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Nonexponential Quasiparticle Decay and Phase Relaxation in Low-Dimensional Conductors
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2Department of Physics, Technion Israel Institute of Technology, 32000 Haifa, Israel

(Received 15 April 2004; revised manuscript received 29 July 2004; published 29 June 2005)
0031-9007=
We show that in low-dimensional disordered conductors, the quasiparticle decay and the relaxation of
the phase are not exponential processes. In the quasi-one-dimensional case, both behave at small time as
e��t=�in�

3=2
where the inelastic time, �in, identical for both processes, is a power T�2=3 of the temperature.

The nonexponential quasiparticle decay results from a modified derivation of the Fermi golden rule. This
result implies the existence of an unusual distribution of relaxation times.
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The issue of dephasing in the presence of electron-
electron interactions in disordered conductors is of great
importance in mesoscopic physics. This problem, first
addressed by Altshuler, Aronov, and Khmelnitskii (AAK)
[1], has been recently revisited in the light of a new set of
experiments [2–4]. A related problem is the understanding
of the time evolution of a quasiparticle state due to
electron-electron interaction, which governs the relaxation
towards thermal equilibrium [5]. Since coherent effects in
disordered systems result from the coherent pairing of two
scattering amplitudes defined for a given quasiparticle
state, the coherence is lost once this state has relaxed.
Thus it seems natural to assume that quasiparticle and
phase relaxations are of the same nature [6] and are driven
by the same time scale. In this Letter, we show that in low-
dimensional disordered conductors and, in particular, for
quasi-one-dimensional (quasi-1D) wires, both relaxations
are faster than exponential and are driven by the same
characteristic time [7]. This nonexponential behavior re-
flects the existence of a distribution of relaxation times.
Such a nonexponential decay is unusual in quantum con-
densed matter physics but more frequent in the context of
molecular relaxation processes and in glassy systems.
Stretched and compressed exponentials are mostly used
as a way to fit unusual relaxations but no microscopic basis
can be assigned to account for this behavior [8]. Here, we
derive it from a new treatment of the Fermi golden rule.

We shall first consider the quasiparticle decay, using the
Fermi golden rule [9]. We show that, due to screened
Coulomb interactions with small energy transfer, the re-
laxation rate is not constant, implying a nonexponential
decay. This results from a key step in the Fermi golden rule
which stems that the transitions conserve energy within �h=t
where t is the duration of the perturbation. Usually this
constraint is of no practical importance and energy con-
servation is described by a delta function. Here we show
that this is no longer possible. As a result, we find that for
quasi-1D wires, the probability for a quasiparticle to stay in
its initial state behaves, at small times, as P �t� �
e���t=�in�3=2 . The temperature dependence of the inelastic
time is �in�T� / T�2=3, and � is a numerical constant.
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Then, we shall come to the relaxation of phase coher-
ence. It is given by the average hei��t�i of the relative phase
��t� between time reversed trajectories. Starting from the
AAK calculation, we show that the phase relaxation is also
nonexponential and that, at small times, it behaves like
hei��t�i ’ e��t=�	�3=2 where the phase coherence time �	 is
proportional to the quasiparticle decay time �in.

We start by considering the decay of a quasiparticle,
recalling first some known features of the derivation. Using
the Fermi golden rule, the quasiparticle lifetime can be
written in terms of a kernel K�!� which is the average over
disorder of the squared matrix element of the screened
Coulomb interaction [7,10]:
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where 
0 is the total density of states per spin direction.
The temperature dependence results from the occupancy of
the initial and final quasiparticle states. Upon disorder
averaging, the kernel K�!� is obtained as the squared
product of the dynamically screened interaction and of a
long range contribution called diffuson. As a result, we
have [5]:
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The diffusive nature of the electronic motion implies a
strong dependence of the transition probability upon the
space dimensionality d that appears in the sum over the
modes q. The kernel K�!� then depends on the space
dimensionality d and it is given by [5] K�!� �

��d=16
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frequency. For d � 3, the integral in (1) is convergent so
that �in�T� is well defined and behaves like T�3=2.
However, for d � 2, the integral in (1) diverges at low
energy transfer !. To cure this divergence, it is commonly
argued that the low frequency cutoff needed is 1=�in itself,
since no energy transfer can be smaller than �h=�in.
Consequently, the lifetime is the solution of a self-
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FIG. 1. Plot of the function h�!t�. It vanishes for small argu-
ment, justifying the cutoff of order 1=t in Eq. (4).
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consistent equation whose solution in d � 1 is:
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where the conductivity is � � 2e2
0D=�LS�. This tem-
perature dependence has been first obtained by Altshuler
and Aronov [5].

We argue here that this divergence is indeed the signa-
ture of a new behavior for the quasiparticle decay. We
prove that this decay is actually nonexponential. The cru-
cial point in our argument is that it is not correct to cut off
the integral at 1=�in. To grasp the relevance of this state-
ment, it is important to recall the Fermi golden rule pre-
scription, namely, that after a time t, the range of accessible
states is limited to energies larger than �h=t, not �h=�in. This
leads to the replacement of (1) by the following expression
for the disorder averaged transition probability P �2��t�
towards final states, calculated up to second order in per-
turbation:
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where, for simplicity, the thermal factor has been replaced
by an upper cutoff at �h!
 T. We have used the above
expressions for the kernel in d dimensions. In one dimen-
sion, this leads immediately to a t3=2 power law: P �2��t� ���

2
p
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p t3=2 so that the quasiparticle relaxation is not

exponential.
Let us prove now this qualitative statement, coming back

to the derivation of the Fermi golden rule. A given initial
quasiparticle state � interacts with a quasiparticle of en-
ergy ��, leading to two quasiparticles of final energies ��
and ��. As known from quantum mechanics textbooks
[11], the transition probability towards final states is:
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where U��;�� is the matrix element of the interaction. The
function ft��!� of width �=t is given by [11]

ft��!� �

�
sin�!t=2
�!=2
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2
: (6)

Its maximum is equal to t2 and its integral is 2�t. Usually,
this function can be approximated by 2�t���!�, so that
the decay is linear in t, and the prefactor is the inverse
quasiparticle time.

The main idea here is that this approximation is not
always valid. To see this, we first calculate the disorder
average of Eq. (5) using standard methods [7]. The new
input is that the energy of the initial and final states may
differ by a small amount �! of order 1=t, as explicitly seen
in Eqs. (5) and (6). As a result, the diffusons and dynami-
cally screened interactions which enter in the kernel K
01640
have to be taken at different frequencies !� �
!��!=2. This immediately leads to a kernel K�!�!�,
which now depends on the energy difference �!:
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instead of (2). This kernel yields to a transition probability
of the form:
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Letting ft��!� � 2�t���!� leads immediately to the
usual result, namely, a behavior of P �2��t� linear in t and
defines 1=�in, provided the integral is convergent.

However, in 1D, when �! � 0, K�!�0�!� � K�!� /

1=!3=2 and the integral on ! becomes divergent. It is thus
crucial to keep the full expression of ft��!�. Doing this,
we find that for ! � 1=t, we still have gt�!� �

2�tK�!� / t=!3=2, while for ! � 1=t, it is easy to check,
since ft�0� � t2, that the function gt�!� / t2=

����
!

p
, so that

its integral near zero frequency is indeed convergent. More
precisely, we can show that gt�!� is of the form gt�!� �
2�tK�!�h�!t� where the function h�!t� is linear for small
argument and tends to 1 for large argument. This function
is calculated numerically and is shown on Fig. 1. The
quasiparticle decay probability takes the form
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We have thus proven that the cutoff in (4) appears as a
natural consequence of a proper use of the Fermi golden
rule. More precisely, because of the function h which
naturally provides a lower cutoff of order 1=t, the integral
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now converges and
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At small times, the survival probability P �t�, i.e., the
probability that a quasiparticle stays in its original state,
is given by P �t� � 1� P �2��t�. By exponentiating this
relation, we obtain:

P �t� � e���t=�in�3=2 : (12)

The survival probability is thus given by a compressed
exponential characterized by the inelastic time (3) and
where � ’ 5:83

���
2

p
=�. Similarly, in two dimensions for a

film of thickness a, using (4), one finds a logarithmic
correction P �t� 
 e��t=�in��1= lnTt� with ��1

in �T� / e2T
�h2�a

.
These temporal behaviors constitute one of the main re-
sults of this Letter. We emphasize again that there are
direct consequences of the Fermi golden rule prescription
according to which the energy is conserved, not within the
decay rate �h=�in, but rather within the inverse time �h=t
[11].

Now, one can wonder whether this peculiar behavior of
the energy relaxation has its signature in the time depen-
dence of the phase relaxation of coherent effects in weakly
disordered systems. These effects result from the coherent
pairing of two scattering amplitudes defined for a given
quasiparticle state. In particular, we consider pairs of time
reversed trajectories (the Cooperon) as it appears in the
weak-localization correction to the conductivity. The re-
laxation of the Cooperon is driven by a characteristic time
�	 called the phase coherence time. It seems quite intuitive
that, as far as Coulomb interactions are involved, the
quasiparticle decay and the Cooperon relaxation are re-
lated. Thus the question arises of the relation between the
inelastic time �in and the phase coherence time �	. We
shall now show that these two relaxation processes are
indeed identical and characterized by the same time scale.

To that purpose, we consider the time relaxation of the
Cooperon by replacing the Coulomb interaction by a clas-
sical fluctuating potential V�r; �� whose characteristics are
determined by the fluctuation-dissipation theorem [1]. The
Cooperon contribution to the return probability can be
written under the form:

Pc�r; r; t� � P�0�
c �r; r; t�hei��r;t�iT;C; (13)

where P�0�
c is the Cooperon in the absence of the fluctuating

potential and � � ��r; t� is the relative phase of a pair of
time reversed trajectories at time t:

� �
1

�h

Z t

0
�V�r���; ��� V�r���; ����d�: (14)

This expression is valid in the eikonal approximation, i.e.,
for a slowly varying potential whose effect is to multiply
the disorder averaged Green function by a phase term
01640
proportional to the circulation of V�r���; �� along the tra-
jectory between the times 0 and t. We define �� � t� �.

The dephasing � is accumulated along the diffusive
electronic trajectories paired in the Cooperon. One of
them propagates in the time interval 0 � � � t whereas
its time reversed counterpart propagates from � � t to � �
0. We denote by h� � �iT;C the average taken both over the
distribution of the diffusive trajectories (h� � �iC) and over
the thermal fluctuations (h� � �iT) of the electric potential.
The latter are Gaussian so that the thermal average
hei�iT � e�1=2h�2iT . Using (14) and the fluctuation-
dissipation theorem in the classical limit (� �h! � 1),
namely, hV�q; !�V��q; !�iT � 2e2T

�q2
, we obtain for the

dephasing the following expression

h�2iT �
4e2T

� �h2
Z t
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q2

:

(15)

The average hcosq � �r��� � r� ����i over the diffusive tra-
jectories of time t is e�2Dq2�j1�2�=tj. For a quasi-1D wire,
the integrations over q and � lead to
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Assuming first that he�1=2h�2iT iC ’ e�1=2h�2iT;C , we obtain
for the Cooperon, at small time, the compressed exponen-
tial behavior

hei�iT;C ’ e�
���
�

p
=4�t=�in�3=2 (17)

identical to the energy relaxation (12) and with the same
characteristic time �in given by (3). A similar behavior for
the phase relaxation has been also found in [12]. It is
interesting at this stage to compare (15) with (4) obtained
for the transition probability of a quasiparticle state.
Although these expressions behave similarly, the conver-
gence in (4) results from a cutoff at small ! whose origin is
in the Fermi golden rule prescription; namely, that among
the large number of accessible states in d � 1, only those
with energy transfer larger than �h=t are accessible after a
time t. This low energy cutoff does not exist in (15) and the
convergence results from the compensation between the
two terms in the bracket that describe, respectively, the
contributions of the correlations hV�r���; ��V�r��0�; �0�iT
and hV�r���; ��V�r��0�; ��0�iT to the Cooperon.

The result (17) is not fully correct since we have ap-
proximated the average h� � �iC of the exponential by the
exponential of the average. Using the functional integral
approach presented in [1], there is a way to derive an
expression for the phase relaxation valid at all times by
considering the Laplace transform P��r; r� �R
dtPc�r; r; t�e

��t of the Cooperon. In quasi-1D, one has:

P��r; r� � �
1

2

������
�in
D

r
Ai ��in=���

Ai0 ��in=���
; (18)
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FIG. 2. Behavior of hei��t�iT;C. The continuous line is the exact
result (20). The dotted line is obtained from the small time
expansion (17). The dashed line shows the exponential fit
e�t=2�in .

PRL 95, 016403 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
1 JULY 2005
where Ai and Ai0 are, respectively, the Airy function and its
derivative [13] and �� � 1=�. The probability Pc�r; r; t� in
(13) can thus be obtained from the inverse Laplace trans-
form of (18). Since, in the quasi-one-dimensional limit,
one has P�0�

c �r; r; t� � 1=
������������
4�Dt

p
, the dephasing term

hei�iT;C is a function of t=�in that satisfiesZ 1

0

dt��
t

p hei�iT;Ce�t=�� � �
����������
��in

p Ai ��in=���

Ai0 ��in=���
: (19)

The inverse Laplace transform is obtained by noticing that
the Airy function and its derivative are analytic and non-
meromorphic functions whose zeroes lie on the negative
real axis. Then, by performing the integration in the com-
plex plane with the residues Res �estAi �s�=Ai0 �s�� �
e�junjt=junj where the un are the zeros of Ai0 �s� given at
a very good approximation by junj � �3�2 �n� 3

4��
2=3 [13],

we obtain the analytic function

hei�iT;C �

������
�t
�in

s X1
n�1

e�junjt=�in

junj
: (20)

At small times t < �in, it behaves like (17). At large times,
the relaxation is driven by the first zero of the Ai0 function,
namely, hei�iT;C ’

��������������
�t=�in

p
e�ju1jt=�in=ju1j with ju1j ’

1:019. Clearly, the relaxation (20) is never exponential. It
appears as a distribution of relaxation times �in=junj which
is at the origin of the rather unexpected compressed ex-
ponential behavior of the quasiparticle decay and of the
Cooperon phase relaxation. The expression (20) consti-
tutes one of the main results of this Letter.

The question arises of how this behavior could show up
experimentally. It has been stressed by Pierre et al. [4] that
the Laplace transform (18) is well approximated by the
01640
relation P��r; r� � �1=2
����
D

p
�� 1��


 a
�in
�1=2 where a ’ 1=2 is

an adjustable numerical constant. This approximation cor-
responds to an exponential relaxation hei��t�iT;C ’ e�t=2�in

that is clearly at odds with the behavior (20) (see Fig. 2).
However, the difference between the exact relation and the
exponential approximation is difficult to see experimen-
tally. The time �� accounts for other processes such as the
decay rate in a magnetic field which, for a wire of section
S, is given by ��1

� � ��1
B � DS2e2B2=3 �h2 [14]. A possi-

bility to probe the t3=2 behavior at small time is to study the
limit �B � �in where the weak-localization correction to
the conductivity is

�� � �
e2

� �h

����������
D�B

p �
1�

1

4

�
�B
�in

�
3=2

�
: (21)

The power-law dependence of the correction term in (21) is
a direct signature of the t3=2 behavior of the relaxation at
small time. The asymptotic behavior ���B� ����B !

1� / T=B4 reflects both the T�2=3 dependence of �in and
the nonexponential t3=2 phase relaxation. Another possible
probe of the nonexponential relaxation of the phase is
through a measurement of the ac conductivity ��!�.
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