresponding Gibbs free
discussions. energyGy is given by

where the tota(dimensionlessmagnetic inductiorfin the z;

Qh?
Il. LONDON LIMIT OF THE GINZBURG-LANDAU Gn=Fn(h)—QhB=Fy(0)— ——. (7)
EQUATIONS 2

Consider an infinite superconducting cylinder with a cross At thermodynamic equilibrium, the superconductor se-
section of ared) in the constant magnetic fiefiz along the ~ |€€ts the state of minimal Gibbs free energy. The quantity
axis of the cylinder. In the presence of a magnetic field theV/Nich is measured in experiments is the magnetizatioof
Ginzburg-Landau free energy density per unit length of thd€ superconductor due to the applied field given byMVi
cylinder, defined as difference of free energies with and™ B~ Ne- Itis obtained at thermodynamic equilibrium using

without magnetic fieldF=Fg(h) —F<(0), reads the thermodynamic relatioh
- 1 4G
h? - “M=——-=
F= [ 5+ etz -iduz |, @ M= 2 g @

o .. where the difference of th&imensionlessGibbs energies
where = | (.a'X' is the' order parameter aﬂlﬂ:VXA is the G=Gs— Gy up to a constant equal to the superconducting
local magnetic induction. The integration is performed overcqndensation energy, is given by
the cross section of the cylinder. A superconductor is char-
acterized by two length scales: the London penetration depth g:f—QheB+Qh§/2. (9
\ and the coherence lengéh The Ginzburg-Landau param-
eter is defined as their ratio=\/¢&. In this work lengths are The dimensionless ratie=\/§ is the only free parameter
measured in units of \2 and the magnetic induction in units to describe the superconducting state. It determines, in the
of the thermodynamic critical fielth .= ¢¢/2\27\ &, where  limit of an infinite system, whether the sample is a type-I or
$o=hc/2e is the magnetic flux quantum. The free enet@ly ~ type-Il superconductdf’ For k=1/4/2, i.e., for type-Il su-
is given in units of§2H§/47T_ perconductors, it is energetically favorable for the system in
a large enough magnetic field to sustain normal regions in
the bulk which appear as vortices. We shall now study the
system of vortices in an extreme type-Il superconductor, i.e.,
5 AV2, 0,2 2 in the London limitx>1.
(ViR g=26 3=y, @ In this limit, the amplitude of the order parametef|
= = 2= > does not vary and can be taken equal to one except at the
VXh=2[y"(Vx=A). © position of the vortices wherp)| vanishes. The Ginzburg-
Equation(3) is the Maxwell-Ampee equation which could Landau free energy reduces to

be written as well using the current densjty: Im(y* V ¢)

—|4|?A. Outside the superconducting sample=0. The ]-"=J
boundary condition suitable for a superconductor/insulator

interface is° Using Eq.(3) and||?=1 almost everywheréexcept at the
position of the vorticels we can write

The Ginzburg-Landau equations fgrandh are obtained
from a variation ofF. They are given by

2

h .
?+|(V—iA)¢|2}d2r. (10

(V=iA)yl3=0; @
. V—iA)y|?=(Vxh)? 11
heren is the unit vector normal at each point to the surface (V=A™= ( ) (3
of the superconductor. so that the free energy is given by the expression
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1 T - = n(\/—f)
F—EJ h +§(V><h) }d r (12) h_(l’ 0)__2 2 Kn(\/_ )

n(V2R)
which in our units is independent &f. To obtain the equa-
tion for h, we notice that the phasge of the order parameter
is nonsingular except near a vortesay atr =0) where it has
the property that

N
X > 1,(V2rcosn(6—6), (20
k=1

ensures the boundary condititi{R, 6) =h,. We are inter-
39 Vy-dl=2m (13)  ested in polygonal rings of vortices. For this particular con-
figurationr,=d, 6,=2wk/N and the expression fdry(r, 6)

on any closed contour encircling the singularity at paint can be simplified,

=0. Using Stokes theorem,

. L hi(r,0)=-2N 2 Kq(V2R)
ngx-dl=f fds-vaxzzw, (14) n=—c
. - . In(v2)1(y2d)
we deduce that the component ofV XV y equals 275(r). 7 cosNné. (21

The equation foh is then obtained by taking the curl of Eq.
(3) and using thaty|?=1 almost everywhere:
The corresponding Gibbs energy has also been obtained
V2h—2h=—478(r). (15) in Ref. 14 The expression of the dimensionless Gibbs energy
is given by
This equation can be generalized to the cas&l afortices
placed at points .
G=F—he f h(r)d?r + 7R?hZ/2. (22)
N
) B - -
Vih=2h= 4721 or=rw. (16) The fieldhy, diverges at the positions of the vortices and the
corresponding part of the free energy must be regularized.
In the next section we shall present the solution of this equathe singular contribution coincides with one calculated by

tion in the particular case of a cylinder with circular cross Aprikosovt’ for the case of infinite system and is given by
section.

lIl. SOLUTION FOR N VORTICES IN A CIRCULAR Fo=NE+ 2772 Ko \/§|Fj_Fk|), (23
CYLINDER 17k

From now on we shall study a circular cylinder of radius where£=2m(In x+0.081) is the one-vortex energy.
R. The magnetic induction and Gibbs energy of a system of The regular part of the Gibbs energy is calculated in Ap-
N vortices in this geometry has been studied in Ref. 14. Th@endix B. Using the expressioii$8), (19), and(20) for the
detailed derivation of the results is presented in Appendix Amagnetic field, one obtains
The solutionh(r, §) of Eq. (16) satisfying the boundary con-
dition h(R, ) =h, can be written as a sum of three terms:

QN—90=N€+27TEK Ko(V2|F— 1) —27h,
j#

h(r,6)=hw(r)+hy(r,0)+hy(r,0). (17)
The first term % ( " \/_rk))
hw(r)=hel o(\2r)/16(V2R), (18) k= o \/—R)
where | 4(x) is the modified Bessel function of first kind, N K \/ER)ln(\/Eri)ln( \/Erj)
describes the Meissner effect in the absence of vortices. The _an;_m izl | \/ER
second term is the magnetic inductionNf/ortices placed at N o )
pointsry=(ry, 6 for k=1, ... N and it is given by xcosn( 0, — 6;), 24)

. where Go=mRI[R/2— (12/2)I (\2R)/15(v2R)] is the
v<“9>=2k21 Ko(\2Ir=rid). (19 Gibbs energy in the absence of vortices, i.e., in the Meissner
state. For the particular case of vortices distributed on a regu-
The third term, written with help of the modified Bessel lar polygon of radiugl, the previous expressia24) simpli-
function of first and second kinbd,(x),K,(x) as fies and becomes
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Gu—G <~ K
N R _ct27> Kol [2v2d sin—
N = N
lo(+2d)
—27he| 1— ———
lo(\2R)
< Knn(V2R)Iyn(20)?
—27N > . (25
Inn(V2R)
Similar expressions have been already obtained previously in
Refs. 14 and 8 and we shall now discuss them in the limit of
a small radiuk in order to use the particularly elegant struc-
ture of the corresponding solutions to derive analytical ex- 0 1
pressions for the magnetic field and the energy. X

FIG. 1. Behavior of the Gibbs energy as a function of the posi-
IV. CASE OF A MESOSCOPIC CYLINDER tion x of theN=3 vortex shell. The maximum which exists for high

. L enough applied field corresponds to the unstable equilibrium point
We shall now consider the limiting case where<x for for the vortex configuration and gives the height of the Bean-

which the corresponding Gibbs free energy was obtained I ivingston barrier.
Ref. 7. In this limit the previous expressions greatly simplify.
Since all the distances are given in units)of2, we can The relation between the radiusof the polygonal con-

expand the expression for the magnetic induction using thﬁguration and the external flu, is obtained by minimizing
expansion of the Bessel functions for small argument, so thaéN(X he) with respect tox at fixed ¢, namely

1-zz
Z—Z;

N
J— _ 2N—2
h(z,2)—he=de(|z?~1)+2, In ‘ (26) At L S 31)
i=1 2X2 1_X2N
where ¢.=h.R?/2 is the flux of the external field through
the system and we use the complex notations A. The Bean-Livingston barrier

N The relation(31) has, as a function of the applied flg,
ﬁ) e' (27) either zero, one or two solutions. The latter case corresponds
for the Gibbs energy(30) to the existence of a Bean-

together with complex conjugawandz, . This expression Livingston potential barriéf!® for which one solution is

for the magnetic induction is solution of the modified Lon- Stable and gives the equilibrium position of the vortices
don equation while the second solution is unstable and gives the height of

the potential barrier as shown in Fig. 1. It should be noticed
52 . N o that for more than one vortexN¢1), the energyGy di-
—h(z,z)—h,=—7m>, 8(z—z)8(z—z) (28  verges logarithmically at the origix=0 due to the repulsion
92z =1 between the vortices.
The potential barrier disappears for low enough applied
flux below a characteristic valug,,;, given by the minimum
fof the functionfy(x) in the right-hand sidérhs) of Eq. (31)
as represented in Fig. 2. Definilyg=x?, we have

r i0
z=| g€ and z:=

which can be obtained from E@Ll6) for small variation of
the field on the scale dR.

In the particular case, we shall consider from now on, o
vortices distributed along a regular polygon of radijsve
haver,=d and for theN vortices sitting on a shell, the angle

N—1
0, of the kth vortex is 6,=2wk/N. Then, defining the real f(y) = N-1 4 Ny (32)
quantityx=d/R=1, the relation(26) becomes N 2y  1-yN’
— ) 1—xNZN N-1 N(N—1)yN-2 NZy2N-2
hn(z,2) —he=e(|2]*— 1) +2In|——+|, (29 fl(y)=— + + . (33
Xz 2y 1-y" (1-y")?
whereas the Gibbs energg5) becomes For large values oN, we haveyN. =1/2N so that
Gn—G
=€ 2mpe( LX) +2mIn(1-x?) g N1 N1 34
min— 2NI_2N - 2 .
—27(N=1)Inx—27InN, (30 . . )
For ¢.<¢nin, there is no stable solution and then no equi-
whereGy= 774)5/2 and&’ =2 In(R/&). librium position forN vortices exists.
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¢min

1 0 é 16 15
Xs Xu N

FIG. 2. Graphical solution of Eq(31). The curve shows the FIG. 4. Comparison between the relati(@9) for the matching
behavior of¢e(x). The two solutionxs andx, correspond respec- fields ¢, (solid line and the numerical resultgircles for ¢,
tively to the stable and unstable positions of the vortex shell for=In(R/¢)=3.
values of the magnetic field abovg,;, .

I - N(N—-1 2
B. Matching fields gNz Y0 ~N(¢p,— ¢e)+(T)( 1+ InN ¢§_ —NInN.
- _
By plugging the expressio(81) into the expressioK30), (35)

we obtain the behavior of the Gibbs energy forortices as ) . o )
a function of the applied fluxp,. This expression is the Equating this to the similar expression G- 1(¢.) we ob-
counterpart, in the London limit, of the parabolae obtained afin that the matching fields fd¥— - are given by solution
the Bogomoln'yi point® for x=1/\/2. For a given valugp,  ©f the following equation:

of the applied field, the optimal number of vortices corre-

sponds to the envelope of the set of curGg$s,) as repre- b= b+ =~ ~l142n %) ~INN+1+O(1/N).
sented in Fig. 3. The matching valugs, are the values 2 N
taken by the flux of the external field at whicfy_1(dn) (36)
=Gn(¢#n). They correspond to the transition between con-ye yse the following ansaizy= % (aN+b In N+c). Substi-
figurations withN—1 andN vortices, respectively. tuting it to Eq.(36) we obtain the coefficients

Using the relation(30), it is straightforward to obtain the
field at which the first vortex penetrates the system; it is 2a 2a a
given by ¢,=E&'12r=In(R/§). This field is larger than the b=—-—>, c=g5|1t¢~ E)’ (37)

field at which the Bean-Livingston potential barrier disap-
pears. For larger values &, in the limit ¢.> ¢, Wwe  Where the coefficiena satisfies the transcendental equation
approximate the relatiof81) by ¢.=(N—1)/2x? so that

a=1+2lIna. (38

10
This equation has one obvious solutiar 1 which is com-
patible with Eq.(36). However, from the exact numerical

8r calculations of the matching fields using the relatidt) we
infer that the second roa@t=3.5129 is realized in the solu-

ok tion for the matching fields. It leads to the formula

o dn=1.76N—2.32InN+2.32p, — 1.76+ O[ (In N)?/N].

Al . (39
In Fig. 4 the values of the matching fields obtained from the

2t ] computed free energy are compared with our prediction. The
discrepancy is attributed to the slow convergence due to the
term O (In N)?/N].

% 2 4 6 8 10

¢e C. Magnetization and paramagnetic Meissner effect

FIG. 3. Dependence of the Gibbs energy as a function of the A paramagnetic behavior for the total magnetization re-
applied flux ¢.. The equilibrium behavior of the system is de- sults from the existence of a high enough Bean-Livingston
scribed by the envelope of the curves &(h,). Arrows show the  barrier and the long life-time of the corresponding meta-
direction in which the magnetic flux is varied. stable states. We propose the following scenario for the hys-
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2

diamagnetic

r

N

paramagnetic

0 2 4 6 8 10 12 14
FIG. 6. Paramagnetic and diamagnetic zones separated by the
FIG. 5. Magnetization of the disk as a function of flgy for curvel.
1=In(R/§)=3. The hysteretic behavior is indicated by the arrows.
lower curve in Fig. 5. It shows clearly a paramagnetic be-
teretic behavior of the magnetization when the magnetic fielthavior, although it disagrees quantitatively with experiments
is increased and then swept down. and the numerical simulations based on the exact solution of
If thermal equilibrium is maintained while increasing the Ginzburg-Landau equations. This discrepancy results
slowly the external fluxp., the results of the preceding sec- from the rather unrealistic London limit we used for systems
tion hold and the magnetization is given by the derivative offor which k~0.3 in order to obtain an analytic expression
the envelope of the curveg(¢.) according to the thermo- for the Gibbs energy. We emphasize that the system is not at
dynamic relation(8). This behavior corresponds to the upperthermal equilibrium but in a metastable state. It is worth
curve in Fig. 5. noticing that for values of the parametep,=E&'/27
When the applied field is decreased, the vortices that are-In R/é~2, the paramagnetic Meissner effect can be ob-
already in the system are confined by the Bean-Livingstoserved as well for an equilibrium configuration, i.e., for a
barrier and cannot escape the sample until the @ minimum of the Gibbs free energy. But this corresponds to
reaches a certain minimum value at which the barrier can bR~ ¢ so that the deltalike vortex approximation, crucial for
overcome, for instance, by the effect of thermal fluctuationsthe present discussion, is not justified.
For the present discussion we use the ultimate criterion of
zero barrier as a def_mmon of the transition field. V. TOPOLOGICAL PHASE TRANSITIONS BETWEEN
From the Q|scussmn pf Sep. IV A, we deduced tha; the METASTABLE VORTEX PATTERNS
potential barrier foN vortices disappears for a characteristic
field given for largeN by the relation (34), ¢min~(N Up to now, we have considered vortex configurations for
—1)/2. The number of vortices is then decreased by one athich the positiorx of the vortex ring was given by E¢31)
this field and the energy drops as shown by the arrows in Figesulting from the minimization of the energy. We shall now
3. The magnetization calculated from E8) is shown by the relax this condition and study the behavior of the metastable

1 1

4 — -1 —
-1 1 -1 1

(a) (b)
FIG. 7. The case of one single vorteM € 1). Behavior of the curvé’ for (a) ¢e> dn(1) and(b) dm(1)<de<du(1).
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vortex patterns as a function of the applied magnetic flux A different way to encode the position and the distribu-
¢.. Physically, this corresponds to a situation whidreor-  tion of the critical points of the magnetic field in the disk is
tices are pinned by a potential and remain on fixed positiongo use a special contodlt, introduced in Ref. 10 The cunde
is defined by the condition that at each pchrit is perpen-
A. An effective Hamiltonian system dicular to the current density(r). The equation of is then
When varying the fieldp,, transitions in a vortex pattern

with fixed numbem of vortices will appear. To characterize ﬂz rzﬂ (43)
them, we shall study the behavior of the magnetic field de dgh”
given by Eq.(29). To that purpose, it is interesting first to
notice that, in two dimensions, the Maxwell-Anpeequa-
tion J=V x hz is the Hamilton equation of a system whose
generalized coordinatep (q) are the coordinatex(y) such

To this definition we must add the requirement thamust

pass through the critical points at whiftf)zo. The curve
I' has several branches; one of them encircles all the vortices
ST ) ] and defines a natural boundary between the diamagnetic
thatj,=x,j,=y and the canonically conjugated momentum: (\eissney domain near the boundary and the inner paramag-
: netic domain which includes the vorticégig. 6). An ex-
p=—dgh ample of this curve is shown in Fig. 7 for the case of a single
q: &ph. (40) vortex. N _ _ _
The study of the critical points and the resulting behavior
Then, the magnetic field corresponds to the Hamiltonian obf I provides a complete description of the vortex states
the system and the current lines are the phase space trajg§ther for thermodynamic or metastable states and of the
torieS. For a Hamiltonian SyS'[em, the ﬂOW can be Character'n'ansitions between different sets of topo'ogica| numbers

ized by its critical(fixed) points at which when varying the applied field. From the behavior of the
- curve I’ as a function of the applied fielgh,, it might be
Vh=0. (41) interesting to draw the analogy with the pressure exerted on

Using Eq.(40), we see that critical points correspond to zero@ closed membrane separating two systems.

velocity points such that=0. _ o )
In such a description, a vortex corresponds to a maximum B. Topological study of a polygonal distribution of vortices
in phase space. However, there also exist in the system other We now consider the simple case where the cores of the
critical points, such as minima and saddle points. The numyortices are placed on regular polygon at a distané®m
berNy, =N of maxima(i.e., vortice$, N, of minima, andNs  the center of a cross section of the cylinder. The critical
of saddles are not independent, because of the Eulepoints can be classifieee Appendix Caccording to their
Poincare relatioR? namely the Euler-Poincamharacteristic stability properties, obtained from the Hessian matrix
X, is given by =g;9;h. We review the various topological structures ob-
tained and the transitions between them.

X=Nm=Ns+Np,. (42) For a ring configuration oN vortices located at the dis-
The integery is a topological invariant and is equal to 1 for tancex from the center the general expressi@6) for the
a disk thus providing a constraint between the numbers dfield h in circular coordinates, ¢ reads
the different types of critical points. Hence, for a system with

a given number of vortices, the differenbe— N,, between 1— 2xNrNeosN g+ x2Np 2N
saddles and minima is fixed. However, each of them can h=¢e(r’=1)+In N Y o |- (44
vary and the set of these numbers provides a complete de- X" —=2x7r"cosN g +r

scription of the topology of the vortex configurations,
namely each topological phase can be described using thit the critical point the partial derivatives d¢f vanish. The
set of integers. conditiond,h=0 leads to

5 B xNcosN@(r2N+1)— (x®N+1)rN
der —N(x2N—1)rN-1 =0 (45)
(1—2xNrNeosN g+ x2Nr 2Ny (x2N—2xNrNcosN g+ r2N)

while the conditiond,h=0 rewrites as

(1=x2N)(1—r2N) o
(1—2xNrNcosN 6+ x2Nr 2Ny (x2N—2xNrNeosN g+ 12Ny

NrNsinN @ (46)
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FIG. 8. The case dil=2 vortices for(@ ¢m(2)<de<dc(2), (D) Pp(2)<Pe<Pdu(2), and(c) ¢o> Ppy(2). Thecurvel is shown. The
position of the vortices is taken to be=0.7> V2 — \/§ thereforeg (2)< pn(2).

The solutions of Eqs(45) and (46) are studied in detail in tion and forg (1)< ¢.<¢du(1) the curvel starts and ends
Appendix C. One main feature is that one has to distinguision the saddle points on the boundasge Fig. th)]. There-
between the casdd=1, N=2, andN>2 whereN is the fore, in this regime, one cannot define a paramagnetic region
number of vortices. We now describe these three cases sepaside the cylinder and there is no closed curve that encloses
rately. a unit of flux. There appears an arc of circle on the boundary
where the direction of the current flow is opposite to the
1. Metastable configurations for 1 screening current responsible for the Meissner effectpAt

For one single metastable vortex located at distance = ¢m(1) the entire system becomes paramagnetic and the
from the center there is no other critical point for weak flux curvel” disappears.

< 1), with
Pe=dn(1) 2. Metastable configurations for 2

1-x . .
bm(1)= Try: (47 For low enough fieldp< ¢(2), with
_ ™. . . 1_X2
At ¢.=¢y(1) a critical point appears at the point 1,6 b(2)=2 (50

= — 1. For a flux slightly aboveb,,(1), this point splits into
a minimum atr<1,0=—7 and two saddle points on the
boundaryr=1 situated symmetrically about the diameterthe only critical point is a saddle point at the center. For
passing through the vortex. As the flux increases the mini®m(2)< ¢e<$u(2), where

mum moves towards the center and the saddle points ap-

1+x2’

proach the point=1,6=0 each from its side. They coalesce 1+x2
at this point for¢pe= ¢ (1), where ¢M(2):2ﬁ1 (52)
du(l)= T;X (4g)  there are two minima situated symmetrically on the diameter
=X

perpendicular to the line passing through the vortices and

and for larger values of the flux one saddle point appear§V0 pairs of saddle points on the boundary. This configura-

inside a section of the cylinder between the vortex and th&ion iS shown in Fig. &). Each pair is symmetric with re-

boundary in the intervak<r<1,0=0. When ¢(1)<¢,  SPect to the line passing through the vortices and moves

< (1), thedefinition (42) must be generalized to the case towards the points =1, #=0, or =m. For ¢¢>¢du(2)

of critical point on the boundar?. It becomes each pair disappears and gives birth to one single saddle
point located between a vortex and the boundarg=ad or

7 as shown in Fig. &).
X=Nm=Ns+Npy=5Nsp, (49 Two minima inside the section move towards the center
and at the critical value of the fluxp.= ¢.(2), where
whereNgy, is the number of saddle points on the boundary.¢ (2)=(1—x*)/x2 they merge with the central point, which
Thus the index is again equal to 1. becomes a minimum fo#.> ¢.(2). This critical value can
An efficient way to visualize these transitions is to exam-pe shown to be always greater than,(2), but it can be
ine the changes in the cur¥eas the magnetic flux varies. In greater or less thag),(2) depending on the value af For

the casep.> py(1), shown in Fig. 7a), the curvel lies / _ .
inside the section of the cylinder and separates the paramaé—< 2— \/§~0'52’ one hasc(2)>$u(2), while for x

netic (interna) and diamagnetic¢external regions. Forg, >\2-— \/5 we have ¢:(2)<¢n(2). The latter case is
= ¢u(1) the saddle point reaches the boundary of the secshown in Figs. &) and(c).
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1

(b)
FIG. 9. The case o= 3 vortices for(a) ¢m(3)< Pe<dm(3), (b) dp(3)<Pe<d(3), and(c) ¢o> d:(3). Thecurvel is shown.

3. The case N>2: topological phase transitions C. A dynamical interpretation of the curve I"

In that case, the central point is a minimum for all values The curvel’, defined above as being everywhere normal
of ¢.. In addition for low enough external flux there dde to the current flow, has a simple interpretation in terms of an
saddle points inside the section situated symmetricallg at effective dynamical system, which gives an alternative
=2m(k+1/2)IN. As the external flux is increased through method to compute it. Instead of the Hamiltonian fl640),

ém(N), where consider the lines oW h, obtained from those of by a
rotation of 90°. This flow is clearly non-Hamiltonian and
N possess fixed points which are not present in the Hamiltonian
dm(N)=N (52)  dynamics, e.g., the positions of the vortices appear in this
1+xN picture as a pointlike sources, though a saddle remain a

saddle in this transformation. Then, the cuiveepresents a

N pairs of saddle points on the boundary appear togethdimit cycle of the flowVh emanating from the saddle point.
with N minima in the bullsee Fig. 8a)]. The minima move This is illustrated in Fig. 10 where it is clearly seen that the
towards the center along the line defined By-27w(k  same curve as in Fig.(& appears as a limit of the lines of
+1/2)/N,k=1, ... N, while two saddle points constituting vp_

the kth pair move symmetrically to the pointé=2wk/N

and 6=2m(k+1)/N as the flux increases in the interval

Dr(N) < pe< d(N). When ¢= ¢y (N), with VI. CONCLUSION
In this paper we have presented two different aspects of
+xN vortex patterns in a mesoscopic superconductor. First we fo-
ém(N)=N N (53)  cused on equilibrium properties of a type-Il superconductor

in the London regime. In this case, the Ginzburg-Landau

_ ) equations reduce to a single linear elliptic equation that can
pairs of saddle points meet at=2k/N and for larger val-

ues of the flux there arll saddle points situated between a
vortex and the boundary. In this regime there &fe-1
minima and A saddle points inside the section as shown in
Fig. 9b).

At ¢d.= ¢:(N), where ¢.(N) is given by the formulas
(C9) and(C10), each of theN minima coalesce with each of
the N saddle points at=pN, 6=2x(k+1/2)/N, wherep,
is given by Eq(C9). For ¢o> ¢:(N) there remains only one
minimum in the center anil saddle points. It can be shown
that ¢.(N) is always greater thaghy (N) for N>2.

Then, for ¢.=¢.(N) a topological transition occurs,
when a minimum and a saddle point coalesce. This transition
and the corresponding curféis depicted in Figs. @) and
(¢). It is seen that the curvE undergoes itself a topological
transition. Forg.<¢.(N) it does not touch the center and = '
has a topology of a ring, while fap.> ¢:(N) it has a form
of petals of a flower emanating from the center of the sec- FIG. 10. The curvd as the limit cycle of the flowWh. The
tion. parameters are the same as in Fi@).7
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explicitly be solved in simple geometries. We have derivedtion (BSF), by the Minerva Center for Non-linear Physics of
closed expressions for the free energy and the magnetizatiddomplex Systems, by the Israel Science Foundation, by the
of a mesoscopic system which have been obtained as limitNiedersachsen Ministry of Sciend&ermany, and by the

ing cases of a general calculation valid for a system of anyrund for Promotion of Research at the Technion.

sizeé** and not from specific assumptions related to the me-

soscopic regimé With these formulas, we have been able to APPENDIX A: MAGNETIC INDUCTION IN A CYLINDER

study precisely the matching fields and to compute the para-

magnetic Meissner effect, resulting from the existence of We present the solution of the London EG5) for the
metastable states. The second part of the paper has bemagnetic induction

devoted to the general and topological study of the meta-

stable states using a parallel with the theory of two- . . N L

dimensional dynamical systems. We showed that a vortex V2h(r)—2h(r)=—47 >, 8(r—ry) (A1)
pattern can be characterized by a set of topological integers, k=1

the number of vortices being one of them. Any change in thi%/vith the boundary conditioh(R, §) =h, . The polar coordi-

set corresponds to a topological transition of the vortex pal hates are convenient for this g(,aomet?y. Equatibh) with a
tern. _V_Ve calculated the critical _fields asspciated with thes?/anishing right-hand side describes the Meissner regime in
transitions and we gave a dual interpretation of these transjy . spsence of vortices. The corresponding solution of the

tions. A key concept is the introduction of a special curye homogeneous equation is given by théndependent func-
that embodies the main geometric features of a configuratiog |

of vortices. This curve, which appears mathematically as a

limit cycle of the system of currents generated by the vortex \/—
pattern, has a simple physical meaning: it separates paramag- hy(r)= lo(v2r) (A2)
netic from diamagnetic domains. M “15(\2R)’

We emphasize that this approach that focuses on topologi-
cal aspects are generic and can be extended, at least inwdiere the functions,(x),K,(x) are modified Bessel func-
qualitative manner, to systems beyond the London regimgons of first and second kind of orderwhich provide the
and with different shapes. Here, we considered a circularegular and singular solutions respectively of E4l1). The
cylinder to obtain simple analytical expressions. In recensolution of the inhomogeneous E(Al) for N vortices is
studies, analytic expressions for the free energy of a cylindewritten as a sum of the solution of the homogeneous equa-
with an elliptic cross section were found in the mesoscopidion and a particular solution:
limit?* and, more generally, an electrostatic analogy was de-
veloped that enables to study mesoscopic superconductors in h(r,8)=hy(r)+hy(r,0)+hy(r,6), (A3)
the London regime with the help of conformal
transformations? using such tools, it would be interesting to Wherehy(r, 6) is the solution foN vortices in the unbound
carry on a quantitative study of topological phase transitionglomain
in arbitrary domains. A more challenging problem would be
to study vortex patterns in a thin flat disc; indeed the shape N IR
and the interaction of vortices in the London limit are differ- hv(r,9)=2k§_: Ko(V2r=ri) (A4)

. . . =1

ent from those studied héfe! and demagnetization effects
will enhance the value of the field on the boundary of theand the termhy(r, 6) is introduced to take care of the bound-
sample. However, we believe that the topological results obary conditions:
tained here are robust, and will remain qualitatively un-
changed as long as the topology of the sample itself is not hy(R, )= —hy(R, )

modified??
In this work, only static configurations of vortices have N 5
been investigated. A natural extension of the concepts intro- = —22 Ko(V2[R?+r¢—2Rncos 6— 6,)]).
duced here would be to consider the dynamics of a vortex K=t
pattern, where a vortex would move in the field generated by (A5)

the other vortices. In this context, the study of the deforma- ] )
tions of the curve” would certainly shed some light on the On the other hand, the fieki; can be written as a superpo-

mechanism of vortex nucleation in a superconducting syssition of solutions of Eq(A1) regular in the interior of the
tem. boundary:

+ o

ACKNOWLEDGMENTS hy(R,0)= > cula(v2r)en?, (A6)
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Ko(V2[R?+r12—2Rr,cog 60— 6,)]) heR (27 V27RR2 1,(2R)
doh,(R,0)=
oo | 4 Jo 2 1y(\2R)
= 2 Ky(\2R)I(V2ren®=® (A7) .
n=- lo(\2ry)
—7> hg———. (B4)
Equating the coefficients of the expansion of both sides of =1 16(V2R)

Eq. (AS) one obtains We notice that the contribution from the Meissner fib|glin

Eqg. (B1) exactly cancels with the second term in the last

Kn(v2 V2RI n(\/_rk) (A8) equation. Hence the regular part of free energy becomes
c
LR (BR) N
_ = 21 _
from which the expressiofR0) follows immediately. F e \/EWRhe lo(v2R) 2m :Eoc ,%1
APPENDIX B: EXPRESSION OF THE GIBBS ENERGY \/_R)'n(\/—f )n(v2r)) coSN(6;— 6.
FOR A CYLINDER L(V2R) )
One takes advantage of the vector identi@x(ﬁ)-(v (BS)

Xh)=V-(hxVxh)+h-(VXVxh) to rewite (¥ The term containing the average magnetic induction over
xh)-(Vxh)=V-(hxVxh)—hv?h, sinceV-h=0. Then  the cross section of the cylinder is evaluated along the same
one uses the London equati@tb) to rewrite the expression Jines, using the London Eq15):

(12) for the free energy as

S 2y Pe[ . vhirg?
N 1 he [ h(r)dr=27Nhg+ 5 V-Vh(r)d“r
F=m> dzrh(F)a(F—FkH—f d?r V- (AX VX ). ¢ °
k=1 Ja 4)a

I11(V2R)
(B1) =\27R v iled
" 0(\/§)R
The singular parfF., is obtained from the contribution &,
to the first integral. The regular contribution to the free en- +2mh 2 o(V2ry )R (B6)
ergy can be written using Stokes theorem: 77 = 0( \J2) '
Using the expression®5) and(B6) in the definition(22) of
F=Fpo=m2 hy(r)+m> hy(ry) the Gibbs energy completes the derivation of Efl).
k=1 k=1
R (2w APPENDIX C: STUDY OF THE CRITICAL POINTS
+—| déh(R,0)h(R,6), B2 . _ I
4)o (RO (R.) B2) In order to study critical points of the Hamiltonian system

defined in Sec. VA, one has to solve E¢45) and (46) for
where h, denotes the partial derivative df(r,0) with re- a given numbeN of vortices.
spect tor and the fieldshy, and hy are given by Eqs(18)
and(20). In the last termh(R, #) = h, can be taken out of the 1. Existence and location of the critical points

integration sign and the integral becomes i . , , )
We first look for critical points which are neither on the

boundary of the section nor at the center, i.e., we concentrate

Wdh""(R) N,y 9 (2 dg[hV(R 0)+hy(R,0)] on the generic position Qr<1. When 6<r<1, one de-
dR JR duces that Eq(46) is satisfied if silfNg=0, i.e., when6
=k#/N for k=0,1,...,N—1. These values of the angle
—2427h 14 V2R) 42 2 lo(v2 \/_rk) can be subdivided into two groups according to the sign of
e|O(\/§ ) =1 19(V2 \/_R) cosN6. We now discuss the solution of E@L5) for the two

cases separately.
X[1o(V2R)IK1(V2R) +Ko(V2R)11(V2R)].

(B3) a. Bulk critical points such that cos M=+1

In this case, we are looking for “parallel” critical points
To prove the last equality the properties of the Bessel functhat lie in the same direction as the vortices. And we shall
tionslo(x)=11(x),Kg(x) = —Ky(x), and the expansiofA7)  prove that for anyN, there exists a critical fieldpy,(N),
were used. Onlyn=0 term contributes to the angular inte- defined as follows:
gral. Using another property of Bessel functions
lo(X)K1(X) +Ko(X)11(x)=1/x and one obtains that du(N)=N(L+xN)/(1—xN), (C1

064523-11
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10

Pe<dy
d,>0n
5
0,<0 .50,
0
-5 4
0 % 05 1
P p

FIG. 11. Graphical solution of EqC?2) for one single vortex

. - FIG. 12. Graphical solution of the equati¢@3) for N>2 vor-
(N=1). The position of the vortex is taken to ke=0.5. P quatieasd)

tices. The position of the ring of vortices is taken toxre0.5.

such that whenp> ¢ (N) there is always a critical point b. Bulk critical points such that cos=—1
between each vortex and the boundary, and no such point
exists if pe< dp(N).

Using the new variableg=x" and p=rN Eq. (45) re-
duces to

We are now looking for “antiparallel” critical points that
lie in a direction bisecting the angle between two neighbor-
ing vortices. Here the discussion is more involved:

When N=1 there appears a critical field,(1)=(1
—Xx)/(1+x) such that whenp.> ¢ (1) there exists a criti-

be -1 cal point in the direction opposite to the vortex whereas
W QlN)_lZm. (C2 when Pe< qu(l) no such point exists.
P P When N=2, there are two critical fieldsp,(2) and

¢(2) such that wherp,(2)< p.< p.(2) there are exactly

Looking at this equation, it is clear that systems with two antiparallel critical points and there are no such points
=1, N=2, or N>2 should be discussed separately. when ¢e<¢pm(2) or pe>de(2).

ForN=1, the plots of the left- and right-hand sides of this WhenN>2, one has again two critical fields,(N) and
equation are represented in Fig. 11. They crosgfol. only  ¢c(N) such that whenp.< ¢,(N) there exisiN antiparallel
if the rhs evaluated at=1 is less thang,, i.e., for ¢,  critical points, whenp,(N) < ¢.< #.(N), there are Rl such
>pu=(1+&)/(1—&)=(1+x)/(1—X). In this case the so- points, and wherp.> ¢(N), there are no antiparallel criti-
lution of Eq.(C2) can be shown to exist using the continuity cal points.
of the functions. The position of the critical point corre- We now prove these assertions and calculate the corre-

sponding to this solution satisfies<r<1, i.e., the point sponding critical fields.

resides between the vortex and the boundary. ot ¢y, Consider first thaN=1; then Eq.(45) in terms of the
there is no solution. variablesp and § becomes
For N=2, it is worthwhile to consider the reciprocal of
Eq. (C2) which rewrites as 1—¢2
PP~ (i o) (£t p) (€4
N 1 ) o _ _
——pt BN =———(1-¢p)(£—p). (C3)  and a solution exists in the intervak(p<1 if the value of
be &-1 the Ihs atp=1 exceeds the value of the rhs at the same point,
as shown in Fig. 13. This happens f@di,> ¢,(1)=(1
—X)/(1+X).

The right-hand side is a convex parabola with zeros at
<1 and 1£>1. ForN=2 the |hs is a constant function and
it is clear that if o>y =2(1+&)/(1—&)=2(1+x?)/(1
—x?) there is always a solution f@r<p<1, therefore there N 1

exists a critical point between the vortex and the boundary, ——p' T N=——(1+&p)(£+p). (CH)
while ¢.<¢y no solution exists. FON>2 the Ihs is an Pe 1-¢

increasing fractional power gf (see Fig. 12 Equation(C3)

Now, whenN=2, the Eq.(45) can be rewritten as

always has a solution betweenand 1 if ¢o>¢dy=N(1 N=2: this case is illustrated in Fig. 14. F@r,< ¢, (2)
+&)I(1-&)=N(1+x")/(1—x") and no solution if o  =2(1—&/(1+&)=2(1—x)/(1+x°) there is no solution, for
<m - b= Pm(2) one solution appears pt=1 and it persists for

064523-12
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FIG. 13. Graphical solution of EqC4) for one single vortex
(N=1). The position of the vortex is taken to ke=0.5.

the range of the flux¢m(2)<de<d(2)=2(1—&2)/&
=2(1—x%/x* For higher flux, o> ¢.(2), this solution
disappears gh=0.

The caseN>2 is the most interesting: Fig. 15 shows the

behavior of both sides of EC5). Comparing the value of

the Ihs atp=1 with that of the rhs and using the fact that
p'~?N has a negative curvature, while that of the rhs is al-

ways positive, we can state that for< ¢,,(N), where

n(N)=N(1=E)/(1+&=N1-x")/(1+x") (Ce)

PHYSICAL REVIEWGB 064523

8,<0
8, <0,<0,
Iy
0,50,
0 05 1
Pe p

FIG. 15. Graphical solution of EqC5) for N>2 vortices. The
position of each vortex is taken to xe=0.5.

Fig. 15. Equating the value of these functions and the value

of their derivatives ap=p. we obtain the following equa-
tions:
belpet €)(1+Ep) =N(1—2)pg N

bo(2épc+E2+1)=(N=-2)(1-£)p, M. (C7)

Dividing the first equation by the second leads to the qua-

dratic equation fop,:

(N+2)épe+2(82+1)p.— (N—=2)é=0 (C8)

there is only one solution. Another solution appearspat which has the unique positive solution

=1 for ¢.=¢py(N) and these two solutions move towards

each other when the flux is increased in the interyg(N)
<¢p<d(N), whereas at the critical value of the flug,
= ¢.(N) these two solutions coalesce. Fdg> d.(N), Eq.
(C5) has no solutions in the intervakQp<<1.

Calculation of the critical flux¢.. For ¢o(N)= ¢, the

function fy(p)=(N/¢e)p* N and fudp)=(1+£p)(&
+p)/(1— &) are tangent at some poipt= p, as shown in

0ty
¢ <,<9,
¢e= c
$>0,
0 05 1
p

FIG. 14. Graphical solution EqC5) for N=2 vortices. The
position of each vortex is taken to lxe=0.5.

(14N
Pe= (N+2)¢&

(C9)

The critical flux is obtained by substituting the value @f
into the first equation of Eq.C7):

N(L-&)pg " 10
e oot D1t Epo)’
We notice that foN=2 the formula(C9) yields the correct
value p.=0. Although topologically the casd$é=2 andN
>2 are different, the critical fluxp(2)=(1—&?)/¢, as we
shall see later, comes out correctly.

c¢. Central and boundary critical points

So far we did not discuss the two cases;0 andr=1.
For N=1 the centerf =0, does not satisfy Eq$45) and
(46) and therefore is not a critical point. Fbi>1 the value
r=0 is always a solution of Eq945) and (46). For the
points on the boundary=1, Eq.(46) is always satisfied and
substituting the value=1 into Eq.(45) we find that there
are 2 critical points on the boundary with an angle given
by the following relation:

1 N(1—xN
cosNo=— 1+x2N— NA-x7) (C11)

2X d’e
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which is meaningful only for values of the flux between
dm(N) and ¢y (N). O<p<pr | m<p<l
O-h - +
2. The nature of the critical points
We now discuss the topological nature of the critical 9zh +
points and classify them by linearizing the stability expo- R
nents near each of these points. The problem is then reduced dh +

to the study of the Hessian matrix of the second derivatives

a?h  g.d4h
dgoh  %h |

Crit. point Minimum

H= (C12

N=2. ¢p<¢n: No critical points. p,,<d.<¢d.: One

Since at the critical points inside the section we haveCrItICaI point atp.

sinN#=0 the mixed derivative vanish and the Hessian ma-

trix is diagonal in polar coordinates. The second derivative O<p<p | p<p<l
with respect tod is given at the critical points by
Orh - +
1— 2 1— &2
72h=—aN2p P )2( ¢ )2<o (C13 o2h +
(1-&p)°(é—p)
O¢h +
for cosN6=+1 and by
) 5 Crit. point Minimum
(1-p°)(1-£9)
24— 2
Jggh=+2N P(l+§p)2(§+p)2>0 (C14 $e> ¢ No critical points.

N>2. $p.< ¢, One critical point afp;.

for cosNé=—1. The value of the second derivative with re-

spect tor can be obtained by looking at the way the first O<p<p | pr<p<l
derivative 9,h changes sign near each solution of E4f).
We shall now discuss separately the nature of the critical ovh + _
points in the “parallel,” “antiparallel,” “central,” and
“boundary” cases. 82k -

a. Bulk critical points with cosNg=+1 93h +

For ¢.> ¢\, there is only one critical point at; in the _ _
interval £<r<1. The results for the second derivatives at Crit. point Saddle
this point are summarized in the following table:

Pn< Pe<d: Two critical points atp;<p,.

O<p<p | pp<p<l
O<p<pr | pr<p<pa|p<p<l
orh - +
Orh + - +
O2h +
2h . N
o2h -
zh + +
Crit. point Saddle
Crit. point Saddle Minimum
b. Bulk critical points with cos NN=—1 $e> ¢ No critical points.

The following tables provide a classification of critical
points in a variety of regimes.

N=1. p.<n: No critical points.¢p.> ¢,,: One critical Consider now the point=0. Expanding the field(r, )
point atp;. given by Eq.(44) for smallr we obtain

c. Central and boundary critical points

064523-14
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1-¢2 N the line cos 2=—1 disappears at the center. Rgr2, the
£ )r last term in Eq(C15) is negligible and the center is always a
(C15  minimum.
When ¢, < < ¢y We must consider the critical points

h(r,0)~—(de—2NINX) + por2+2 COSNG)(

As we mentioned before, fdd=1 the pointr=0 is not a X N " A
critical point (due to the presence of a term linearrin For on .th.e boundary. Since far'—l zthe conditiondh=0 I.S
N=2, two last terms are quadratic inand the character of satisfied for "_’1” ‘9_’ we obtain §0h=0 a”f_’ ar‘yﬂh_?&o if

the critical point depends on the value of the flx. For co$N#+1, which is always satisfied fnge in the mterval_
be< do=(1— )/ £ the centery =0, is a saddle, while for betweendg,, and ¢y, . Thus the determinant of the Hessian
bo> . it turns out to be to a minimum. This is to be com- Matrix (C12), given by deH = —(d,d,h)? is negative and
pared with the prediction of formuléC10). It is interesting  the eigenvalues are of opposite sign. We conclude that the
to notice that this happens when the minimum located alongritical points at the boundary are saddles.
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