
Chapter 13

Interactions and diffusion

ν0 is the average density of states per spin direction and ρ0 = ν0/Ω is the den-
sity of states per unit volume. The energy ∆ = 1/(ρ0Ω) = 1/ν0 is the average
level spacing per spin direction. Most results will be presented in the CGS sys-
tem, in the form most commonly found in the literature. Unless specified, we
take ~ = 1.

13.1 Introduction

Up to this point, electron-electron interaction has been neglected in the de-
scription of spectral properties and electronic transport. Although electrons
interact through the Coulomb interaction, the free electron model constitutes
a very good approximation for the description of many physical properties.
This is due to the screening of the Coulomb interaction which occurs on a
length of the order of the average distance between electrons. However, the
electron-electron interaction has important physical consequences which can
be classified in two categories :

• Each electron is sensitive not only to the disorder potential but also to the
electronic density fluctuations induced by other electrons. As a result, the
energy levels are shifted and the thermodynamic and transport properties
are modified, particularly the density of states and the conductivity. The
change in density of states is maximum around the Fermi level, thus
constituting a direct signature of the interaction. Moreover, this change
is important since it affects the orbital magnetism of the electron gas
and the persistent current (Chapter 14). The change in conductivity is
of the same order of magnitude as the weak localization correction, but
its nature is quite different. In particular, it does not depend on the
magnetic field, making it more difficult to observe.

• The interaction between electrons is an inelastic process (the total energy
is conserved but the energy of each electron is modified). Each electron

489



490 Chap. 13 : Interactions and diffusion

stays in an eigenstate of the single particle Schrödinger equation only
during a finite time, and thus phase sensitive processes are affected. The
electron-electron interaction, like the interaction with other degrees of
freedom (e.g. phonons), destroys the phase coherence after a character-
istic time τee

φ . We shall see that this phase coherence time can be also
understood as resulting from a fluctuating electromagnetic field that de-
phases the trajectories paired in either the Diffuson or the Cooperon, in a
way qualitatively similar to the dephasing induced by the motion of scat-
terers (chapter 6). The equivalence between the effects of the Coulomb
interaction and of a fluctuating electromagnetic field is far from being
obvious. It relies on the fluctuation-dissipation theorem.

The diffusive nature of the electronic motion plays an essential role because
it strenghtens the interaction effect. This can be understood in the following
qualitative way. As a result of the diffusive motion, the probability that two
electrons interact is enhanced since an electron moves less rapidly than if its
motion were ballistic. The effective interaction between two electrons is thus
enhanced since each of them has an increased probability of staying in the in-
teraction region. The modification of physical quantities due to the interaction
must be proportional to the time spent in this region. More precisely, for a
physical quantity X(E) that depends on some energy scale E, we expect a
modification proportional to the probability of return (5.5) into the interaction
region during the time ~/E,

δX(E)

X
∝ 1

ρ0~Ω

∫

~/E

0

Z(t)dt (13.1)

This chapter is devoted to the study of the interplay between disorder and
interaction. The latter is treated as a perturbation to the model of independent
electrons in a random potential.

13.2 Screened Coulomb interaction

The Coulomb interaction between two electrons at a distance R is described
by the potential 1 U0(R) = e2/R. In d = 3, its Fourier transform is U0(q) =
4πe2/q2. The case of other space dimensions is discussed in Appendix A13.1.
In a metal, the Coulomb interaction is screened due to the presence of the other
electrons. In the Thomas-Fermi approximation, it becomes [314]

U(q) =
4πe2

q2 + κ2
(13.2)

or

U(R) =
e2

R
e−κR . (13.3)

1In CGS units.
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The Thomas-Fermi wavevector κ, reciprocal of the screening length, is given
by [314]

κ2 = 8πe2ρ0 = 8πe2
ν0
Ω

(13.4)

where ρ0 is the density of states per unit volume and per spin direction. The
q = 0 value of the screened interaction is simply related to the density of states
by

U = U(q = 0) =

∫

U(R)dR =
1

2ρ0
. (13.5)

For a metal, κ ≃ kF , the screening is quite efficient and acts over a length of
order λF (see remark p. 492) . In the weak disorder limit, the screening length
κ−1 is much smaller than the elastic mean free path le.

In a diffusive system, the screening is not instantaneous and it is important
to describe its dynamics properly. The effective interaction between electrons is
a function U(q, ω) of wavevector and of frequency. The charge reorganization
is described by means of the dielectric function ǫ(q, ω) which is related to
the density-density response function χ0(q, ω) by the relation ǫ(q, ω) = 1 +
U0(q)χ0(q, ω). We have [314]

U(q, ω) =
U0(q)

ǫ(q, ω)
=

U0(q)

1 + U0(q)χ0(q, ω)
. (13.6)

In section A7.1.2, we have shown that, in the diffusion approximation,

χ0(q, ω) = 2ρ0
Dq2

−iω +Dq2
. (13.7)

Therefore the effective interaction depends also on frequency : the interaction
is said to be dynamically screened, a consequence of the diffusive nature of the
electronic motion. Using (13.6), we obtain

U(q, ω) =
4πe2

q2
−iω +Dq2

−iω +Dq2 +Dκ2
. (13.8)

The dielectric function ǫ(q, ω) deduced from (13.7) is

ǫ(q, ω) = 1 + 2ρ0
4πe2

q2
Dq2

−iω +Dq2
, (13.9)

or

ǫ(q, ω) = 1 + 4πσ0Pd(q, ω) (13.10)

where σ0 = 2e2Dρ0 is the Drude conductivity given by the Einstein relation
(7.14) and Pd is the Diffuson (4.89) written in the diffusion approximation,
qle ≪ 1 so that a fortiori q ≪ κ. Finally the dielectric function becomes

ǫ(q, ω) ≃ 4πσ0

−iω +Dq2
(13.11)
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and the dynamical effective interaction is simply related to the density-density
response function χ0(q, ω) by

U(q, ω) ≃ 1

χ0(q, ω)
=

1

2ρ0

−iω +Dq2

Dq2
. (13.12)

The static limit, χ0 = 2ρ0, is obtained by taking ω = 0.

Remark : the parameter rs

A measure of the strength of the electronic correlations is provided by the dimension-
less parameter rs, which is the ratio between Coulomb potential energy and kinetic
energy. The potential energy is of order e2/a where a = n−1/d is the average distance
between electrons in a gas of density n in d dimensions, while the kinetic energy is
the Fermi energy p2F /2m ∝ ~

2/(2ma2). The parameter rs is thus defined as the ratio

rs =
a

a0
∝ potential energy

kinetic energy
, (13.13)

where a0 = ~
2/(m0e2) is the Bohr radius and m0 is the free electron mass (see

section 2.1.1). The parameter rs is thus proportional to the average distance between
electrons. In three dimensions,

4π

3
r3sa

3
0 =

1

n
. (13.14)

Since k3
F = 3π2n,

rs =

(

9π

4

)1/3 1

kF a0
. (13.15)

The screening vector κ is given by κ2 = 8πe2ρ0, where ρ0 = mkF /(2π
2
~
2) is the

density of states at the Fermi level, per unit volume and per spin direction. The ratio
κ/kF is thus given by :

κ

kF
=

(

16

3π2

)1/3 ( m

m0

)1/2 √
rs ≃ 0.81

(

m

m0

)1/2 √
rs . (13.16)

For a metal such as copper, we have rs = 2.67 and m/m0 = 1.3, so that κ/kF ≃ 1.51.
The screening is thus very efficient in this metal. For other metals, see Table 1.1 in
reference [314], taking note of the different definitions.

13.3 Hartree-Fock approximation

In order to describe the effects of the Coulomb interaction, we now use the
Hartree-Fock approximation whose main lines are recalled here. For more de-
tails, see [314]. First, the Hartree approximation consists in finding the solu-
tions (ǫi, φi) of the non-linear equation

ǫiφi(r) = − 1

2m
∆φi(r) + Vion(r)φi(r) +

∫

U(r − r′)n(r′)φi(r)dr′ , (13.17)

where Vion(r) is the one-body potential describing the interaction of the elec-
trons with the lattice and the impurities, and U(r−r′) is the two-body screened
Coulomb interaction between electrons. The electronic density is

n(r) = 2
∑

j

f(ǫj)|φj(r)|2 (13.18)
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and f(ǫ) is the Fermi factor. Electrical neutrality implies

V ion(r) +

∫

U(r − r′)n(r′)dr′ = 0 , (13.19)

where we have replaced the spatial average by the disorder average. The
Hartree equation is then rewritten as

ǫiφi(r) = − 1

2m
∆φi(r)+V (r)φi(r)+

∫

U(r−r′)(n(r′)−n)φi(r)dr′ . (13.20)

in which V (r) = Vion(r)− V ion is the disorder potential defined in Chapter 2,
and n = n(r). In the Hartree approximation, the non-linear equation (13.20)
is an effective Schrödinger equation in which the potential seen by one electron
depends on the electronic density, that is on the wave functions of the other
electrons. In this approximation, the total wave function is the product of
single particle wave functions and does not satisfy the Pauli principle.

In order to take into account the antisymmetry of the total wave function,
we have to add the Fock term, which describes exchange between particles of
same spin. Equation (13.20) then becomes [314, 315] :

ǫiφi(r) = − 1

2m
∆φi(r) + V (r)φi(r) +

∫

U(r − r′)(n(r′)− n)φi(r)dr′

−
∑

j

f(ǫj)

∫

U(r − r′)φ∗j (r
′)φj(r)φi(r

′)dr′ . (13.21)

In principle, the non-linear equation (13.21) must be solved self-consistently,
which is a difficult problem having no analytical solution in the presence of
disorder. Here we shall consider the interaction U as a perturbation and we
shall limit ourselves to lowest order. The unperturbed states are the eigenstates
{ǫi, φi(r)} of the Hamiltonian (2.1) in the presence of disorder 2. We calculate
the effect of the Coulomb interaction in the framework of the Hartree-Fock
approximation, following the lines of the method developed in chapter 3. In
principle, we have to evaluate first the diagonal Green’s function in the state φi

by writing a Dyson equation analogous to (3.67). A self-energy Σi = δǫi + iΓi

is then obtained, whose real part δǫi measures the displacement of the energy
level ǫi and whose imaginary part Γi gives the width of this level, that is its
inverse lifetime 3. These two components of the self-energy give the correction
to the one particle density of states and the electronic lifetime. Here we present
a simplified version of this formalism.

2We could have followed the same line as in Chapter 3 and treated on the same footing
the disorder potential and the interaction pertubatively on the basis of plane waves. This
choice would not be convenient since a Fermi golden rule argument such as in (3.1) would
introduce a width ~/τe resulting from the disorder effect. As we shall see, this width is much
larger than the width due to interactions. It is thus more convenient to treat the disorder in
a non perturbative way.

3For more details on the N -body problem, see [316] and more specifically [317] for the
Hartree-Fock approximation in the presence of disorder.
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13.4 Density of states anomaly

13.4.1 Static interaction

We first evaluate the one-particle density of states in the presence of electron-
electron interaction by calculating the shift δǫi of the energy levels for a static
screened interaction U(r−r′) given by (13.3) in d = 3. The shift δǫi is obtained
from (13.21) and takes the form δǫi = δǫHi +δǫFi where the Hartree contribution
δǫHi is given, in the lowest order, by

δǫHi =

∫

U(r − r′)|φi(r)|2
(

n(r′)− n
)

drdr′ . (13.22)

Similarly, the exchange, or Fock, term δǫFi writes

δǫFi = −
∑

j,σ

f(ǫj)

∫

U(r − r′)φ∗j (r
′)φj(r)φ∗i (r)φi(r

′)drdr′ . (13.23)

The total energy ET is

ET = E0
T +

1

2

∫

U(r − r′)n(r)δn(r′)drdr′

−
∑

i,j

f(ǫi)f(ǫj)

∫

U(r − r′)φ∗j (r
′)φj(r)φ∗i (r)φi(r

′)drdr′(13.24)

where E0
T is the total energy in the absence of interaction and δn(r′) = n(r′)−

n. The factor 1/2 avoids double counting of the interaction in the total energy.
The mean shift of an energy level ǫ is defined by

∆ǫ =
1

ν0

∑

i

δ(ǫ− ǫi)δǫi . (13.25)

Since, on average, each energy level ǫ is changed into ǫ + ∆ǫ, the distance
between two levels ǫ1 and ǫ2 becomes (ǫ2 − ǫ1) [1 + ∂∆ǫ/∂ǫ]. This shift leads
to a relative change in the density of states

δν

ν0
= −∂∆ǫ

∂ǫ
. (13.26)

Consider first the exchange term (13.23). By inserting the relation f(ǫj) =
∫

dǫ′δ(ǫ′ − ǫj)f(ǫ′) and by using (3.26) to transform the product of four wave
functions into a product of two non-local density of states, this term can be
rewritten as 4 :

∆F
ǫ = − 1

ν0

∫ ∞

−∞
f(ǫ− ω)dω

∫

U(r − r′)ρǫ(r, r′)ρǫ−ω(r′, r)drdr′ . (13.27)

4The zero of the energies is taken at the Fermi level.
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Expressing the correlation function of the non-local density of states ρǫ(r, r
′)

with the help of (4.207) and using (13.26), we obtain 5

δνF (ǫ) =
ρ0

π

∫ ∞

−∞
f ′(ǫ− ω)dω

∫

U(r − r′)RePd(r, r
′, ω) drdr′ . (13.28)

The interaction (13.3) being short-range (much shorter than le), the integral
factorizes

δνF (ǫ) ≃ Uρ0

π

∫ ∞

−∞
f ′(ǫ− ω)dω

∫

RePd(r, r, ω) dr , (13.29)

where the parameter U is defined by (13.5). Introducing the temporal Fourier
transform of relation (5.5),

∫

RePd(r, r, ω)dr =
∫∞
0
Z(t) cosωtdt, the density

of states correction due to the interaction can be written as a function of the
return probability Z(t). Using (15.109) and Uρ0 = 1/2, we obtain 6

δνF (ǫ) = − 1

2π

∫ ∞

0

πTt

sinhπTt
Z(t) cos ǫt dt . (13.30)

The contribution of the Hartree term to the density of states correction is
obtained from the relations (13.22) and (13.25)

∆H
ǫ =

2

ν0

∫ ∞

−∞
f(ǫ− ω)dω

∫

U(r − r′) ρǫ(r, r)ρǫ−ω(r′, r′)
c
drdr′ . (13.31)

The product of the local densities that appears in this expression is given by
(4.210). Due to the short range potential, the main contribution has only one
Diffuson. The relation (13.26) for the density of states gives

δνH(ǫ) = −2
ρ0

π

∫ ∞

−∞
f ′(ǫ− ω)dω

∫

g2(R)U(R)RePd(r, r, ω) drdr′ (13.32)

where the function g(R) is defined by (3.98). The short range term g2(R)U(R)
can be integrated separately, and the Hartree contribution writes

δνH(ǫ) = −F
π

∫ ∞

−∞
f ′(ǫ− ω)dω

∫

RePd(r, r, ω) dr (13.33)

where we have introduced the parameter (Figure 13.5)

F =

∫

g2(R)U(R)dR
∫

U(R)dR
=

1

U

∫

g2(R)U(R) dR (13.34)

5We keep only the contribution of the Diffuson, and we also check that the product of
average values gives a negligible contribution.

6Notice that the result does not depend on the coupling constant e2. This is because
the screening length κ−1 is much smaller than le, and thus the relation (13.29) contains the
coefficient U = U(q = 0) = 4πe2/κ2. This ratio no longer depends on e2.
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Figure 13.1: Variation of the parameter F as a function of the ratio 2kF /κ, in
dimensions d = 2 (dashed line) and d = 3 (full line).

with U = 1/2ρ0 (relation 13.5). The parameter F varies between 0 for strong
screening (κ → ∞) and 1 for weak screening (κ → 0). For more details, see
exercises 13.3 and 13.4. The expression of δνH(ǫ) is proportional to (13.29) so
that the total correction to the density of states per spin direction writes

δν(ǫ) = −λν

2π

∫ ∞

0

πTt

sinhπTt
Z(t) cos ǫt dt (13.35)

where the interaction is described by the parameter λν which here takes the
value λν = 1 − 2F . This value corresponds to a static interaction and is
different from the value obtained for a dynamically screened interaction U(q, ω)
(p. 504). Moreover, λν depends on the range of the interaction through the
parameter F . Since the latter varies between 0 and 1, the sign of the density
of states correction seems to depend on the nature of the screened interaction.
If the exchange term is larger than the Hartree term (F ≪ 1), that is for a
potential whose range is larger than the Fermi wavelength, the density of states
correction is negative as observed experimentally. However, it seems that δν(ǫ)
might become positive for a very short range interaction. For example in copper
where F ≃ 0.6, a positive correction might be expected. We shall see in section
13.4.3 that this result is an artefact and that taking into account the dynamical
character of the screened interaction modifies the amplitude of the correction
that stays always negative.

The density of states correction (13.35) reflects obviously the diffusive mo-
tion of the electrons and thus depends on space dimensionality 7 through the
probability Z(t) which, in free space, is given by (5.24). For example, in a

7Recall that the diffusive motion depends on the dimensionality d, but the Coulomb
interaction is always three-dimensional if all the dimensions of the sample are larger than
κ−1. In a semiconductor where κ−1 is large, the nature of the interaction may change in the
presence of gates, due to the existence of image charges [315].
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quasi-1d system of volume Ω at zero temperature, we have Z(t) = Ω/
√

4πDt.
Thus, from (13.35) and (15.82),

δρ(ǫ) = − λν

4π
√

2

1√
Dǫ

(13.36)

is obtained per spin direction and unit volume. Similarly, in two dimensions
and in the limit ǫτe ≪ 1,

δρ(ǫ) =
λν

8π2D
ln ǫτe , (13.37)

is obtained from (15.83), and in three dimensions, (15.84) gives

δρ(ǫ) =
λν

8π2
√

2D

(
√

ǫ

D
− C

)

(13.38)

where C is a constant independent of ǫ.

The dependence of the density of states correction on the return probability
exhibits the same functional dependence than the weak localization correction
∆σ (see 7.56). Formally we have

δρ

ρ0
∝ ∆σ

σ0
(Lφ = Lǫ) , (13.39)

where Lǫ =
√

D/ǫ. Here the long time cutoff is determined by the energy ǫ
instead of the phase coherence time 1/τφ. We summarize the above relations
for the density of states correction, also called density of states anomaly by

δρ(ǫ) ∝ − 1

D



















Lǫ − le d = 1

ln
Lǫ

le
d = 2

1

le
− 1

Lǫ
d = 3

(13.40)

Notice that the amplitude of the relative correction is of order 1/g, where g is
the dimensionless conductance.
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Exercise 13.1. Show that

ReP (r,r′, ǫ) = Im

∫ ∞

ǫ
dω

∫

P (r,r′′, ω)P (r′′,r′, ω)dr′′

and more generally that
∫ ∞

−∞
Ref ′(ǫ− ω)P (r,r′, ω)dω = −Im

∫ ∞

−∞
f(ǫ− ω)dω

∫

P (r,r′′, ω)P (r′′,r′, ω)dr′′

or
∫ ∞

−∞
f ′(ǫ− ω)Re P (q, ω)dω = −

∫ ∞

−∞
f(ǫ− ω)Im P 2(q, ω)dω (13.41)

where P is either the Diffuson Pd, or the Cooperon Pc.

Exercise 13.2. Show that the density of states correction (13.35) can be also written
in the equivalent forms

δν(ǫ) = −1 − 2F

2π

∫ ∞

−∞
dωf(ǫ− ω)

∑

q

ImP 2
d (q, ω) (13.42)

or

δν(ǫ) = −1 − 2F

4π

∫ ∞

0
dω

[

tanh
ǫ+ ω

2T
+ tanh

ω − ǫ

2T

]

∑

q

ImP 2
d (q, ω) . (13.43)

Exercise 13.3. The parameter F represents the ratio of the Hartree and Fock (ex-
change) contributions. By calculating the Hartree contribution (13.32) in reciprocal
space, show that F can be also written in the form [315]

F =
〈U(p− p′)〉

U
, (13.44)

where U(p− p′) is the Fourier transform of the interaction U(r) and the average is
made upon the momenta p and p′ taken on the Fermi surface. Check directly that

〈U(p− p′)〉 =

∫

a(q)U(q) dq =

∫

g2(R)U(R) dR (13.45)

where a(q) is the Fourier transform of g2(R) defined in (3.98).

Exercise 13.4. Calculation of F in the Thomas-Fermi approximation

In three dimensions, using the expression U(R) = e2

R
e−κR and the relation (3.98)

for g(R), show that in the limit κle ≫ 1,

F =
κ2

4k2
F

ln(1 +
4k2

F

κ2
) . (13.46)

F reaches the value 1 for a perfectly screened interaction (see Figure 13.1). For copper
where κ/kF ≃ 1.51, F is of the order of 0.6.

In two dimensions, show that in the limit κle ≫ 1,

F =
2

π

κ
√

κ2 − 4k2
F

arctan

√

κ2 − 4k2
F

2kF
(13.47)

or

F =

∫

dθ

2π

1

1 + (2kF /κ) sin θ/2
. (13.48)

Show first that in two dimensions U(q) = 2πe2/(q + κ) and use the corresponding
expression (3.102) of a(q).
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13.4.2 Tunnel conductance and density of states anomaly

The change in the density of states in the vicinity of the Fermi level can be ob-
served experimentally by tunnel conductance measurements. The experiment
consists of connecting the metal we want to study to another metal whose den-
sity of states is known. One of the two metals is oxidized before growing a layer
of the second metal, thus creating an oxide barrier between the two conductors.
The width of the oxide layer can be controlled and constitutes a tunnel barrier.
The tunnel current is proportional to the density of states of the two metals,
and its measurement gives access to the density of states anomaly. The dip in
the tunnel conductance is not specific to the weak disorder regime considered
here, but rather is a general characteristic of the Coulomb interaction which
subsists even for strong disorder (near the metal-insulator transition) or for
semiconductors.

Let us recall the measurement principle. The tunnel current I(V ), for a
voltage V > 0 applied between two metals a and b, depends on the tunnel
probability to transfer electrons between the two metals. The tunnel rate
between an initial state i of metal a and a final state f of metal b is given
by the Fermi golden rule

Γi→f (V ) =
2π

~
|tif |2δ(Ei − Ef + eV ) , (13.49)

where tif is a matrix element which describes the coupling between the two
states and which depends on the geometry of the junction. The tunnel rate
between metal a and metal b depends on the occupation numbers of the initial
and final states. It is given by

Γab(V ) =
2π

~

∑

i,f

|tif |2f(Ei)[1− f(Ef )]δ(Ei − Ef + eV ) (13.50)

where f(E) is the Fermi distribution. At finite temperature, there is also a
finite transition probability Γba(V ) from b to a, so that the tunnel current
between a and b is

I = e(Γab − Γba) = 2π
e

~

∑

if

|tif |2[f(Ei)− f(Ef )]δ(Ei −Ef + eV ) . (13.51)

Assuming that the tunnel matrix element depends only weakly on the energy
and that the voltage V and the temperature T are small compared to the
Fermi energy and the height of the tunnel barrier, the sums can be replaced by
integrals, and we can introduce the respective density of states ρa(ǫ) and ρ(ǫ)
of the reference electrode and of the conductor being studied. We then get
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I(V ) = 2π
e

~
|t|2
∫ ∞

−∞
ρa(ǫ)ρ(ǫ+ eV ) [f(ǫ)− f(ǫ+ eV )] dǫ . (13.52)

If the densities of states vary only weakly near the Fermi level (they are denoted
ρa and ρ0), the integral takes a very simple form, and for a small voltage gives
a tunnel current I(V ) proportional to V , and thus a linear characteristic which
defines the tunnel conductance Gt

Gt = 2π
e2

~
|t|2ρaρ0 . (13.53)

Assuming that the density of states of the reference electrode is energy inde-
pendent, a variation δρ(ǫ) of the density of states of the metal being studied
leads to a variation δI(V ) of the current and thus to a variation δGt(V ) of the
tunnel conductance given by

δGt(V ) =
dδI

dV
= −2π

e2

~
ρa|t|2

∫ ∞

−∞
dǫδρ(ǫ)f ′(ǫ− eV ) (13.54)

so that, at zero temperature

δGt(V )

Gt
=
δρ(eV )

ρ0
. (13.55)

The reduction of the tunnel conductance is thus a direct measurement of the
variation of the density of states due to Coulomb interaction.

The first experimental evidence for the variations of the tunnel conductance
as given by (13.40) is shown in Figure 13.2. It displays the dependence of the
tunnel conductance Gt as a function of the voltage V for a tunnel contact
InOx-insulator-Pb with indium oxide films of different thickness. When the
film thickness increases, we see a crossover from a two-dimensional behavior
(logarithmic) of the density of states anomaly towards a three-dimensional
behavior proportional to

√
V [318].

The one-dimensional behavior has also been observed in aluminium wires
[319]. The behavior (13.36) in 1/

√
V is visible 8 in Figure 13.3.

Exercise 13.5. Tunnel conductance at finite temperature

Using (13.35) and (13.54), show that, at finite temperature, the relative correction
to the tunnel conductance writes (exchange term) :

δGt(V, T )

Gt
= − 1

2πν0

∫ ∞

0
Z(t)R2(t) cos eV t dt (13.56)

where the function R(t) is given by R(t) = πTt/ sinh(πTt).

8A quantitative comparison with the theoretical prediction (13.36) is more complicated
[319]. It takes into account other effects neglected in our calculation, such as the influence
of the electromagnetic environment on the conductance as well as finite geometry effects.
It is, however, interesting that these additional effects leave the dependence of the tunnel
conductance as the function of the voltage unchanged, and give simply a renormalization of
the diffusion constant which appears in the function Z(t) (see Exercise 13.9).
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Figure 13.2: Tunnel conductance versus ln V (left) and
√

V (right), for a junction
InOx-insulator-lead. The different curves are obtained by varying the thickness of the
indium oxide film : (a) a = 160rA ; (b) a = 190rA ; (c) a = 210rA ; (d) a = 310rA

; (e) a = 460rA ; (f) a = 2600rA [318].

13.4.3 Dynamically screened interaction

Since it does not account for the dynamical screening of the interaction, that
is, its frequency dependence, the above derivation of the density of states is
an approximation. The systematic calculation [316] of the density of states
correction in the Hartree-Fock approximation using the expression (13.6) of the
effective potential is obtained by evaluating the two diagrams of Figure 13.4
(see also Figure 13.5). The two upper diagrams are the usual representations of
the Hartree and exchange (Fock) corrections in the many-body formalism [320].
The two lower diagrams propose a topologically equivalent representation which
exhibits more explicitly the role of the structure factor Γ describing the diffusive
nature of the electronic motion. The exchange (Fock) term contributing to the
variation δGF of the Green’s function due to interactions [320] is obtained by
a separation of slow and rapid spatial variations and, using Table 3.8, we find

δGF (r0, r0) = −
∫ ∞

−∞

dω

2iπ
f(ǫ−ω)

f2,1

γe

∫

Γω(r0, r)
1

γ2
e

Uω(r, r′)Γω(r′, r0)drdr
′ .

(13.57)
Using (4.37) and the expression of f2,1 given in Table 3.1, we deduce

δGF (r0, r0) = ρ0

∫ ∞

−∞
f(ǫ− ω)dω

∫

Pd(r0, r, ω)Uω(r, r′)Pd(r
′, r0, ω)drdr′ .

(13.58)
Uω(r) is the Fourier transform of U(q, ω) given by (13.12). The corresponding
correction to the local density of states is related by (3.25) to the imaginary
part of δGF (r0, r0), so that

δρF (r0, r0) = −ρ0

π
Im

∫ ∞

−∞
f(ǫ−ω)dω

∫

Pd(r0, r, ω)Uω(r, r′)Pd(r
′, r0, ω)drdr′ .

(13.59)
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Figure 13.3: Measurement of the tunnel conductance tunnel on aluminium wires
as a function of the voltage and for different temperatures. The continuous
lines present the theoretical prediction (13.36), with a diffusion coefficient D∗

renormalized by the geometry (Exercise 13.9) [319].

The correction to the total density of states is obtained by integrating over r0,
and it writes 9

δνF = −ρ0

π
Im

∫ ∞

−∞
f(ǫ− ω)dω

∑

q

U(q, ω)P 2
d (q, ω) . (13.61)

In the limit of a static interaction U(q), the result (13.29) is recovered (see
Exercise 13.2). On the other hand, for a dynamically screened interaction and
in the limit q ≪ κ, we have

U(q, ω) ≃ U−iω +Dq2

Dq2
. (13.62)

In three dimensions, the result (13.28) obtained for a static interaction is re-
covered, up to a factor 2 (see Exercise 13.6).

We now consider the Hartree term, which is obtained from the correspond-
ing diagram of the Figure 13.4 and gives a contribution δGH to the local Green’s

9A tunnel conductance measurement allows access to the local density of states δρ(r0,r0).
In a non translation invariant system, the density of states anomaly depends on the mea-
surement point and is proportional to the return probability to r0

δρ(ǫ,r0) ∝
∫ ∞

0

πTt

sinhπTt
P (r0,r0, t) cos ǫt dt . (13.60)
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Figure 13.4: Hartree and exchange (Fock) diagrams for the local density of
states anomaly. The Hartree diagram contains the function g2(r − r′) and the
Fock diagram contains the factor g2(0) = 1.

function of the form 10

δGH(r0, r0) = −2ρ0

∫ ∞

−∞
f(ǫ−ω)dω

∫

Pd(r0, r, ω)g2(r−r′)U(r, r′)Pd(r
′, r0, ω)drdr′ .

(13.63)
For this term, the energy exchange during the interaction is zero, and the inter-
action U(r, r′) remains static. Therefore the local density of states correction
is

δρH(r0, r0) = −2
ρ0

π
Im

∫ ∞

−∞
f(ǫ−ω)dω

∫

Pd(r0, r, ω)g2(r−r′)U(r, r′)Pd(r
′, r0, ω)drdr′ .

(13.64)
Integrating over r0 and using (13.45), we obtain

δνH = 2F
Uρ0

π

∫ ∞

−∞
f(ǫ− ω)dω

∑

q

ImP 2
d (q, ω) . (13.65)

For the Hartree term, the interaction is not dynamically screened and the static
result (13.33) is recovered. Finally, for a dynamically screened interaction, the
correction to the density of states is obtained by adding the two contributions,
so that

10The Hartree (13.63) and Fock (13.58) contributions differ in sign and by a factor 2 which
originate respectively from the exchange and the spin.
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Hartree Fock

F =

(a)

(b)

0

Figure 13.5: The two diagrams, Hartree and Fock, are identical given the cor-
respondence (a). (b) Representation of the parameter F (13.34) as the ratio of
two diagrams.

δν = −ρ0

π

∫ ∞

−∞
f(ǫ− ω)dω

∑

q

Im
[

(U(q, ω)− 2FU)P 2
d (q, ω)

]

(13.66)

In three dimensions, Exercise 13.6 shows that, taking into account the dy-
namically screened interaction, the exchange term is multiplied by a factor 2.
The parameter λν , which gives the strength of the density of states anomaly
(13.35) thus becomes λν = 2−2F . Moreover the perturbative calculation which
leads to (13.35) and (13.66) is valid only for F ≪ 1. It can be shown that the
prefactor of the exchange term is 2 only to first order in perturbation. To the
next order there is a term linear in F (equal to F/2) so that the prefactor λν

of the Hartree-Fock correction is indeed [315, 321] :

λν = 2− 3F

2
, d = 3 . (13.67)

By definition (13.34), 0 < F < 1, and the correction is thus always negative.
For the case of other dimensionalities, see reference [315] 11.

11The results presented here are obtained in the perturbative limit, that is when δν/ν ≪ 1.
A non-perturbative expression has been obtained in the reference [322].
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Remark

Another contribution to the density of states anomaly is also obtained by replacing
the Diffusons by Cooperons in the diagrams of Figure 13.4. In this case it can be
shown that truncating the perturbation series to lowest order is meaningless, and we
must take into account the infinite series (called Cooper channel renormalization) of
diagrams built with interaction lines and Cooperons. This gives an additional con-
tribution to the density of states anomaly proportional to the Diffuson contribution
up to a small multiplicative factor 1/ ln(Tc/ǫ) (or ln(lnTcτe/ lnTc/ǫ) in two dimen-
sions). For the Coulomb interaction, Tc is a characteristic energy of the order of
the bandwidth. For an attractive interaction, Tc is the superconducting temperature
[315].

Exercise 13.6. Show that, in three dimensions, the contribution of the exchange
term is multiplied by a factor 2 when the dynamical character of the screening is
taken into account.

For a static interaction U(q, ω) = U , relation (13.61) shows that the exchange term
contains the integral

U Im

∫ ∞

0

1

(−iω +Dq2)2
q2dq .

If the interaction is dynamically screened, that is for U(q, ω) = U(−iω +Dq2)/Dq2,
the integral becomes

U

D
Im

∫ ∞

0

1

−iω +Dq2
dq .

An integration by parts shows that the dynamical screening of the interaction mul-
tiplies the result of the static case by a factor 2. For similar calculations in other
dimensionalities, see reference [315].

Exercise 13.7. From relations (13.61) and (15.114), show that the exchange term
contribution to the density of states anomaly can also be written in the form

δρF = − ρ0

2πΩ

∫ ∞

0
dω

[

tanh
ω + ǫ

2T
+ tanh

ω − ǫ

2T

]

∑

q

Im[U(q, ω)P 2
d (q, ω)] . (13.68)

Exercise 13.8. Show that the relations (13.61) and (13.29) are equivalent for a

static interaction U(r − r′).

13.4.4 Capacitive effects

In this section we show how the geometry of the system can play an important
role in determining the density of states anomaly. Consider for example a
quasi-one-dimensional wire of length L and of squared section W 2, placed on
a metallic electrode and separated from this electrode by a tunnel junction of
thickness a. In this case, the Coulomb interaction depends on the capacitance
of the junction, and the uniform component of the interaction has the form

U(q = 0, ω) =
e2

C
, (13.69)

where C is the capacitance per unit length of the junction. At short distance,
that is for large wavevectors (but still in the diffusive limit), the dynamically
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screened interaction keeps the form (13.12) provided we replace ρ0 by the one-
dimensional density of states ρ1d = ρ0W

2 :

U(q, ω) =
1

2ρ1d

−iω +Dq2

Dq2
, (13.70)

In order to account for both behaviors, it is shown in Appendix A13.1 that the
interaction has to be written in the form [319, 323, 324]

U(q, ω) =
−iω +Dq2

2ρ1dDq2 − iωC/e2
(13.71)

or equivalently

U(q, ω) =
1

2ρ1d

D∗

D

−iω +Dq2

−iω +D∗q2
, (13.72)

where the coefficient D∗ = 2ρ0W
2e2D/C ≫ D can be interpreted as an effec-

tive diffusion coefficient which describes the propagation of the electromagnetic
field in the junction 12. Since the conductance of the wire is σ = 2e2Dρ0, this
diffusion coefficient can be rewritten as D∗ = 1/RC where R = 1/(σW 2) is the
resistance of the wire per unit length and C is the capacitance of the junction
per unit length (eq. 13.209).

Exercise 13.9. Calculate the density of states anomaly for a wire placed in the
vicinity of a metallic electrode [319, 323].

By inserting interaction (13.72) in the expression (13.66) of the density of states
correction and after integrating over q and ω, we obtain :

δρ(ǫ) = − 1

2π
√

2

1√
Dǫ

D∗/D

1 +
√

D∗/D
(13.73)

for the exchange term at zero temperature. Show that for a wire whose thickness
is larger than the screening length, the ratio D∗/D ∝ (κW )2 is large. Thus the
contribution of the exchange term to the density of states correction (13.36) must be

multiplied by the factor
√

D∗/D. Show that the Hartree term is not modified.

Remark : dynamical Coulomb blockade

Another way to describe the tunnel conductance is to relate the density of states
anomaly to the impedance of the environment of the system being studied. The
relevant quantity is then the probability that an electron crossing the tunnel barrier
transfers a given energy to its environment [323, 325, 326]. For a geometry where
this environment is the conductor itself, this formulation is equivalent to the approach
presented in this chapter.

12This effective diffusion coefficient of the electromagnetic field should not be confused with
the diffusion coefficient D∗ = vF l

∗/d introduced in (4.171) to describe anisotropic collisions.
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13.5 Correction to the conductivity

Taking into account the interaction between electrons also leads to a reduction
of the conductivity. Without going into the details of the calculations, we can
argue that the reduction is a consequence of the correction to the density of
states. Both effects result from the scattering of an electron by the charge
fluctuations induced by disorder. The temperature dependence of the conduc-
tivity σ(T ) is related to its energy dependence at T = 0K by relation (7.125).
Since the conductivity is proportional to the density of states (Einstein rela-
tion), we expect that the density of states anomaly leads to a correction of the
conductivity given by

δσ(T )

σ0
=

∫

dǫ

(

−∂f
∂ǫ

)

δν(ǫ)

ν0
, (13.74)

where σ0 is the Drude conductivity (7.14). For a static interaction, the density
of states correction is given by (13.35), and using (15.109) we have 13

δσ(T ) = −λσ

(

e2D

πΩ

)∫ ∞

0

(

πTt

sinhπTt

)2

Z(t)dt (13.75)

with λσ = 1−2F . As for the density of states correction, this value corresponds
to a static interaction. For a quasi-1d system, Z(t) = Ω/

√
4πDt, so that with

the help of (15.89), we obtain

δσ(T ) = −λσ
e2

π2

3

8

√

π

2
ζ

(

3

2

)(

D

T

)1/2

. (13.76)

In two dimensions Z(t) = Ω/4πDt, and in the limit Tτe ≪ 1, we obtain, using
(15.90),

δσ(T ) = −λσ
e2

4π2
ln

eγ

2πTτe
(13.77)

where γ ≃ 0.577 is the Euler constant. In three dimensions, Z(t) = Ω/(4πDt)3/2

and (15.93) lead to

δσ(T ) = −λσ
e2

π2

√
π

8
√

2
ζ

(

1

2

)(

T

D

)1/2

(13.78)

up to a subtractive constant.
Like for the density of states anomaly, the results differ slightly when the

dynamic character of the interaction is taken into account. A full-fledged treat-
ment shows that the results (13.76, 13.77, 13.78) are still valid provided λσ is
given by (see Exercise 13.11) :

λσ =
4

d
− 3F

2
. (13.79)

13In order to compare this relation and the following ones with the weak localization in
chapter 7, we have to reintroduce ~. Result (13.75) can also been obtained using another
method called “quasi-classical” and is presented in this form in reference [327].
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Remark

Like for the density of states anomaly, another contribution to δσ(T ) is obtained
by replacing Diffusons by Cooperons (see remark p. 505). This contribution is
proportional to the Diffuson contribution times a reduction term 1/ ln(Tc/T ) (or
ln(lnTcτe/ lnTc/T ) in two dimensions). For the Coulomb interaction, Tc is a char-
acteristic energy of the order of the bandwidth so that T ≪ Tc. The correction is
thus negative. For an attractive interaction, Tc is the superconducting temperature,
which leads, even for T ≫ Tc, to an increase in conductivity. There are two other
classes of diagrams. The so-called Maki-Thomson diagrams describe the diffusion of
electrons by superconducting fluctuations and give a correction proportional to the
weak localization correction [329, 330]. The so-called Aslamasov-Larkin correction is
related to the Cooper pair fluctuations and is important only in the vicinity of Tc.
For a review of theoretical and experimental results on this subject, see [315, 331].

It is interesting to compare the correction (13.75) to the conductivity with
the weak localization correction (7.53). Both are of the same order. The
physical mechanisms at the origin of these corrections are different, but both
are related to the integrated return probability. The temperature dependen-
cies, however, are different. In the case of the weak localization correction,
the temperature enters only through the phase coherent time τφ(T ) ∝ T−p

(section 7.4.3), leading to different temperature dependencies in d = 1 and in
d = 3, whereas they are both logarithmic in two dimensions (compare (7.66)
with (13.76, 13.77) and (13.78)). The usual way to extract experimentally the
correction due to electron-electron interactions is to apply a magnetic field in
order to suppress the weak localization correction.
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Exercise 13.10. Show that
∫ ∞

−∞
[f(ǫ− ω) − f(ǫ+ ω)]

(

−∂f
∂ǫ

)

dǫ =
∂

∂ω

(

ω coth
βω

2

)

(13.80)

Exercise 13.11. Show that the correction to the conductivity for a static interaction
U = 1/(2ρ0) can be written in the form

δσ

σ0
= −1 − 2F

4πν0

∫ ∞

−∞
dω

∂

∂ω

(

ω coth
βω

2

)

∑

q

ImP 2
d (q, ω) . (13.81)

To that purpose, start from the relation (13.42) for the density of states correction.
For an interaction U(q, ω), it is shown in reference [328] that the correction to the
exchange term writes (see next exercise) :

δσ

σ0
= − 2

πdΩ

∫ ∞

−∞
dω

∂

∂ω

(

ω coth
βω

2

)

∑

q

Dq2Im[U(q, ω)P 3
d (q, ω)] . (13.82)

Show that for the dynamically screened interaction U(q, ω) = U −iω+Dq2

Dq2 , the cor-

rection due to exchange is :

δσ

σ0
= − 1

πν0d

∫ ∞

−∞
dω

∂

∂ω

(

ω coth
βω

2

)

∑

q

ImP 2
d (q, ω) (13.83)

and differs from the exchange term in (13.81) only by a factor 4/d.

Exercise 13.12. Correction to the conductivity

Reference [328] presents the calculation of the interaction contribution to the conduc-
tivity. For the exchange term, this calculation involves the three diagrams of Figure
13.6. Show that the sum of these three diagrams is zero.

To prove this, it is useful to redraw the diagrams in a different way so that the
long range and short range parts are more explicitly separated (Figure 13.6). This
representation involves Hikami boxes whose structure is similar to the boxes used
in diagrams for conduction fluctuations. It can be shown that their sum is zero, by
using the results of section 11.2.1. From (11.17), the sum of diagrams (a) + (b) is
proportional to :

2
k2

F

d
(H(A) +H(B)) = 2

k2
F

d
H̃′ = 2

k2
F

d
2πρ0τ

3
e . (13.84)

The factor 2 accounts for diagrams similar to (a) and (b) but where the retarded and
advanced parts have been exchanged. Diagram (c) is proportional to

−k
2
F

d
H(A) = −k

2
F

d
4πρ0τ

3
e . (13.85)

The − sign comes from the average of incoming momenta which are opposite. The
sum of the three diagrams is thus zero.

The non-vanishing diagrams contributing to the conductivity correction are repre-
sented in Figure 13.7. They are built of two retarded (or two advanced) Green’s
functions. From relation 7.1, we know that they are smaller than the above di-
agrams by a factor 1/kF le. However, they are divergent. Using the expansion
G(k − q) = G(k) − v.qG(k)2, show that each “triangle” is proportional to the
wavevector and that both diagrams are thus proportional to :

∑

q

q2x Im P 3
d (q, ω)U(q, ω) . (13.86)
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(a) (b) (c)

with = +=

(c) =

(a) (b)+

Figure 13.6: Diagrams for the exchange contribution to the conductivity. The
topologically equivalent representation drawn below makes it clear that their
sum is zero. The Hartree terms, whose sum is also zero, are obtained by the
transformation displayed in Figure 13.5.

(d) (e)

(d) (e)

Figure 13.7: Conductivity diagrams (exchange). The two upper diagrams are
drawn in the usual representation, whereas the two lower diagrams provide a
topologically equivalent representation.

13.6 Lifetime of quasiparticle

13.6.1 Introduction : Landau theory and disorder

The Coulomb interaction between two electrons is strongly screened by the
presence of the other electrons (section 13.2). Each electron, “dressed” by
the screening cloud, is called a quasiparticle. The Landau theory of “Fermi
liquids” formalizes this concept of quasiparticle and shows that their proper-
ties are essentially the same as those of non-interacting electrons, provided a
renormalization of physical parameters such as the electron mass [332].

In fact, the quasiparticles weakly interact via the screened interaction, also
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called residual interaction, and, because of this interaction, a quasiparticle
acquires a finite lifetime. The Landau theory relies on the fact that this quasi-
particle lifetime diverges near the Fermi level.

In this section, we study the quasiparticle lifetime and show that the dis-
order plays an essential role. The determination of this lifetime is crucial to
determining whether the low energy properties, i.e., close to the Fermi level,
can still be described within the framework of the Fermi liquid theory, that
is with non interacting quasiparticles . This is also important in order to un-
derstand what limits phase coherence in the interacting electron gas, a central
question in mesoscopic physics.

In the absence of residual interaction, a quasiparticle has an infinite lifetime.
With the interaction, the probability P(t) that a quasiparticle stays in its initial
state has the form [332] :

P(t) = e−t/τee(ǫ) , (13.87)

where τee(ǫ, T ) defines the lifetime of the quasiparticle. This lifetime depends
on the energy ǫ measured with respect to the Fermi level, as well as on the
temperature T . In the absence of disorder, Landau has shown that, in three
dimensions, the lifetime τee of a quasiparticle is given by

1

τee(ǫ, T )
≃ max

(

ǫ2

ǫF
,
T 2

ǫF

)

. (13.88)

Near the Fermi level, the quasiparticle is well defined since the width 1/τee(ǫ)
of a state goes to zero more rapidly than its energy ǫ when approaching the
Fermi level (see Appendix A13.2).

13.6.2 Lifetime at zero temperature

In this section, we show that in the presence of disorder, multiple scattering
increases the probability that two quasiparticles interact and thus reduces the
electronic lifetime. More precisely, in the diffusion approximation and at zero
temperature, the lifetime can be written [315] 14

1

τee(ǫ)
≃ ∆

(

ǫ

Ec

)d/2

ǫ≫ Ec . (13.89)

The dependence of this power law on space dimensionality d is the signature
of the diffusive regime. Ec is the Thouless energy and ∆ = 1/ν0 is the average
level spacing at the Fermi energy in the absence of interaction. This expression
is limited to the case where the excitation energy ǫ is larger than Ec. In the
opposite limit, the lifetime varies as [333]

1

τee(ǫ)
≃ ∆

(

ǫ

Ec

)2

ǫ≪ Ec . (13.90)

14One might expect that the temperature dependence of 1/τee(T ) could be obtained by
replacing ǫ by T as in (13.88) for the ballistic case, thus leading to 1/τee(T ) ∝ T d/2. In
section 13.6.3, we show that this is not correct for d ≤ 2.
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In this section, we derive these two limiting behaviors. In order to evaluate
the electronic lifetime, we consider an eigenstate |α〉 of the non-interacting
disordered Hamiltonian, whose energy ǫα is above the Fermi level 15. This
state interacts with a filled state |γ〉 of energy ǫγ (Figure 13.8). The lifetime
of the state |α〉 is given by the Fermi golden rule

1

τα
= 4π

∑

βγδ

|〈αγ|U |βδ〉|2δ(ǫα + ǫγ − ǫβ − ǫδ) . (13.91)

A factor 2 accounts for the spin degeneracy of the state |γ〉. The matrix element
〈αγ|U |βδ〉 describes the interaction between the two states |α〉 and |γ〉 which
evolve into the two final states |β〉 and |δ〉. Let us notice that ǫγ < 0 and
that the final states must be empty so that their energies obey the constraints
ǫβ > 0 and ǫδ > 0.

Exercise 13.13. Check that, for a constant matrix element, the lifetime τee(ǫ) given
by (13.91) varies as 1/ǫ2.

The lifetime has the form

1

τee(ǫ)
= 2πU2νf (ǫ) ,

where νf (ǫ) = 2
∑′

βγδ δ(ǫ+ ǫγ − ǫβ − ǫδ) is the density of final states. The sum
∑′

is limited to states such that ǫγ < 0, ǫβ > 0 and ǫδ > 0. Replacing this sum by
integrals and using the density of states ν0, we obtain

νf (ǫ) = 2ν3
0

∫ 0

−∞
dǫγ

∫ ∞

0
dǫβ

∫ ∞

0
dǫδδ(ǫ+ ǫγ − ǫβ − ǫδ) = ν3

0ǫ
2 .

If the matrix elements do not depend on the energy, the lifetime varies as 1/ǫ2.

This energy dependence is simply related to the density of final states, whence the

dependence (13.88) obtained by Landau [332] (see also Appendix A13.2).

In order not to single out a given state, we must average the lifetime over
all states having the same energy ǫ. Thus, we calculate

1

τee(ǫ)
=

4π

ν0

∑

αβγδ

|〈αγ|U |βδ〉|2δ(ǫα + ǫγ − ǫβ − ǫδ)δ(ǫ− ǫα) . (13.92)

Denoting by ǫ′ the energy of the states |γ〉, energy conservation implies that
the final states |β〉 and |δ〉 have energies ǫ−ω and ǫ′ +ω, where ω is the energy
transfer due to the interaction (Figure 13.8). The inverse lifetime becomes

1

τee(ǫ)
=

4π

ν0

∫ ǫ

0

dω

∫ 0

−ω

dǫ′
∑

αβγδ

|〈αγ|U |βδ〉|2

× δ(ǫ− ǫα)δ(ǫ′ − ǫγ)δ(ǫ− ω − ǫβ)δ(ǫ′ + ω − ǫδ) . (13.93)

15More precisely, we consider the non-interacting quasiparticle states, whose spectrum is
assumed to have the same statistical properties as the non-interacting electrons.
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Figure 13.8: A quasiparticle in a state |α〉 of energy ǫα = ǫ interacts with
another quasiparticle |γ〉 of energy ǫγ = ǫ′ in the Fermi sea. The final state is
made of two quasiparticles above the Fermi sea and one hole.

Upon averaging over disorder, we obtain for the lifetime

1

τee(ǫ)
= 4πν3

0

∫ ǫ

0

ωW 2(ω)dω (13.94)

with

W 2(ω) =
1

ν4
0

∑

αβγδ

|〈αγ|U |βδ〉|2δ(ǫ− ǫα)δ(ǫ′ − ǫγ)δ(ǫ− ω − ǫβ)δ(ǫ′ + ω − ǫδ) .

(13.95)
We will see that the characteristic matrix element W (ω) depends only on the
energy transfer ω 16. In the literature, the interaction “kernel”, defined by
K(ω) = 4πν3

0W
2(ω), is frequently used, for instance to rewrite the inverse

lifetime as 1/τee(ǫ) =
∫ ǫ

0
ωK(ω)dω.

We now calculate 1/τee at the diffusion approximation. The matrix element
〈αγ|U |βδ〉, calculated in the basis of the eigenfunctions φi(r) of the Hamilto-
nian (2.1), is

〈αγ|U |βδ〉 =

∫

dr1dr2φ
∗
α(r1)φ

∗
γ(r2)φβ(r1)φδ(r2)Uω(r1 − r2) , (13.96)

where Uω(r) is the dynamically screened potential. Making use of (3.26) which
relates the wave functions to the non-local density of states ρǫ(r, r

′), W 2(ω)
can be rewritten as

W 2(ω) =
1

ν4
0

∫

dr1dr2dr
′
1dr

′
2Uω(r1 − r2)Uω(r′

1 − r′
2)

× ρǫ(r1, r′
1)ρǫ−ω(r′

1, r1) ρǫ′(r2, r′
2)ρǫ′+ω(r′

2, r2) , (13.97)

where the disorder average of the product of four Green’s functions has been
decoupled into a product of two averages. To evaluate W 2(ω), we use(4.207)
and (3.99) so that 17

16For that reason, the integral over ǫ′ in (13.93) provides simply a factor ω.
17The Cooperon gives a negligible contribution.
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ρǫ(r, r′)ρǫ−ω(r′, r) =
ρ0

π
RePd(r, r

′, ω) + ρ2
0g

2(R) , (13.98)

whose Fourier transform is given by

ρ0

π

(

RePd(q, ω) +
π

2|q|vF
θ(2kf − |q|)

)

. (13.99)

The second term is independent of disorder and gives exactly the Landau con-
tribution (13.216) coming from large values of q. For small q (qle ≪ 1), the
contribution of the Diffuson dominates, so that (13.97) becomes

W 2(ω) =
1

π2ν2
0Ω2

∫

dr1dr2dr
′
1dr

′
2Uω(r1 − r2)Uω(r′

1 − r′
2)

× RePd(r1, r
′
1, ω)RePd(r2, r

′
2,−ω) , (13.100)

or, after a Fourier transform

W 2(ω) =
1

π2ν2
0Ω2

∑

q 6=0

|U(q, ω)|2[RePd(q, ω)]2 . (13.101)

A diagrammatic representation of this quantity is shown on Figure 13.9. In the

r1

r2

r'1

r'2

Figure 13.9: Diagrammatic representation of W 2(ω) as given by relation
(13.100). Notice that this structure is quite similar to the one of the density of
states correlation function Kρ(ω) (Figure 10.11).

diffusion approximation, the dynamically screened potential is given by (13.12)
and therefore 18

W 2(ω) =
1

4π2ν4
0

∑

q 6=0

1

ω2 +D2q4
, (13.104)

18An equivalent expression of W 2(ω) is

W 2(ω) =
1

4π2ν4
0

∑

q 6=0

1

Dq2
RePd(q, ω) =

1

4π2ν4
0

∑

q 6=0

1

ω
ImPd(q, ω) , (13.102)

which yields for the lifetime :

1

τee(ǫ)
=

1

πν0

∫ ǫ

0
ωdω

∑

q 6=0

1

Dq2
RePd(q, ω) =

1

πν0

∫ ǫ

0
dω
∑

q 6=0

ImPd(q, ω) . (13.103)
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which depends solely on ω and can be expressed in terms of the integrated
return probability Z(t)

W 2(ω) =
1

4π2ν4
0

1

ω

∫ ∞

0

Z(t) sinωt dt . (13.105)

Finally, the electronic lifetime (13.94) writes

1

τee(ǫ)
=

2

πν0

∫ ∞

0

Z(t)

t
sin2 ǫt

2
dt (13.106)

For a metal of volume Ω, we can identify two different regimes :

• For t ≪ τD, where τD is the Thouless time (5.34), an electron described
as a diffusive wave packet is insensitive to the boundaries and behaves as in
an infinite medium where, according to (5.24), Z(t) = Ω/(4πDt)d/2. From
(15.86), we obtain for the integral (13.105) 19

W 2(ω) =
dcd
16

1

ν4
0ω

2

(

ω

Ec

)d/2

(13.107)

so that the electronic lifetime is equal to

1

τee(ǫ)
=
π

2
cd∆

(

ǫ

Ec

)d/2

(ǫ≫ Ec) (13.108)

where cd is a constant defined in (10.63), with c1 =
√

2/π2, c2 = 1/4π2,
c3 =

√
2/6π3. Such a behavior has been indeed observed in silver wires (d = 1)

for which W 2(ω) ∝ ω−3/2 and 1/τee(ǫ) ∝ ǫ1/2, although the measured prefactor
came out to be larger than the value predicted here [323, 334]. Other behaviors
in disagreement with those results have been observed in gold and copper wires
and have been attributed to other relaxation mechanisms such as the coupling
to two-levels systems [334] or magnetic impurities [335].

19The small time regime corresponds to the case where the excitation energy ǫ is much
larger than the Thouless energy, ǫ ≫ Ec. In this case, the sum (13.104) on wavevectors can
be replaced by an integral and we recover (13.107).
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Remarks

• Screening effect

The behavior of the lifetime depends only weakly on the exact nature of the screened
potential. Indeed, assuming a static potential, that is U(q, ω = 0) = Ω/2ν0 instead
of a dynamically screened potential, the sum (13.104) becomes

W 2(ω) =
1

4π2ν4
0

∑

q 6=0

D2q4

(ω2 +D2q4)2
. (13.109)

A high frequencies ω ≫ Ec, the sum can be replaced by an integral and we recover
a power law similar to (13.107) :

W 2(ω) ∝ 1

ν4
0ω

2

(

ω

Ec

)d/2

, (13.110)

where only the prefactor has been modified.

• Lifetime and spectral rigidity

It is interesting to compare the expressions of 1/τee(ǫ) and of the variance Σ2(E) of
the distribution of energy levels in the diffusive regime (relation 10.52). We find

1

τee(ǫ)
=
π∆

2

[

Σ2(ǫ) − Σ2
0(ǫ)

]

(13.111)

where the contribution Σ2
0(ǫ) of the zero mode has been subtracted. This relation can

also be understood from the similarity of the diagrams for the correlation function
K(ω) and for W 2(ω) shown respectively on Figures 10.11 and 13.9.

• The limit t≫ τD corresponds to the ergodic regime in which the diffusive
electronic wave packet explores all the accessible volume Ω. Thus we would
expect Z(t) to be driven only by the zero mode. This is not so, because in
expression (13.104) this mode has been removed in order to ensure electronic
neutrality. The excitation energy ǫ is smaller than Ec and it is not possible to
replace the sum (13.104) by an integral. In this limit, we obtain

W 2(ω) =
ad

4π6

∆4

E2
c

∝ ∆2

g2
, (13.112)

where the coefficient ad is defined by the series

ad =
∑

nx,ny,nz

1

(n2
x + n2

y + n2
z)

2
. (13.113)

The ratio Ec/∆ is the dimensionless conductance g defined by (7.25). For
ω ≪ Ec, the characteristic matrix element of the interaction is thus energy
independent and of order ∆/g. The inverse lifetime in this case [333] is

1

τee(ǫ)
=

ad

2π5
∆

(

ǫ

Ec

)2

(ǫ≪ Ec) (13.114)

It is noteworthy that this lifetime depends on boundary conditions through the
coefficient ad. For example, if the sample is connected to reservoirs only in the
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Ox direction, the boundary conditions nx ∈ N
∗, ny ∈ N, nz ∈ N are the same as

in the sum (11.32) for conductance fluctuations, i.e., ad = bd. For an isolated
sample, only the mode nx = ny = nz = 0 is excluded, so that a1 = b1 = π4/90,
a2 = b1 + b2 = 2.59 and a3 = b1 + b2 + b3 = 5.11.

Exercise 13.14. Show that there is an additional contribution to (13.97) which

involves the product ρǫ(r1,r′
1)ρǫ′+ω(r′

2,r2) ρǫ′ (r2,r′
2)ρǫ−ω(r′

1,r1). Draw the cor-

responding diagram with the help of figures 13.9 and 13.5. Show that this contribution

is of order F 2 [315]. Note that this term does not depend only on ω as in (13.97),

but also on ǫ− ǫ′ − ω.

Remark : lifetime and dielectric function

The previous expressions for the electronic lifetime can be reformulated to introduce
the dielectric function ǫ(q, ω). To do this, we show from (13.10) that the following
identity holds :

1

2ρ0
Im

[ −1

ǫ(q, ω)

]

= ω
4πe2

q2
RePd(q, ω)

|ǫ(q, ω)|2 , (13.115)

so that the combination |U(q, ω)|2 [RePd(q, ω)]2 which enters expression (13.101) for
W 2(ω) fulfills :

ω|U(q, ω)|2 [RePd(q, ω)]2 =
4πe2

2ρ0q2
Im

[

− 1

ǫ(q, ω)

]

RePd(q, ω) . (13.116)

For W 2(ω), this leads to

W 2(ω) =
1

2π2ν3
0Ω

∑

q

4πe2

q2ω
Im

[ −1

ǫ(q, ω)

]

RePd(q, ω) , (13.117)

and for the lifetime (13.94) :

1

τee(ǫ)
=

2

πΩ

∫ ǫ

0
dω
∑

q

4πe2

q2
Im

[ −1

ǫ(q, ω)

]

RePd(q, ω) . (13.118)

13.6.3 Quasiparticle lifetime at finite temperature

The time τee(ǫ) represents the lifetime of a quasiparticle injected above the
Fermi sea at T = 0K. At finite temperature, the probability for a quasiparticle
to stay in its initial state is assumed to keep the form [332]

P(t, ǫ, T ) = e−t/τee(ǫ,T ) , (13.119)

where τee(ǫ, T ) is the quasiparticle lifetime at finite energy and finite temper-
ature. To calculate this lifetime, we just need to include the Fermi factors in
(13.94) [315] 20 :

20Notice that we consider here the temperature effect coming from the Fermi statistics and
not from the coupling to other degrees of freedom such as phonons.
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1

τee(ǫ, T )
= 4πν3

0

∫ ∞

−∞
dω

∫ ∞

−∞
dǫ′F (ǫ, ǫ′, ω)W 2(ω) (13.120)

where F (ǫ, ǫ′, ω) is a combination of Fermi factors fǫ = 1/(eβǫ + 1) :

F (ǫ, ǫ′, ω) = fǫ′(1− fǫ−ω)(1− fǫ′+ω) + (1− fǫ′)fǫ−ωfǫ′+ω . (13.121)

The first term in this expression is larger when ǫ > 0. It describes the decay of
an electron-like state above the Fermi level. The second term dominates when
ǫ < 0 and describes the decay of a hole-like state into the Fermi sea. For ǫ = 0,
both terms are equal. Integrating upon ǫ′ (relation 15.115), we obtain

1

τee(ǫ, T )
= 4πν3

0

∫ ∞

−∞
dω ωW 2(ω)fǫ−ω

eβǫ + 1

eβω − 1
. (13.122)

This lifetime can also be obtained from the imaginary part of the self-energy
of a quasiparticle in the presence of a screened interaction [317] 21. At zero
temperature, we recover the result (13.108).

Remark : relaxation towards equilibrium

The time τee(ǫ, T ) can be also interpreted as the relaxation time towards Fermi
equilibrium distribution. This relaxation is defined from the Boltzmann equation
[315, 336]

∂nǫ

∂t
= −4πν3

0

∫ ∞

−∞
dωW 2(ω) (13.123)

×
∫ ∞

−∞
dǫ′[nǫnǫ′ (1 − nǫ−ω)(1 − nǫ′+ω) − nǫ−ωnǫ′+ω(1 − nǫ)(1 − nǫ′ )] .

The relaxation term contains two contributions which describes respectively the quasi-
particles leaving a given quantum state (“out” contribution) and reaching this state
(“in” contribution). At equilibrium, nǫ is equal to the Fermi factor fǫ = 1/(eβǫ + 1)
and the term in brackets is zero. By linearizing around the equilibrium distribution
nǫ = fǫ + δnǫ, we obtain the equation

∂δnǫ

∂t
= −4δnǫπν

3
0

∫ ∞

−∞
dωW 2(ω) (13.124)

×
∫ ∞

−∞
dǫ′[fǫ′ (1 − fǫ−ω)(1 − fǫ′+ω) + (1 − fǫ′ )fǫ−ωfǫ′+ω ]

The r.h.s. term is of the form −δnǫ/τee(ǫ, T ). Thus τee(ǫ, T ) can be interpreted as
the relaxation time towards equilibrium distribution.

21Using (15.117), the relation (13.122) can also be written in the form [317] :

1

τee(ǫ, T )
= 2πν3

0

∫ ∞

−∞
dωW 2(ω)ω

(

coth
βω

2
+ tanh

β

2
(ǫ− ω)

)

.
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13.6.4 Quasiparticle lifetime at the Fermi level

We now consider more specifically the lifetime of a quasiparticle near the Fermi
level (ǫ = 0) and at finite temperature. Physical properties such as conductance
are expressed in terms of single particle states at the Fermi level. It is thus
essential to understand the range of validity of the description in terms of
independent quasiparticles. In the following, we denote by

τin(T ) = τee(ǫ = 0, T ) (13.125)

the relaxation time of a quasiparticle at the Fermi level 22. From relation
(13.122), we have [337] 23

1

τin(T )
=

1

τee(0, T )
= 8πν3

0

∫ ∞

0

dωW 2(ω)
ω

sinhβω
. (13.127)

From relations (13.127) and (13.105), it is also possible to obtain an expression
of the lifetime as a function of the return probability Z(t) :

1

τin(T )
=

2

πν0

∫ ∞

0

dω

sinhβω

∫ ∞

0

dtZ(t) sinωt (13.128)

or, using (15.116) :

1

τin(T )
=

T

2ν0

∫ ∞

0

Z(t) tanh
πTt

2
dt . (13.129)

For the diffusion in free space, Z(t) is given by (5.24), so that the time integral
(13.128) is proportional to ωd/2−1 (relation 15.28)

1

τin(T )
=
πdcd
2ν0

∫ ∞

0

dω

ω sinhβω

(

ω

Ec

)d/2

. (13.130)

Therefore, in three dimensions, we have

1

τin(T )
=

√
2

4π2ν0

∫ ∞

0

dω

ω sinhβω

(

ω

Ec

)3/2

≃ T

ν0

∫ T

0

dω

ω2

(

ω

Ec

)3/2

(13.131)

so that

22We should not confuse the lifetime of a quasiparticle at the Fermi level and at finite
temperature, τin(T ) = τee(ǫ = 0, T ), with the time τee(ǫ = T, T = 0) sometimes introduced
in the literature by means of the substitution ǫ −→ T in the expression of the zero temperature
relaxation time. This second time has no physical significance.

23From relations (13.127) and (13.117), we can express the quasiparticle relaxation time
in terms of the dielectric function

1

τin(T )
=

4

πΩ

∫ ∞

0

dω

sinhβω

∑

q

4πe2

q2
Im

( −1

ǫ(q, ω)

)

RePd(q, ω) . (13.126)
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1

τin(T )
≃ ∆

(

T

Ec

)3/2

(d = 3) (13.132)

up to a numerical factor. Note that the exponent of the power law is the same
as the exponent for the energy dependence of the lifetime at zero temperature
(13.108). This result follows at once if we notice that relevant processes in the
quasiparticle relaxation described by ωW 2(ω) are those for which the energy
transfer ω is of order T .

It would be tempting to generalize this result to any dimension and to
conclude that 1/τin(T ) ∝ T d/2. This is not correct for d ≤ 2. In this case,
the contribution of e-e processes with low energy transfer ω ≃ 0 dominates and
leads to a divergence in the integral (13.130). In order to cure this divergence, it
is worth noticing that τin(T ) represents precisely the lifetime of an eigenstate,
so that the energy transfer ω cannot be defined with an accuracy better than
1/τin. Consequently, there is no energy transfer smaller than 1/τin(T ), so that
the integral (13.130) needs to be cut off self-consistently for ω smaller than
1/τin(T ). For d ≤ 2, we thus obtain a self-consistent relation for τin :

1

τin(T )
≃ 1

ν0

∫ ∞

1/τin

dω

ω sinhβω

(

ω

Ec

)d/2

≃ T

ν0

∫ T

1/τin

dω

ω2

(

ω

Ec

)d/2

(13.133)

where the thermal factor has been replaced by a cutoff at ω ∼ T . In two
dimensions, 1/τin(T ) is proportional to the temperature (within logarithmic
corrections) :

1

τin(T )
≃ ∆

T

Ec
ln
Ec

∆
(d = 2) . (13.134)

In one dimension, and since Tτin ≫ 1, the integral becomes proportional to√
τin so that the self-consistent relation leads to

1

τin(T )
≃ ∆

(

Ec

∆

)1/3(
T

Ec

)2/3

(d = 1) (13.135)



13.7 Phase coherence 521

Remark : non-exponential relaxation of quasiparticles in dimension d ≤ 2

The introduction of the low-energy cutoff may appear as a handwaving and artificial
way to handle the low energy divergence in (13.130). The profound reason for this
divergence is that, for d ≤ 2, the relaxation of quasiparticles is not exponential [338].
The relaxation rate −d lnP/dt is no longer constant as was assumed in (13.119).
Indeed, we know from the Fermi golden rule that, after a time t, energy must be
conserved within 1/t. Thus the energy transfer ω cannot be defined with a precision
better than 1/t and we have to cut off contributions of energies smaller than 1/t [338].
Thus (13.126) becomes

lnP = − 4t

πΩ

∫ ∞

1/t

dω

sinhβω

∑

q

4πe2

q2
Im

( −1

ǫ(q, ω)

)

RePd(q, ω) , (13.136)

that is

lnP = −πdcd
2ν0

t

∫ ∞

1/t

dω

ω sinhβω

(

ω

Ec

)d/2

. (13.137)

The lower cutoff does not affect the relaxation in dimension d = 3, since the integral
converges at low frequency. For d ≤ 2, however, the low frequency behavior drives
the relaxation. Consider the case d = 1. We obtain, for times t≫ 1/T :

lnP ≃ −
√

2

2πν0
√
Ec

T t

∫ T

1/t

dω

ω3/2
≃ −

√
2T

πν0
√
Ec

t3/2 (13.138)

which leads to an non-exponential behavior for the quasiparticles relaxation :

P(t, T ) ∼ e−[t/τin(T )]3/2
d = 1 (13.139)

with

1

τin(T )
∼
(

∆T

E
1/2
c

)2/3

. (13.140)

This argument shows that the low frequency divergence is indeed the signature of a
non-exponential behavior. Moreover, we recover the characteristic time obtained in
(13.135). In dimension d = 2, we have

P(t, T ) ∼ e−t/(τin ln Tt) . (13.141)

Remark : validity of the Fermi liquid description

The relaxation rate 1/τin(T ) stays smaller than the temperature T . With the help
of (13.132) and (13.134), we check that it is always the case for d ≥ 2. In one
dimension, 1/τin decreases more slowly than temperature. We might wonder whether
quasiparticles are still well defined at low temperature and question the validity of
the Fermi liquid description. However, 1/τin becomes of order T at extremely low
temperature of order ∆/g, with g ∼ Ec/∆ ≫ 1, which so far is not accessible and
which is zero in the thermodynamic limit.

13.7 Phase coherence

13.7.1 Introduction

In the preceding section, we have studied the relaxation of a quasiparticle at
the Fermi level and at finite temperature. This relaxation is characterized by
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the time τin(T ), and in dimension d ≤ 2 it is no longer exponential.

In this section, we wish to study the nature of the processes which limit
the phase coherence and therefore the observation of interference effects such
as weak localization. We shall denote τee

φ the characteristic time associated to
the loss of phase coherence.

• A first simple approach is to consider that phase coherence is limited by
the lifetime of quasiparticles. Since the multiple scattering trajectories that
are paired in the Cooperon are defined for a given energy state, they cannot
interfere for times larger than τin(T ). This results in an irreversible dephasing
between the trajectories and thus a loss of phase coherence. It is therefore
appealing to assume that

τee
φ (T ) = τin(T ) = τee(ǫ = 0, T ) . (13.142)

We have also shown that quasiparticle relaxation is not exponential for d ≤ 2
and we might ask whether phase relaxation is also non exponential.

• A second approach consists in calculating directly the dephasing 〈eiΦ(t)〉
resulting from electron-electron interaction and accumulated between time re-
versed conjugated multiple scattering sequences. To that purpose, we replace
the interaction between electrons by an effective interaction which describes
the coupling of a single electron to the electromagnetic field created by the
other electrons [339, 340, 341]. This electric noise is called Nyquist noise.

• In developing this second approach, we shall see not only that these two
characteristic times τin and τee

φ are equal, but also that the two processes,
quasiparticles relaxation and phase relaxation, are very similar so that the loss of
phase coherence, described by the average 〈eiΦ(t)〉, behaves like the probability
P(t, ǫ = 0, T ).
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Remark : definition of the phase coherence time

This definition is not unique. It depends on the physical quantity we consider. For
states which contribute to electronic transport and which are close to the Fermi level,
the definition (13.142) is quite natural. However, at finite temperature T , states
which contribute to transport are located in an energy interval of width T around
the Fermi level and the dephasing time τee

φ (ǫ, T ) depends in principle on the energy.

Thus it would be equally natural to consider an average of τee
φ (ǫ, T ) over this energy

range. Consider for example the weak localization correction given by

δσ(T ) =

∫

δσ(ǫ)

(−∂f
∂ǫ

)

dǫ , (13.143)

where δσ(ǫ) is the correction for a given energy ǫ. As an example, in dimension d = 2,
we have

δσ(ǫ) = − e2

πh
ln
τee
φ (ǫ, T )

τe
, (13.144)

so that the weak localization correction δσ(T ) can be written in the form

δσ(T ) = − e2

πh
ln
τee
φ (T )

τe
(13.145)

and the phase coherence time τee
φ (T ) is then defined by the average [357]

ln τee
φ (T ) =

∫ (−∂f
∂ǫ

)

ln τee
φ (ǫ, T )dǫ . (13.146)

We may check that τee
φ (T ) does not significantly depend on the way used to perform

the energy average, so that we shall keep the definition (13.142) in the following.

13.7.2 Phase coherence in a fluctuating electric field

We now want to determine how the electron-electron interaction leads to a
dephasing between time reversed trajectories. To that purpose, we assume
that the total electric field acting on a given electron and resulting from all
other electrons can be replaced by an effective fluctuating electric field whose
characteristics are imposed by the fluctuation-dissipation theorem [339].

To proceed further, we consider the contribution of the Cooperon to the
return probability Pc(r, r, t) in a time dependent electric potential V (r, t). In
Appendix A6.3, we have shown that this contribution can be written in the
form (6.247) :

Pc(r, r, t) = P (0)
c (r, r, t)

〈

eiΦ
〉

C , (13.147)

where P
(0)
c is the probability in the absence of the fluctuating potential, and

Φ is the relative phase accumulated along a pair of time reversed trajectories
after a time t (relations 6.245 and 6.246) :

Φ =
e

~

∫ t

0

[V (r(τ), τ)− V (r(τ), τ)]dτ (13.148)

where τ = t−τ and 〈· · · 〉C is the average taken over the distribution of diffusion
paths.
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We also have to average the thermal fluctuations of the electric potential
and we denote this average by 〈· · · 〉T . These fluctuations being Gaussian 24,
the average

〈

eiΦ
〉

T
is given by

〈

eiΦ
〉

T
= e−

1
2 〈Φ2〉

T . (13.149)

We now need to determine the average
〈

eiΦ
〉

T,C on both diffusion paths and ther-

mal fluctuations. We will start with the calculation of
〈

Φ2
〉

T
. From (13.148),

we have :

〈

Φ2
〉

T
=
e2

~2

∫ t

0

∫ t

0

〈[V (τ1)− V (τ1)][V (τ2)− V (τ2)]〉T dτ1dτ2 (13.150)

where V (τ) = V (r(τ), τ) and V (τ) = V (r(τ), τ). We define the correlator
〈V V 〉T (q, ω) by the Fourier transform

〈V (r, τ)V (r′, τ ′)〉T =

∫

dq

(2π)d

dω

2π
〈V V 〉T (q, ω)ei[q.(r−r′)−ω(τ−τ ′)] . (13.151)

Its thermal average is related by the fluctuation-dissipation theorem to the
dielectric function [332, 343, 342] 25 :

e2〈V V 〉T (q, ω) =
4πe2

q2
Im

[ −1

ǫ(q, ω)

]

2

1− e−βω
(13.152)

where, according to (13.11), Im(−1/ǫ(q, ω)) = ω/4πσ0. The processes that
contribute to the dephasing have an energy |ω| lower than temperature. Indeed,
because of the Pauli principle, an electron at the Fermi level cannot exchange
an energy larger than T with its environment. Then for |ω| < T , we replace
the thermal function by its high temperature limit :

e2〈V V 〉T (q, ω) =
2e2T

σ0q2
(13.153)

The integrand in (13.151) no longer depends on frequency, so that integrating
upon ω gives 26

〈V (r, τ)V (r′, τ ′)〉T =
δ(τ − τ ′)

(2π)d

2T

σ0

∫

dq

q2
eiq.(r−r′) (13.154)

24The modes of the electromagnetic field are quadratic and their fluctuations are thus
Gaussian.

25Here we consider only the longitudinal fluctuations of the electromagnetic field. The
transverse fluctuations are screened by the skin effect [341, 340, 339] and can be neglected,
except in confined geometries.

26As a result of the cutoff T on energy transfer ω, the δ function that shows up in (13.154)
is in fact a strongly peaked function of width 1/T . But since relevant times including the
quasiparticle relaxation time, are much larger than 1/T (remark p. 521) this function can
be safely replaced by a δ function [344, 341].
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and by inserting this expression in (13.150) :

〈

Φ2
〉

T
=

4e2T

σ0~2

∫ t

0

dτ

∫

dq

(2π)d

1

q2
[1− cos q.(r(τ)− r(τ))] (13.155)

This quantity depends on paths r(τ). We now have to calculate the average

〈

e−
1
2 〈Φ2〉

T

〉

C
(13.156)

over the distribution of closed diffusive paths which contribute to the Cooperon
Pc(r, r, t). This average is obtained following the functional integral approach
developed in reference [339]. The Cooperon can be written as

Pc(r, r, t) =

∫ r(t)=r

r(0)=r

D{r} exp

(

−
∫ t

0

ṙ2(τ)

4D
dτ − 1

2
〈Φ2〉T

)

= P (0)
c (r, r, t).

〈

e−
1
2 〈Φ2〉

T

〉

C
, (13.157)

where P
(0)
c (r, r, t) is the return probability in the absence of a fluctuating

electric field. In order to decouple the paths r(τ) and r(τ) which enter in
〈

Φ2
〉

T
, we first use the semi-group relation (5.7) in the form

Pc(r, r, 0, t) =

∫

dR Pc(r,R, 0, t/2)Pc(R, r, t/2, t) . (13.158)

We have denoted explicitly the initial and final times. Then, we perform the
change of variables R(τ) = [r(τ) + r(τ)]/

√
2 and ρ(τ) = [r(τ) − r(τ)]/

√
2.

After integration on R, Pc(r, r, t) = C(ρ = 0,ρ = 0, t/2) with [339] :

C(ρ = 0,ρ = 0,
t

2
) =

1√
2

∫ ρ(t/2)=0

ρ(0)=0

D{ρ} exp

(

−
∫ t/2

0

[

ρ̇2(τ)

4D
+ U(ρ)

]

dτ

)

(13.159)
where we have introduced the effective potential U(ρ) defined by

U(ρ) =
4e2T

σ0~2

∫

dq

(2π)dq2

[

1− cos q.ρ
√

2
]

. (13.160)

The integral C(0, 0, t) obeys the differential equation 27 :

27We should remember that the functional integral

F (r,r′, t) =

∫ r(t)=r′

r(0)=r

D{r} exp

(

−
∫ t

0

[

ṙ2(τ)

4D
+ U(r)

]

dτ

)

(13.161)

obeys the differential equation :
[

∂

∂t
−D∆r′ + U(r′)

]

F (r,r′, t) = δ(r − r′)δ(t) (13.162)
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[

∂

∂t
−D∆ρ + U(ρ)

]

C(0,ρ, t) =
1√
2
δ(ρ)δ(t) . (13.163)

We now derive an expression of the dephasing from the solution of this differ-
ential equation.

Exercise 13.15. Nyquist noise

Using the fluctuation-dissipation theorem written in the form (13.153), recover the
Nyquist expression for the voltage noise in a conductor (restoring the Boltzmann
constant kB) [345, 346] :

〈V 2〉T (ω) = 2kBTR (13.164)

for ω both positive and negative. V = V (L) − V (0) is the voltage drop at the edge
of a wire of resistance R, of length L and of section S.
Hint : from (13.151) and (13.153), calculate the thermal fluctuations of the voltage
for the wire geometry (using Ohm’s law R = L/(Sσ0)) :

〈V (r)V (r′)〉T (ω) =

∫

dq

2π

2RkBT

q2L
eiq(r−r′) . (13.165)

By fixing r = 0 and r′ = L at the edges of the samples and using the integral (15.97),
relation (13.164) is obtained.

13.7.3 Phase coherence time in dimension d = 1

We consider now the case d = 1, for which we have seen that the quasiparticle
relaxation presents peculiar characteristics due to the diverging contribution
of energy exchanges with small energy transfer (section 13.6.3). Analogous
features are thus expected for the phase relaxation. We consider a quasi-one-
dimensional wire of section S. Using (15.97), the phase fluctuation (13.155)
can be written :

〈

Φ2
〉

T
=

2e2T

~2σ0S

∫ t

0

|r(τ)− r(τ)|dτ , (13.166)

so that

U(ρ) =
2
√

2e2T

~2σ0S
|ρ| . (13.167)

The differential equation (13.163) for C becomes

[

∂

∂t
−D ∂2

∂ρ2
+

2
√

2e2T

~2σ0S
|ρ|
]

C(0, ρ, t) =
1√
2
δ(ρ)δ(t) (13.168)

and its solution gives C(0, 0, t) and therefore Pc(r, r, t), from which we obtain

the time dependence of the function
〈

e−
1
2 〈Φ2〉T

〉

C
. The calculation of this
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function is done in Exercise 13.16, and we consider instead the weak localization
correction given by relation (7.53) :

∆σ = −se
2D

π~

∫ ∞

0

dtPc(r, r, t)e
−γt , (13.169)

with γ = 1/τγ , where τγ accounts for any dephasing time due to processes
other than electron-electron interaction and assumed to induce an exponential
relaxation of the phase. This weak localization correction is nothing but the
Laplace transform of the probability Pc(r, r, t) :

Pγ(r, r) =

∫ ∞

0

Pc(r, r, t)e
−γtdt

=

∫ ∞

0

C(0, 0, t/2)e−γtdt

= 2C2γ(0, 0) , (13.170)

where Cγ(ρ, ρ′), Laplace transform of C(ρ, ρ′, t), enters directly expression
(13.169) :

∆σ = −2se2D

π~
C2γ(0, 0) (13.171)

It obeys the differential equation :

[

−D ∂2

∂ρ2
+

2
√

2e2T

~2σ0S
|ρ|+ 2γ

]

C2γ(0, ρ) =
1√
2
δ(ρ) . (13.172)

Introducing the characteristic time known as Nyquist time in the literature 28

[345] :

τN =

(

~
2σ0S

e2T
√
D

)2/3

(13.173)

we obtain the dimensionless differential equation for x = ρ
√

2/DτN :

[

− ∂2

∂x2
+ |x|+ τN

τγ

]

C2γ(0, x) =
1

2

√

τN
D
δ(x) . (13.174)

With the help of (15.101, 15.102), we obtain :

Pγ(r, r) = 2C2γ(0, 0) = −1

2

√

τN
D

Ai(τN/τγ)

Ai′(τN/τγ)
, (13.175)

28This time is proportional to the quasiparticle relaxation time τin given by (13.135). We
return to this remark later.
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where Ai and Ai′ are respectively the Airy function and its derivative [347].
From relation (13.171), the weak localization correction becomes

∆σ = s
e2

hS

√

DτN
Ai(τN/τγ)

Ai′(τN/τγ)
(13.176)

instead of

∆σ = −s e
2

hS

√

Dτγ (13.177)

in the absence of electron-electron interaction (see 7.56). In the limit τγ ≪ τN ,
we obtain

∆σ = −s e
2

hS

√

Dτγ

[

1− 1

4

(

τγ
τN

)3/2
]

. (13.178)

Inversely, for τN ≪ τγ

∆σ = −1.372 s
e2

hS

√

DτN , (13.179)

where we have used the asymptotic forms (15.103, 15.104). Finally, using the
approximation (15.105) for the ratio Ai/Ai′, we obtain a very good approxima-
tion for the weak localization correction as a function of the times τγ and τN
[348] :

∆σ ≃ −s e
2

hS

√
D

(

1

2τN
+

1

τγ

)−1/2

(13.180)

This approximation amounts to assuming an exponential relaxation of the
phase,

〈

eiΦ
〉

T,C ≃ e−2t/τN . We give in Exercise 13.16 and in Figure 13.10

the exact form of this relaxation which differs from an exponential. However,
at this approximation, it is found that, in order to estimate the phase relax-
ation time in the presence of other dephasing processes, it thus sufficient to
add their inverse dephasing times. The phase coherence time τee

φ – or phase
relaxation time – in the presence of electron-electron interaction is thus given
by :

τee
φ = 2τN = 2

(

~
2σ0S

e2T
√
D

)2/3

(13.181)
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Exercise 13.16. Relaxation of the phase in a quasi-1d conductor

• Find the time dependence of the phase factor
〈

eiΦ
〉

T,C = f(t/τN ). Using the

Laplace transform of Pc(r, r, t), show that relation (13.175) can be written as

∫ ∞

0

1√
4πDt

f

(

t

τN

)

e−t/τγ dt = −1

2

√

τN

D

Ai(τN/τγ)

Ai′(τN/τγ)
. (13.182)

Noticing that the zeros of the Airy function and of its derivative are distributed on
the negative real axis, calculate the integral in the complex plane by using Ai′′(x) =
xAi(x) and show that [338]

〈

eiΦ
〉

T,C
=

√

πt

τN

∞
∑

n=1

e−|un|t/τN

|un|
, (13.183)

where the u′ns are the zeroes of the function Ai′. For large n, they are well approxi-

mated by |un| =
(

3π
2

(n− 3
4
)
)2/3

[347]. Show that for t < τN :

〈

eiΦ
〉

T,C
≃ e−

√
π/4(t/τN )3/2

. (13.184)

We check that the short time behavior of the phase relaxation is identical to the
relaxation of a quasiparticle given by (13.139). As displayed in Figure 13.10, the
function f(t/τN ) is not an exponential.

• Calculate explicitly the average
〈

Φ2
〉

T,C over closed Brownian trajectories of du-

ration t. Show first that 〈|r(τ)|〉 =
√

4D
πt
τ(t− τ), and then use this result to obtain

an approximation of
〈

eiΦ
〉

T,C :

〈

eiΦ
〉

T,C
=
〈

e−
1
2 〈Φ2〉

T

〉

C
≃ e

− 1
2 〈Φ2〉

T,C = e−
√

π
4

(t/τN )3/2
. (13.185)
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Figure 13.10: Relaxation of the phase. The continuous line represents the
function

〈

eiΦ
〉

T,C = f(t/τN ) obtained from equation (13.182). The dotted line

corresponds to the approximation e
−

√
π
4

(

t
τN

)3/2

obtained from the small time
expansion (13.184). The phase relaxation is clearly non exponential. The ap-
proximation e−t/2τN (dashed line) allows to identify the characteristic time
τee
φ = 2τN .
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Remark : Dephasing and geometry : qualitative arguments

The main results of this section devoted to phase relaxation in quasi-1d wires can
be recovered with a simple argument. From (13.148), it is easy to find that for a
δ-correlated potential of the form (13.154), the time dependence of the dephasing is
given by

d〈Φ2(t)〉
dt

=
e2

2~2
〈V 2

t 〉 , (13.186)

where 〈V 2
t 〉 represents the voltage fluctuation on a time scale t. These fluctuations

are related through Nyquist theorem (13.164), 〈V 2
t 〉 = 2kBTRt, to the resistance

Rt = σ0rt/S of a wire of typical length rt which is a typical distance reached after a
time t by diffusive trajectories. Therefore,

d〈Φ2(t)〉
dt

=
e2kBT

σ0S~2
rt (13.187)

In an infinite wire, the typical length varies as rt ∼
√
Dt, so that the variance of the

phase, 〈Φ2(t)〉, varies non linearly with time :

〈Φ2(t)〉 ∼
(

t

τN

)3/2

with the characteristic Nyquist time τN given by (13.173).
It is also interesting to consider the case of a finite wire of length L. For times t
larger than the Thouless time τD = L2/D, an electron has explored completely the
system. This is the ergodic regime, defined in section 5.5.3. In this regime the typical
distance rt is no longer time dependent and it is set by the length L of the system.
Consequently, the time dependence of the dephasing is linear :

〈Φ2(t)〉 ∼ t

τc
where τc is size dependent and is given by

~

τc
=
e2

~

kBTL

σ0S
=
e2

~
RkBT . (13.188)

The two times τN and τc are related by τ3
N = τ2

c τD. They have a different temper-
ature dependence. This difference has been stressed recently and should show up in
Aharonov-Bohm experiments on rings [349, 350].

13.7.4 Phase coherence and quasiparticle relaxation

It is very interesting to compare the results obtained for the phase relaxation
with those obtained in section 13.7.4 to describe the quasiparticle relaxation.
We notice first that the phase coherence time τee

φ (T ) obtained in dimension
d = 1 is parametrically identical to the quasiparticle relaxation time τin(T )
given by (13.135).

In order to understand this similarity, we return in more detail to the struc-
ture of the expressions which describe the quasiparticle and the phase relax-
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ations. The quasiparticle relaxation is given by (13.136) 29 :

− lnP(t) =
4

π~2
t

∫ ∞

1/t

dω

sinhβω

∫

dq

(2π)d

4πe2

q2
Im

( −1

ǫ(q, ω)

)

RePd(q, ω)

(13.190)
On the other hand, we have directly calculated the dephasing induced by fluc-
tuations of the electric field on the Cooperon. This dephasing is character-
ized by the average values (13.150) and (13.151). Using the relation (5.22),

〈eiq.r(τ)〉C = e−Dq2τ , we obtain the phase fluctuation in the form 30

1

2
〈Φ2〉T,C =

1

π~2

∫ t

0

∫ t

0

dτ1dτ2

∫

dq

(2π)d

∫

|ω|<T

dω
4πe2

q2
Im

( −1

ǫ(q, ω)

)

1

1− e−βω

× −e−Dq2|τ1−τ2|Re
(

e−iω(τ1−τ2) − eiω(τ1−τ2)
)

, (13.191)

where τ = t − τ . The integration over ω is up to T , a consequence of the
Pauli principle discussed on p. 524. In order to show the equivalence of the
approaches leading to relations (13.190) and (13.191), consider this latter ex-
pression.

Instead of integrating on the frequency as it was done to obtain (13.154),
let us first integrate on time. After a tedious calculation, we obtain 31 :

1

2
〈Φ2〉T,C ≃

2

π~2
t

∫

|ω|<T

dω

1− e−βω

∫

dq

(2π)d

4πe2

q2

× Im

( −1

ǫ(q, ω)

)

RePd(q, ω)

(

1− sinωt

ωt

)

. (13.193)

Quite remarkably, we notice that the compensation between the two correlators
〈V (τ1)V (τ2)〉T and 〈V (τ1)V (τ2)〉T introduced in (13.150) provides naturally,

29Expressions (13.190) and (13.193) can be greatly simplified by noticing that

4πe2

q2
Im

(−1

ǫ

)

RePd(q, ω) =
1

2ρ0
ImPd(q, ω) . (13.189)

We have chosen to keep the expressions where the dielectric function appears explicitly.
30More precisely, it can be shown that 〈eiq.r(τ)〉C = e−Dq2τ(t−τ)/t. But the approximation

used here is sufficient in the large time limit [340].
31We notice that, for an odd function F (ω),

∫ ∞

−∞

F (ω)dω

1 − e−βω
=

∫ ∞

0
F (ω) coth

βω

2
dω .

We can then rewrite (13.193) in the equivalent form

1

2
〈Φ2〉T,C ≃ 1

π~2
t

∫ T

0
dω coth

βω

2

∫

dq

(2π)d

4πe2

q2

× Im

( −1

ǫ(q, ω)

)

RePd(q, ω)

(

1 − sinωt

ωt

)

. (13.192)
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through the term (1− sinωt/ωt), a low frequency cutoff of order 1/t, and leads
to a time dependence 〈Φ2〉T,C going as t3/2 32.

Relations (13.190) and (13.193) show that the relaxations of a quasiparticle
state and of the phase are identical, provided that the following remarks hold
true :

• Although it is natural to expect that phase coherence is limited by the
lifetime of quasiparticles, it is far from being a priori obvious that the two
relaxation processes are identical. In particular the frequency transfer ω has a
different meaning in each case. For quasiparticle relaxation, it means an en-
ergy transfer between quantum states, while for the phase relaxation, it means
the frequency of the fluctuating modes of the electric field. The correspon-
dence between the two mechanisms is provided by the fluctuation-dissipation
theorem.

• In (13.193), the lower cutoff on energies ω results quite naturally from
the difference between the two correlators and thus from the structure of the
Cooperon which couples two time-reversed trajectories. But in (13.190), it
results from the Fermi golden rule. We emphasize the essential role played by
the correlator 〈V (τ1)V (τ2)〉T which describes the potential correlation between
time reversed trajectories.

• The thermal function ω/ sinhβω which shows up in the Fermi golden rule
derivation of (13.190) can be rewritten in the form

ω

sinhβω
=

2ω

1− e−βω
[1− f(−ω)] . (13.194)

We recognize the thermal factor ω/(1− e−βω) that characterizes thermal fluc-
tuations of the electromagnetic field. It is multiplied by a Fermi factor 1 −
f(−ω) = f(ω) which cuts the contribution of energy exchanges up to a value of
order T . This term expresses the constraint due to the Pauli principle, which
is explicitly taken into account by the Fermi factors of relation (13.121). By
contrast, in the calculation of the phase relaxation leading to equation (13.193),
only the first term appears ω/(1 − e−βω), because it describes the interaction
of a single electron with a fluctuating electromagnetic field.

However, an additional constraint follows from the existence of the Fermi
sea, namely that a quasiparticle of energy ǫ can relax only to available empty
state ǫ − ω, whence the Fermi factor 1 − f(ǫ − ω). For quasiparticles at the
Fermi level, this leads to the result (13.194). This multiplicative factor leads
to the cutoff ω < T in the integral (13.193). The energy exchanged with the
fluctuating field due to the other electrons cannot be larger than T . With this
precaution, it appears that the relaxation of quasiparticles and of the phase
are equivalent mechanisms [344] 33.

32In the calculation leading to the relation (13.193), we have supposed that Dq2t ≫ 1.
This hypothesis, also considered in reference [340], amounts to neglecting other terms which
have the same time dependence.

33This subtlety was at the origin of a debate [351, 352] triggered by experimental results
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Quasiparticle and phase relaxations
are driven by the same time scale :

τee
φ (T ) = τin(T )

13.7.5 Phase coherence time in dimensions d = 2 and d = 3

In the quasi-1d case, the relaxation of the phase is mainly driven by the low
frequency fluctuations. It is instructive to reconsider the results obtained in
section 13.7.2, for dimensionalities 2 and 3. As for d = 1, the potential U(ρ)
could be determined, and we could solve the differential equation (13.162).
Here we limit ourselves to more qualitative considerations by evaluating the
fluctuations 〈Φ2〉T of the phase.

For d = 2, the integral (13.155) on the wavevector diverges and must be
cut off at Dq2 ≃ T since there is no energy exchange larger than T with the
fluctuations of the electric field. By using (15.98), we obtain

1

2

〈

Φ2
〉

T
=

e2T

πσ0~2a

∫ t

0

dτ log
2

qc|r(τ)− r(τ)| ∼
e2T

πσ0~2a
t ln

1

Tt
(13.195)

where qc ≃
√

T/D and a is the film thickness. Therefore, in dimension d =
2, the relaxation of the phase is exponential with a logarithmic correction.
The phase coherence rate, defined by 1

2

〈

Φ2
〉

T
≃ 1, varies linearly with the

temperature [339] :

1

τN
≃ e2T

2πσ0~2a
ln

2πσ0~a

e2
(13.196)

and we notice that this time is the same as the quasiparticle relaxation time
(13.134).

In dimension d = 3, the integral (13.155) diverges for the large wavevectors.
As for d = 2, it must be cut off for qc ∼

√

T/D. We thus obtain an exponential
relaxation with the characteristic time τN given by

1

τN
=

e2T 3/2

π2σ0~2
√
D

(13.197)

and we recover a result similar to (13.132).

We conclude by noticing that, in dimensions 2 and 3, the phase relaxation
and the quasiparticle relaxation are driven by energy transfers of the order of
temperature T .

[353] which seemed to exhibit a saturation of the phase coherence time at low temperature.
Assuming that the energy an electron can exchange with its electric environment is not
limited by the temperature but by the elastic collision rate leads to a saturation of the phase
coherence time at low temperature (Within this assumption, the divergence which appears
at high energy is not cut off by temperature but by the inverse collision rate.).
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13.7.6 Measurements of the phase coherence time τ eeφ

The usual method of determining experimentally the phase coherence time
consists in measuring the magnetoresistance and deducing the weak localiza-
tion correction (section 7.5). The latter is sensitive to phase coherence and is
suppressed by different dephasing mechanisms, which result from a magnetic
field, spin-orbit coupling (τso), coupling to magnetic impurities (τm), electron-
phonon interaction (τph) or from the electron-electron interaction (τee

φ ). Let us
also recall that the weak localization correction does not involve any intrinsic
temperature dependence, in contrast for example to the conductance fluctu-
ations : it depends solely on Lφ but not on LT (see 11.49). Some of these
mechanisms are well controlled : the magnetic field is an external parameter
and by measuring the magnetoresistance, it is possible to determine the various
characteristic times. The strength of the spin-orbit coupling can be tuned by a
change in the concentration of heavy substitution atoms. The electron-phonon
coupling decreases rapidly at low temperature 1/τph ∝ T 3 and can then be ne-
glected. What remains at low temperature is the dephasing due to magnetic
impurities and to electron-electron interaction.

In practice, fitting the experimental curves by the theoretical expression of
the magnetoconductance allows to extract the different characteristic times.
For example, in d = 2, the magnetoconductance can be fitted with expression
(7.82). In d = 1, expression (7.56) gives the magnetoresistance of a wire of
length L, in a perpendicular magnetic field (Exercise 7.3 and eq. 7.84) :

∆R

R
= s

e2

hRL

(

3

2
Ltrip −

1

2
Lsing

)

. (13.198)

The triplet and singlet contributions are respectively given by (eq. 7.75)

1

L2
trip.

=
1

D

(

1

τee
φ

+
4

3τso
+

2

3τm

)

+
W 2

12L4
B

(13.199)

and

1

L2
sing.

=
1

D

(

1

τee
φ

+
2

τm

)

+
W 2

12L4
B

, (13.200)

where LB =
√

~/2eB is the magnetic length.
Figure 13.11 presents the temperature dependence of the phase coherence

time measured in a gold wire. The phase coherence time is found to vary as
T−2/3 in good agreement with (13.181). Figure 13.12 shows results obtained
on metallic wires made of gold, silver and copper. The T−2/3 dependence
is also observed on gold and silver wires. At higher temperature, the time
τφ deviates from the behavior predicted by relation (13.181). This indicates
the existence of an additional dephasing mechanism due to the coupling to
other degrees of freedom, such as the electron-phonon coupling [340], the latter
giving a contribution proportional to T−3 which is not calculated here. The
experimental results obtained in gold and silver wires are well described by the
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Figure 13.11: Phase coherence time τee
φ as a function of temperature in a gold

wire. The straight line corresponds to τφ ∝ T−0.64 (P.M. Echternach et al.,
Phys. Rev. B 48, 11516 (1993)).

relation
1

τφ
= AT 2/3 +BT 3 (13.201)

where A and B are fitting parameters.
We may conclude by saying that the low temperature saturation of the

phase coherence time results from the coupling to degrees of freedom such as
magnetic impurities [335, 348, 354] or two-level systems [348] and not from
electron-electron interaction. This conclusion is reinforced by Figure 13.12
which shows that the saturation in the case of silver wires depends on the
purity of the sample 34.

34Recent experimental studies confirm that the low temperature dependence of τφ is driven
by magnetic impurities and may be non monotonous : it first saturates and then it further
increases at lower temperature [348, 354]. This behavior has been attributed to the Kondo
effect which tends to screen the magnetic impurities at low T (see remark p. 234). At lower
temperature the RKKY coupling between impurities may be also relevant [355].
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Figure 13.12: Temperature dependence of the phase coherence time τφ of four
metallic wires (silver (• and ◦), gold (∗) and copper (�)) obtained by magne-
toresistance measurements [348]. For the purest samples (silver (•) and gold
(∗)), a dependence τ−1

φ (T ) = AT 2/3 + BT 3 is observed (solid curves). The

dashed line represents the contribution AT 2/3 for the silver samples. For less
pure silver (◦) and for copper (�), this power law dependence is no longer ob-
served. The low temperature saturation has been attributed to other dephasing
mechanisms.

.
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13.1 Appendix A13.1 Screened Coulomb po-
tential in confined geometry

In section 13.2, we have described the screened potential for a three-dimensional
sample. More generally, the form of the interaction depends on space dimen-
sionality and on the environment of the sample. For an isolated sample, the
Fourier transform of the Coulomb potential e2/R depends on the dimensional-
ity d as

U0(q) =











































4πe2

q2
(d = 3)

2πe2

q
(d = 2)

2e2 ln
1

qW
(d = 1) .

(13.202)

The last expression corresponds to a quasi-one-dimensional wire of section W 2

and is valid for distances larger than W , that is, for qW ≪ 1 35. From (13.6),
the static screened potential (ω = 0) is given by the relation U(q) = U0(q)/[1+
2ρ0Uo(q)] where ρ0 is the density of states. We thus obtain :

U(q) =















































4πe2

q2 + κ2
3

(d = 3)

2πe2

q + κ2
(d = 2)

2e2

ln−1 1
qW + 4e2ρ1d

(d = 1) .

(13.203)

For d = 3, the screening vector κ3 is given by κ2
3 = κ2 = 8πe2ρ3d where ρ3d

is the density of states per unit volume and per spin direction in d = 3. In
d = 2, the screening vector is given by κ2 = 4πe2ρ2d where ρ2d is the density
of states in d = 2. For example in a quasi-two-dimensional sample of thickness
W , ρ2d = ρ3dW , so that κ2d = κ2

3dW/2. The dynamically screened interaction
is given by (13.6), that is,

35For the case d = 1, the cutoff in the logarithm results from the finite thickness W of the
wire and it is given up to a numerical factor.
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U(q, ω) =
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4πe2

q2 + κ2
3

Dq2

−iω+Dq2

(d = 3)

2πe2

q + κ2
Dq2

−iω+Dq2

(d = 2)

2e2

ln−1 1
qW + 4e2ρ1d

Dq2

−iω+Dq2

(d = 1) .

(13.204)

In any dimension and in the diffusive limit qle ≪ 1, the screened Coulomb
interaction retains the unique form

U(q, ω) −→
q→0

1

2ρd

−iω +Dq2

Dq2
. (13.205)

However, in d = 1, this expression of the screened potential may lead to diver-
gences (e.g. for the calculation of the density of states correction in eq. (13.66))
and the full form of the interaction must be kept.

In a confined geometry, the expression of the screened interaction depends
on the nature of the environment (see section 13.4.4 and reference [315]). For
instance, if we consider a two-dimensional sample placed at a distance a from
a metallic gate, the image charges induced by the gate modify the static inter-
action which becomes

U0(q) =
2πe2

q

(

1− e−2qa
)

, (13.206)

so that at a distance smaller than a, that is, for qa≫ 1, we recover the 2d static
Coulomb interaction. At large distance, that is for qa ≪ 1, the interaction
becomes

U0(q → 0) = 4πe2a . (13.207)

and it can be cast in the form U0(q → 0) = e2/C, where the capacitance per
unit surface is defined as C = 1/(4πa).

Similarly, for a wire of section W ×W at a distance a from a gate, the static
interaction is

U0(q) = 2e2
[

ln
e−γ

qW
−K0(2qa)

]

, (13.208)

where γ ≃ 0.577 is the Euler constant and K0 is a modified Bessel function
[347] (15.76). In the limit qa ≪ 1, we recover the one-dimensional result 36.
At a large distance, that is for qa≪ 1, we obtain

U0(q → 0) = 2e2 ln
a

W
(13.209)

36See remark 35.
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which is again of the form U0(q → 0) = e2/C, where we define the capacitance
per unit length C = 1/(2 ln a/W ).

Once the static interaction U0(q) is obtained for these specific geometries,
we deduce the dynamically screened interaction from the relation (13.6) :

U(q, ω) =
1

U−1
0 (q) + 2ρd

Dq2

−iω+Dq2

(13.210)

and in the diffusive limit where U0(q → 0, ω) = e2/C,

U(q → 0)→ −iω +Dq2

2ρdDq2 − iωC/e2
(13.211)

which is the expression (13.71).

Lastly, it is important to notice that the form of the screened interaction
depends on the length scale under consideration. For a wire and a length scale
smaller than its width W , the interaction retains its three-dimensional form,
whereas it is of a 1d type for larger values of the length.

The expression of the screened interaction depends on space dimensionality
and the energy scale ǫ can be used to monitor the crossover between dimension-
alities d = 1 and d = 3 through the comparison between the energy dependent
length Lǫ =

√

D/ǫ and the thickness W .
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13.2 Appendix A13.2 Lifetime in the absence
of disorder

This appendix recalls the main steps of the calculation of the quasiparticle
lifetime for an interacting electron gas in the absence of disorder. The result is
at the basis of the Landau theory of Fermi liquids.

In the absence of disorder, the eigenstates are plane waves indexed by their
momentum, that is |α〉 = |p〉, |γ〉 = |p′〉, |β〉 = |p − q〉 and |δ〉 = |p′ + q〉.
Therefore, the relation (13.92) becomes :

1

τee(ǫ)
=

4π

ν0

∫ ǫ

0

dω

∫ 0

−ω

dǫ′
∑

pp′q

|Uq|2
Ω2

× δ(ǫ̃− ǫp)δ(ǫ̃′ − ǫp′)δ(ǫ̃− ω − ǫp−q)δ(ǫ̃′ + ω − ǫp′+q)(13.212)

where ǫ̃ = ǫ + ǫF and ǫ̃′ = ǫ′ + ǫF . We denote by Uq the Fourier transform
of the screened interaction potential, as given by the relation (13.2), in the
Thomas-Fermi approximation. The quadratic dispersion relation for electrons
implies that ǫp−q = ǫp−vF .q + q2/2m and

∑

p = ν0
∫

dǫpd̟. The integration
over the momenta p and p′ leads to

1

τee(ǫ)
= 2πν0

∫ ǫ

0

ωdω
∑ |Uq|2

Ω2

∫

δ(ω − v.q +
q2

2m
)δ(ω − v′.q − q2

2m
)d̟d̟′

(13.213)
where ̟ (resp. ̟′) is the solid angle (v, q) (resp. (v′, q)). Upon angular
integration and in the limit ω ≪ ǫF , we obtain

1

τee(ǫ)
= 2πν3

0ǫ
2〈|U |2〉 , (13.214)

where the interaction parameter is

〈|U |2〉 =
1

4ν2
0Ω2

∑

|q|<2kF

|Uq|2
(vF q)2

. (13.215)

In dimension d = 3, from the expression (13.2) of the screened potential and
in the limit κ≪ kF [332], we deduce

1

τee
=
π2

64

κ

kF

ǫ2

ǫF
(13.216)

where κ is the inverse screening length (13.4). We notice that the strength of
the interaction is of order

〈|U |2〉 ∝ ∆3

ǫF
. (13.217)

For any κ and kF , we obtain
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1

τee
=

πǫ2

16

κ4

kF ǫF

∫ 2kF

0

dq

(q2 + κ2)2

=
κ

kF

πǫ2

16ǫF

(

kFκ

κ2 + 4k2
F

+
1

2
arctan

2kF

κ

)

. (13.218)

which indeed reproduces (13.216) in the limit κ ≪ kF , whereas for κ ≫ kF it
becomes

1

τee
=
π

8

ǫ2

ǫF
. (13.219)


