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Abstract

We study multiple scattering of photons in disordered atomic media while
taking into account cooperative effects, which originate from the interaction
between atoms through the radiation field. We show that in atomic gases
cooperative effects, like superradiance and subradiance, lead to a potential
between two atoms that decay as the inverse inter-atomic distance, where in
the case of superradiance, this potential is attractive for close enough atoms.
The contribution of superradiant pairs to multiple scattering properties of
a dilute gas, such as photon elastic mean free path and group velocity, is
significantly different from that of independent atoms. Near resonance, it
leads to a finite and positive group velocity, unlike the one obtained for light
interaction with independent atoms. We also study the photon propagation
in a gas of N atoms, using an effective Hamiltonian that accounts for photon
mediated atomic dipolar interactions. The density of photon escape rates is
obtained from the spectrum of the N x N random matrix U;; = sin x;;/x;;,
where z;; is the dimensionless random distance between any two atoms. A
scaling function is defined to study photon escape rates as a function of
disorder and system size. Photon localization is described using statistical
properties of random networks whose mean field solution displays a ”small
world” behavior.






CHAPTER 1
Introduction

Wave propagation in disordered media plays an important role in various
fields of physics [1, 2]. A few examples are electronic transport in metals,
light propagation in random media, scattering of acoustic waves in fluids
and propagation of seismic waves. The general aspects are common to these
examples, but each type of wave exhibits its own characteristic behavior.
When the medium is thin enough, the wave scatters only one time in the
random medium before it emerges on its way out. This regime is called
single scattering. But, when the medium is thick, the wave scatters many
times before leaving and we may speak of multiple scattering. In this thesis
we are interested in the multiple scattering of light by atomic gases.

The problem of a single scattering of light from a dielectric particle of an
arbitrary volume has been studied by Mie [3]. His solution is rather formal
so let us focus on its limiting cases. When the radius of scatter, a, is much
smaller compared to the radiation wavelength, A, Rayleigh limit is obtained
and the scattering cross section varies as A=*. This dependence is the origin
of the blue sky. On the opposite limit, when a > A, the geometrical optics
regime is approached and the scattering cross section does not depend on A
and is of the order of wa?.

When the scatterer is an atom, rather than a classical object as in Mie
scattering, new features appear due to the internal structure of the atom.
The existence of energy levels in the atomic spectrum leads to a different
expression of the scattering cross section [4]. Moreover, if the energy levels
are degenerate, then the additional degrees of freedom reflect in a tensorial
structure of the differential cross section [1]. In the low frequency regime,
when the radiation frequency, w, is much smaller than the atomic Bohr’s
frequency, wg, Rayleigh limit is recovered and the cross section varies as
A7%, as in the classical case. But for the case of resonant scattering, namely
w ~ wy, the cross section is very large of the order of A2. This large value is
a substantial advantage in the experimental study of scattering from atomic
gases.

The issue of multiple scattering of light in disordered media may be
treated at several levels of complexity. The first one describes the scattering



of a scalar wave by classical scatterers. This simple approach disregards the
polarization of light and its quantum nature, as well as the internal degrees
of freedom of the scatterers, [5, 6, 7]. The second takes into account the vec-
torial nature of light, but the scatterers and the radiation field are still been
treated classically [5, 6]. The third one is a semiclassical treatment where the
multiple scattering of an electro-magnetic wave by atoms is studied [8]. The
last level considers photons (within the formalism of second quantization)
and atoms and hence represents a full quantum treatment [1, 9, 10].

However, all these approaches neglect the mutual influence between scat-
terers. Thus, the aim of this research is to study multiple scattering of
photons in disordered media, while taking into account cooperative effects as
superradiance and subradiance [11, 12], which originate from the interaction
between atoms through the radiation field. Superradiance is the phenomenon
where, under certain circumstances, the spontaneous emission rate from an
ensemble of N > 1 interacting atoms is proportional to N? rather than N.
The complementary phenomenon is subradiance in which, under other cir-
cumstances, the spontaneous emission rate is zero although half of the N
atoms occupy the excited states. We will show that these effects modify
considerably the transport properties of light in disordered media.

The dissertation is organized as follows: Chapter 2 deals with the multiple
scattering of light by a gas of non-interacting atoms. To this purpose a brief
description of single scattering is given, then several models of disorder are
presented and finally the resolvent operator formalism as well as the self-
energy concept are introduced. Chapter 3 reviews cooperative effects by
defining Dicke states and calculating the cooperative spontaneous emission
rate and the cooperative level shift for different cases. In the rest of the
dissertation we combine the two elements presented in the previous chapters,
i.e., study multiple scattering of photons in disordered media while taking
into account cooperative effects. Chapter 4 deals with the multiple scattering
of superradiant pairs [13, 14], while Chapter 5 considers higher order terms
that account for cooperative effects between more than two atoms [15].

We will show that in atomic gases cooperative effects lead to a potential
between two atoms that decay as the inverse inter-atomic distance, where in
the case of superradiance, this potential is attractive for close enough atoms.
It will be proven that the contribution of superradiant pairs to multiple
scattering properties of a dilute gas, such as photon elastic mean free path
and group velocity, is significantly different from that of independent atoms.
For instance, near resonance, it leads to a finite and positive group velocity,
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unlike the one obtained for light interaction with independent atoms.

We will also show that photon escape rates from a gas of N atoms can
be derived from the spectrum of an N x N random matrix U. For a three-
dimensional geometry, U;; = sin z;;/x;;, while for a one-dimensional gas U;; =
cos z;5, where x;; is the dimensionless random distance between any two
atoms. In order to study photon escape rates as a function of disorder and
system size, we will define a scaling function which measures the relative
number of states having a vanishing escape rate. With its help we will prove
that for a large enough three-dimensional geometry, the photons undergo a
crossover from delocalization towards localization, while in a one-dimensional
atomic gas, the photons are always localized. We will suggest an explanation
to these results in the framework of random networks.






CHAPTER 2
Multiple scattering of light

This chapter deals with the multiple scattering of light by a gas of non-
interacting atoms. First, a brief description of a single scattering is given and
Rayleigh scattering as well as resonant scattering are studied. Then, in order
to describe the multiple scattering of light in random media, several model
of disorder are presented and the resolvent operator formalism is introduced.
Finally, the self-energy concept is studied and the physical parameters that
characterize multiple scattering of a photon, e.g., the elastic mean free path
and the group velocity, are derived from it.

2.1 Single scattering

We start with a description of a single scattering of a photon by a degen-
erate two-level atom [1]. The atomic ground state is denoted as |g) = |J;m,)
and the excited state is |e) = |J.m,), where J is the quantum number of
the total angular momentum and m is its projection on a quantization axis,
taken as the Z axis. The energy separation between the two levels is Awyq
and the natural width of the excited level is Al'g. This simple picture of
a two-level atom neglects the rather complicated energy structure of a real
atom which reflects various internal interactions, e.g., Coulomb interactions,
spin-orbit interactions, hyperfine interactions, etc. But, due to selection rules
which limit the allowed transitions between states, in some cases a certain
state may couple to only one other. Thus, the two-level atom approximation
is close to reality and not merely a mathematical convenience. Since the
wavelength of the light emitted by the atom is usually much larger than the
typical atomic size, the long wavelength approximation is made, so that the
electric dipole representation of the interaction can be used. The correspond-
ing Hamiltonian of the system is

H=Hy+V, (1)

where the non-ineracting Hamiltonian is the sum of the atomic and the ra-
diation Hamiltonians

Hy = hwo Y [Jeme)(Jeme| + ) hwpal .., (2)

Me ke



while the interaction is given by
V =-d-E(0), (3)

where d is the dipole moment operator of the atom and E(r) is the electric
field operator at position r

. hw ~ _ikr ~x _—iker
E(r)=1i Z 1/ ﬁ(aksake kr _of greim). (4)
ke

ax. and CLL; are, respectively, the annihilation and creation operators of a
mode of the field of wave vector k, polarization &, and angular frequency
wr = ck.  is a quantization volume, ¢ is the vacuum dielectric constant,
and c is the light speed in vacuum.

We assume that the typical speed of the atoms,

kgTy
IR , 5)
‘/u (5)

is small compared to vy.: = o/k but large compared to vy, = hik/pu where
1 is the mass of the atom and Tj is the temperature, so that it is possible
to neglect the Doppler shift and recoil effects. Indeed, for a temperature of
Ty = 1073 K, the typical speed of the atom is v ~ 0.3 m/s. Since, for a wave
number of k = 10" m™! and a natural width of Iy = 107 s7}, ¥4, ~ 1 m/s
and Vi, ~ 0.01 m/s, both assumptions are fulfilled.

In order to calculate the scattering cross section we introduce the collision
operator

T(z)=V+VG(2)V, (6)
where its Born expansion is given by
T(z) =V +VGo(2)V + VGo(2)VGo(2)V + .... (7)

G(z) is the resolvent of the total system, while G(z) is the resolvent of the
non-interacting system and they are defined as

G(z) = (8)

and




The transition matrix element, known also as the scattering amplitude,
describes the transition from the initial state |i) = |J,m,; ké), where the
atom is in a state |J;my,) in the presence of a photon of frequency w = ck
and polarization £, to a final state |f) = [J;m{; k'€’) and it is defined as

Ty = (fIT(z = hw)[i), (10)

with & = k. Using (1)-(9) up to the second order of the Born expansion
gives

w Ag Aur
T = _ , 11
! QEOQZw—wO w + wo (11)
where
Ap = <ng;\d €% Jeme) (Jeme|d - €| J,my) (12)
and
Aur = (Jgmyld - E[Jeme) (Jeme|d - €7 [ Tgmy). (13)

The first term of (11) represents the resonant process in which the atom
absorbs the original photon and then emits a new one, while the second term
describes the anti-resonant process in which the atom emits a new photon
and then absorbs the original one.

Let us distinguish between two cases, Rayleigh scattering and a resonant
scattering.

2.1.1 Rayleigh scattering
When the photon energy is much smaller than the energy difference be-

tween the atomic levels (w < wp) and for a non-degenerate ground state
(J, =0), (11) can be rewritten as

ﬁw Alx A 2. A
Ty = 20 Zij:aij(gl -€;)(€ - €5), (14)

where the static atomic polarizability is

s — 1 Z (Jgmg|di| Jeme) (Jeme|d;| Jymyg) + (Jgmg|d;|Teme) (Jeme|di| Jymy)
L €0 hu)()

Me
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and d; is the component of the electric dipole moment operator along the
unit vector é;. Assuming the tensor to be isotropic, that is a;; = ad;;, we

obtain 5
W e .
Tfi = —E&O(El : 8). (16)
Using the Fermi golden rule and summing over the polarizations of the scat-
tered photon yield the differential cross section for the scattered photon to

emerge towards a solid angle d2y, about K/,

(L—[2-EP), (17)

do  adm?

due M

where A = 2 /k is the photon wavelength and k = k/k is a unit vector. The
corresponding total cross section is

_ 8nr%ag
-3\

and the A=* dependence is well-known as the origin of the blue sky.

(18)

2.1.2 Resonant scattering

Now, we are interested in a resonant scattering, in which the photon
energy is very close to the energy difference between the atomic levels (§ =
w—wy < wp). The non-pertubative expression for the transition matrix
element (10) reads

w 1

Ty = .
f 26095+ZFO/2

> (Jgmild - %[ Jome) (Jemeld - € Jgmg). (19

Me

Applying the Wigner-Eckart theorem yields

3rhe®  To/2 5 5
T J— * . A% . Ja 2
fi Qw2 5—|—ZT0/2 ;(d € )(d 5)> ( 0)

where the natural width of the excited state is

d*w?
Wl = —2% 21
0 37T€003 ) ( )

the reduced matrix element and the corresponding unit vector are

S Wl 1
V2J. +1 d

10

(Jeme|d|Tgmy) (22)



and the small radiative shift of the excited level has been neglected. The
total cross section in this case is

332 I2/4 NP

me

The average of (23) with respect to the internal degrees of freedom, i.e.,
Zeeman sub-levels m, assuming equal probability to find the atom in each of
them, is

3\? F%/él
<O'>m - JgJegé2 _'_ F%/ZJ:, (24)
where o 41
=< - 2
. 3(2J, 4 1) (25)

We conclude that the resonant scattering cross section varies as the pho-
ton wavelength squared. In particular, for 6 = 0, J;, = 0, and J. = 1 we
recover from (24) the known result of the resonant scattering of a classical
electromagnetic wave by an elastically bound classical electron [16]

3\

o

(26)

O¢l =

2.2 Multiple scattering

In order to describe the multiple scattering of light in random media, we
start by presenting several models of disorder. Then, the resolvent opera-
tor formalism is introduced and the photon self-energy concept is studied.
Finally, the physical parameters that characterize multiple scattering of a
photon, e.g., the elastic mean free path and the group velocity, are derived
from it.

2.2.1 Models of disorder

For light propagating in a disordered medium, the scattering potential
may takes different forms [1]. The disorder may be a spatially continuous
function as in the case of the refractive index of the atmosphere. On the
other hand, light scattering by a colloidal suspension corresponds to a model
of discrete scatterers. In the following we will study both cases and show that
they are equivalent under a certain limit. If the disorder potential, V' (r), is a

11



continuous and random function of the position, we may define the Gaussian
model in the following way

(V(r))a= (27)
(V()V(r))a = B(r —r'), (28)

where (- - -}, denotes a disorder average, meaning an average over the differ-
ent realizations of the medium. In the particular case where the scattering
potential is short range compared to the the radiation wavelength, we may
approximate the second-order correlation function as

(V(r)V(r'))qg = Bo(r —1'). (29)

A random potential with such a property is called white noise potential.

A microscopic picture of the disorder is given by Edwards model [17]. This
model describes the medium as a discrete collection of N identical scatterers
in a volume (2. Each scatterer, located at a random point r;, is characterized
by its scattering potential v(r —r;). Therefore, the disorder potential is given
by

Vir) = Z v(r — ;). (30)

We assume that the scattering potential is short range compared to the
radiation wavelength, so it can be approximated by a ¢ function potential,
i.e., v(r) = vod(r). In the limit of a high density, n = N/ > 1, of weak
scatterers, but with a constant value of nvZ, it can be shown [1] that the
second-order correlation function is

(V()V('))g=nvid(r — /). (31)

In other words, in this limit the Edwards model reduced to a white noise
model discussed above, with B = nv2. This equivalence can be generalized
to the case of a Gaussian model whose second-order correlation function has
a finite range.

2.2.2 Photon self-energy

In order to describe multiple scattering of light in a disordered medium,
we use the resolvent operator formalism [1]. From (8)-(9) we obtain the
relation between the resolvent of the scattered photon, GG, and the resolvent
of the free photon, Gy, i.e., in the absence of the disorder potential V'

G =Gy+ GyVa. (32)

12



Formally, the expansion of (32) reads
G =Go+ GyVGo+ GoVG VG + ... (33)

As V represents a single scattering event and G stands for the free prop-
agation of the photon, (33) describes multiple scattering events. Using the
white noise model (29), the disorder average of (33) yields

(G)a = Go + BGoGoGo + B2GoGoGoGoGo + ..., (34)

or

(GYg = Go+ GoXGy + GoXGoEGy + ..., (35)

where X is the photon self-energy. Expression (35) is the iterative solution
of the Dyson equation, namely

(G)a = Go+ GoX(G)a. (36)

The self-energy represents the sum of all irreducible scattering diagrams. The
pertubative expansion of the self-energy in a power series, controlled by the
parameter B, is represented in Figure 1. The first term X, proportional
to B, accounts for independent scattering events while the second term X,
proportional to B2, describes interference effects between pairs of scatterers.
For small values of B, the main contribution is obtained by keeping only the
first term 3; which describes independent scattering events. Therefore, the
first contribution to the self-energy is proportional to the density of scatterers
and to the average single scattering amplitude. It should be noticed that the
results above can be generalized to the case of a Gaussian model whose
second-order correlation function has a finite range.
As the solution of the Dyson equation (36) reads

G ! 37

(@a=grrs G7)
the imaginary part of the self-energy is related to the decrease in the light
wave amplitude due to scattering events, while its real part represents an
energy correction. Therefore, several physical parameters that characterize
multiple scattering of a photon are derived from the self-energy. The first
one is the elastic mean free path, l., obtained from the imaginary part of the
self-energy, namely By

e

= —ImY¥,, (38)

13
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Figure 1: Pertubative expansion of the self-energy in a power series in the
parameter B. Solid lines account for the free photon propagator Go. Pairs of
dotted lines, connected by X, stand for the second-order correlation function
B. The first term X1, proportional to B, accounts for independent scattering
events while the second term Yo, proportional to B?, describes interference
effects between pairs of scatterers. After [1].

where k is the photon wave number. Expression (38) is equivalent to the
known formula

(39)

where (0),, is the average single cross section, given for a resonant scattering
by (24). The equivalence between the two expressions can be proven if one
uses the optical theorem

20
(O)m = =7 In(Tpi(k = K& = &), (40)

where TY%; is the scattering amplitude discussed in section 2.1. It can be
shown [1] that
T

2kl,
Thus, in the weak disorder limit, i.e., for kl, > 1, we may neglect the inter-
ference effects between successive collisions represented by 5. The physical
meaning of this limit is that the light wave reaches its far field behavior be-
tween successive scattering events and therefore they may be considered as
independent ones.

Another important physical quantity that characterizes multiple scatter-
ing of a photon is its group velocity, vy, given in terms of the refraction index
1 by the usual relation

c dn
— = L. 42
o 77+wdw (42)

The refraction index for a dilute medium is

n=+v1+nRea, (43)

14



where the dynamic atomic polarizability « is proportional to the self-energy

P (5>221. (44)

w

0= \/1 - (5)2 ReX,. (45)

Substituting (45) into (42) yields

Thus, we obtain that

c 1 2 d
— =—(1———ReX; ). 4
Vg 77< dewRe 1) (46)

15
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CHAPTER 3

Cooperative effects

This chapter reviews cooperative effects, such as superradiance and sub-
radiance, which originate from collective atomic interactions with the radia-
tion field. First, the classical analogous phenomenon of a system of coupled
harmonic oscillators is presented. Then, a simple formalism for describing
collective atomic states is introduced by defining the product atomic states
and the Dicke states. After obtaining a convenient description of collective
atomic states, the interaction with the quantum radiation field is considered.
The rate of the collective spontaneous emission is calculated in an atomic
product state, as well as in a Dicke state, for the case in which the atoms
are confined to a volume much smaller than the radiation wavelength cubed.
Next, for two atoms with an arbitrary inter-atomic distance, the cooperative
emission rate and the cooperative level shift are obtained. Then, the finite
propagation time of light is taken into account and retardation effects are
studied. Finally, cooperative effects in a one-dimensional geometry and su-
perradiance associated with a scalar radiation field are analyzed.

3.1 Classical superradiance
We start with a demonstration that superradiance is not a unique quan-
tum effect, but also exists in classical systems such as coupled damped har-
monic oscillators [18]. The equation of motion of a single classical harmonic
oscillator is given by ,
d*x dx
=+ 25% +wiz =0, (47)
where wy is the natural undamped angular frequency, (8 is the damping con-
stant and z is the displacement. Its well-known solution is

x(t) = 2(0)e" cos(wt + ¢), (48)

w =t - B (49)

Now consider N similar oscillators, which are placed close together such as
each one of them is damped by the other NV —1 oscillators. The corresponding

with
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equation of motion of the i-th oscillator is

d?z; dz; dz;
2 20— +w§xi— 252 =, (50)
J#i

Denoting X = 21111 x; and summing over the N equations represented by
(50), we obtain that

d2
2z T 2Nﬁ— +wiX = 0. (51)
The solution of (51) is
X(t) = X(0)e N cos(wt + D), (52)

with

w=/wi — N2[32. (53)

If x;(t) are initially equal and in phase, then the solution indicates that the
damping constant of each coupled oscillator is N times larger than the one
of a single oscillator. This is a superradiant effect, and it will be discussed in
the next sections.

3.2 Collective atomic states

Consider an ensemble of N identical non-degenerate two-level atoms,
where the ground state and the excited state of the j-th atom are denoted, re-
spectively, as |g;) and |e;). The single atom raising operator b} and lowering
operator b; are defined [19] as

b =les) (gl b= lg;) (e, (54)

while the collective raising operator A" and lowering operator A~ are

N N
=> b A=D1, (55)
j=1 J=1

We also define the collective atomic spin operators

N N

A = %Z(b} 1) A= S (- by) (56)

j=1 7j=1
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N

1 3
Dg=3 (b —bb}) A=A (57)
=1

j=1

which obey the commutation relations
[Al, Am] = iglmnAn [Al, A2] = 0, (58)

where &;,,, is the Levi-Civita tensor.

3.2.1 Atomic product states

An atomic product state |®) is defined [19] as a state in which N, atoms
occupy the ground states, while the rest N, atoms are in the excited states.
This state is of the form

|®) = [g192€3...9N)- (59)

The total number of atoms is

N =N, + N,, (60)
and a measure of the total atomic inversion is
1
M = 5(]\76 — Ny), (61)

where M is either an integer or a half integer. Using the definitions (57) and
(61), we may conclude that the atomic product state is an eigenstate of the
collective spin operator As with an eigenvalue M, namely

Az|®) = M|D). (62)

3.2.2 Dicke states

A Dicke state |LM) is defined [11] as a simultaneous eigenstate of the
collective atomic spin operators Az and A2, as they commute according to
(58), namely

As|LM) = M|LM)  A’|LM) = L(L + 1)|LM), (63)

where L is either an integer or a half integer (|M| < L < N/2). It is easy
to show that the effects of the collective raising and lowering operators on a
Dicke state are

AY|LM) = /(L — M)(L + M — 1)|LM + 1), (64)
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AT|LM) = \/(L+M)(L +M +1)|LM — 1). (65)

As an example, consider the atomic product states of a two-atom system

|9192), lg1e2), le1g2), leres). (66)

The corresponding Dicke states are the singlet state

1
00) = —|le — |g1e 67
|00) ﬂ[l 192) — |g1€2)] (67)
and the triplet states
[11) = lerea)
1
10) = —=|le +
|10) \/5[\ 192) + |g1€2)]
1-1) = l9192) (68)

The states |11) and |1 — 1) correspond, respectively, to both atoms in their
excited states and both atoms in their ground states. The singlet state |00)
and the triplet state |10) both correspond to one atom in the excited state
and the other in the ground state, but |00) is anti-symmetric where |10) is
symmetric under an exchange of the atoms.

3.3 Cooperative spontaneous emission

After obtaining a convenient description of collective atomic states in the
previous section, the interaction with the quantum radiation field is consid-
ered. The rate of the collective spontaneous emission is calculated in an
atomic product state, as well as in a Dicke state, for the case in which the
atoms are confined to a volume much smaller than the radiation wavelength
cubed.

3.3.1 Dicke states

In the quantum vacuum |0), consider an ensemble of N identical non-
degenerate atoms in a Dicke state |LM), placed close enough to each other,
so one can use the long wavelength approximation discussed in Section 2.1
[11]. The corresponding interaction Hamiltonian is

V = -D-E(0). (69)
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The total electric dipole moment,

D=> d, (70)

by using the closure relation and the Wigner-Eckart theorem, may be written

D = (gld|e)A™ + (e]d|g) AT, (71)

where (g|d|e) is the electric dipole matrix element of a single atom. The rate
of transitions from the initial state |LA;0) to a final state |f) for energy
conserving processes in which a photon is being emitted is

I oc > [(fISILM;0)]%, (72)
f
where
S = (gldle) - E7(0)A™ (73)

and E™(0) represents the creation part of the electric field operator at the
origin of the coordinate system. Using the closure relation yields

[ oc (LM|ATA™|LM) (74)
and with the help of (64)-(65) we finally get for the cooperative emission rate
I'=(L+ M)(L—- M+ 1)y, (75)

where T’y is the single atom spontaneous emission rate (21).

Let us examine several cases:

1. All the atoms occupy the excited states |[LM) = [§Z)

The rate of the photon emission is
I = NT, (76)

which corresponds to N atoms radiating independently.
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2. Half the atoms occupy the excited states |[LM) = |LO0)

The emission rate is

['=L(L+ 1T, (77)
where 0 < L < N/2.
As the emission rate varies as L, the latter is called the cooperation

number. When the cooperation number has its highest value |LM) =
|20), the emission rate is

N (N
I'= 5 (5 + 1) Iy, (78)
which for N > 1 is
N2
I~ TFO. (79)

Thus, the emission rate of each coupled atom is N/4 times larger than
the rate of a single atom! This is a superradiant effect and it has been
already discussed classically in Section 3.1.

But, if the cooperation number has its lowest value |LAM) = |00), the
emission rate is I' = 0, although half of the atoms are excited! Such a
phenomenon is called subradiance.

3. One atom is excited [LM) = |L1 — &)

The emission rate is

F:<L+1—g) (L+%)FO, (80)

where |1 — N/2| < L < N/2.

Thus, for L = N/2 — 1 the emission rate is [' = 0 in spite of the fact
that one atom is excited, while for L = N/2 the emission rate is

I'=NTy, (81)
although only one atom is excited.

4. All the atoms occupy the ground states [LM) = |§ — &)

The photon emission rate is I' = 0 as expected.
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Finally, we calculate the expectation value of the total electric dipole moment
operator in a Dicke state. With the help of (71) and (64)-(65) we find that

(LM|D|LM) = {(g|d|e){LM|A™|LM) + {e|d|g)(LM|AT|LM) = 0. (82)

Thus, the expectation value of the electric dipole moment operator vanishes
in all Dicke states, including in the superradiant one!

3.3.2 Atomic product states
In the quantum vacuum |0), consider an ensemble of N identical non-
degenerate atoms in the following product state

N
H (Cylg;) + Celej)) (83)
7j=1
where
|Cyl? +1Ce* = 1. (84)

The atoms placed at time ¢y close enough to each other, so one can use the
long wavelength approximation [20]. The density operator of the coupled
system at time %, is

plto) = [@) (2] x 0){0], (85)
and it obeys the following equation of motion

dp 1

L= V@), plt

L V(D) (1) (56)

where the interaction Hamiltonian (69) is in the interaction picture. The
iterative solution of (86) up to the second order reads

1 t 1 t t1
p(t) = p(to)+ / dt [V (t, ,/)(to)]‘ir.—z/ dt1/ dta[V (1), [V (t2), p(to)]]-

Zh to (Zh) to to

(87)

We are interested in transitions within a short time At from the initial state
described by (85) to a final state in which a photon of wave vector k and
polarization € is emitted. The probability transition of such a photon is given
by

DAL= (f;ké|p(to + At)| f;ke), (88)
f
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where f denotes a final atomic state. As the final one-photon state is orthog-
onal to the initial vacuum state, by substituting (87) in (88), the first two
terms of (87) vanish and we have to the lowest order

1 t+AL t1 ) )
f 0 0

After inserting the interaction Hamiltonian and the density operator, we
obtain for energy conserving processes' that

Doy (FIAT[@)(@|ATf), (90)
!

or with the help of the closure relation and (55)

T oc (0> ) blb|®). (91)

Substituting (83) yields
[ o< (N|C.]> + N(N = 1)|C.P’|Cy ) - (92)

Finally, summing over all possible wave vectors and polarizations of the emit-
ted photon leads to the following rate of the cooperative photon emission

I'= (N|C.]> + N(N — 1)|C.]*|Cy?) T. (93)
Let us examine several cases:

1. All the atoms occupy the excited states C, =0

The rate of the photon emission is
I'=NTy, (94)

which corresponds to N atoms radiating independently.

ITaking into account only energy conserving processes is equivalent to disregarding any
highly oscillating contributions of the time integrals in (89).
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2. Half the atoms occupy the excited states C, = C, = =

V2
The emission rate is N
I'= 1 (N +1)T, (95)
which for N > 1 is
N2

Thus, the emission rate of each coupled atom is N/4 times larger than
the rate of a single atom. This is a superfluorescence effect which is
partially analogous to superradiance.

3. All the atoms occupy the ground states C, = 0

The photon emission rate is I' = 0 as expected.

Let us stress that although superradiance and superfluorescence are sim-
ilar in their enhanced emission rates, they are different phenomena due to
the following reasons:

1. Superradiance exists in a Dicke state, while superfluorescence appears
in an atomic product state.

2. The expectation value of the electric dipole moment operator in a su-
perradiant state is zero, while it has a non-vanishing value in a super-
fluorescent state.

3. Superradiance, unlike superfluorescence, has a complementary effect,
namely subradiance.

3.4 Interaction potential and lifetime of a pair of atoms

So far, we have assumed that the atoms are confined to a volume much
smaller than the radiation wavelength cubed and have used the long wave-
length approximation. In this section we remove this assumption and calcu-
late, for the case of two atoms, the lifetime and the interaction potential of
the pair.

To this purpose, consider two identical two-level atoms?, placed at posi-
tions r; and ry, in the quantum radiation field [22, 23]. The ground state
is a non-degenerate s state, |g) = |.J, = 0, m, = 0) and the excited state is

2The calculation below can be straightforwardly extended to the case of non-identical
atoms [21].
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a triply degenerate p state, |e) = |J. = 1,m, = 0,%+1). The corresponding
Hamiltonian is

H=Hy+V, (97)

where the non-interacting Hamiltonian is given by
o 3
0
Hy = IO Z Z ([Jeme) (Jeme| — [Jgmg){Jgmygl); + Zhwka';rcaakm (98)
j: e=—1 ke

while the interaction Hamiltonian is
2
=Y d;-E(r)). (99)
j=1

d; is the electric dipole moment operator of the j-atom and E(r) is the
electric field operator given in (4). The Schrédinger equation is

dey,
ih—t = Euca(t) + Zcm (G| V |6, (100)

where ¢,(t) is the probability amplitude of the eigenstate |¢,) of the non-
interacting Hamiltonian (98), with the corresponding eigenenergy F,. The
states of the uncoupled atomic system and the radiation field are chosen to
be

6%) = gn) = %nem T lgrea)]; 0)
167) = doo) = %nelgg ~ lgrea: 0)
|¢1—1> = |9192§ké>
|¢11> = |€1€2;k5>-

(101)

The first two states are the Dicke states |10) and |00) in vacuum. The
third state refers to the Dicke state |1 — 1) where one photon in mode (ké)
exists, while the last state refers to the Dicke state |11) where one photon
is in mode (ké). For the sake of simplicity, the three transition possibilities
Am = m, —my = 0, %1 are being treated separately. Thus, in the states
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|¢%), the Zeeman sub-level of |e;) is the same as the one of |es), i.e., Mo =
MMeo = M.
Substituting (101) in (100) and using the Laplace transform

c(s) = /000 dte % c(t) (102)

for the initial condition ¢*(t = 0) = 1, yield

1
() = s+ P(s) £ Q(s)’ (103)
where
P(s) = Z G (k) L’ + i(wlk — wp) * s+ i(wlk + wo)} ’ (104)

ké

A\ kA 1 1
Q) = ki) P A e orareren] ERN (L)
with
1/ hwy

Gi(ke) = 7\ 20

Going to the free continuum limit and summing over the wave vectors and
the polarizations in (104) give

(g|dle) - e™i. (106)

r
P(s=iz+€)|.m0 = ?O (107)
where the z-dependence has been neglected, as the single atom radiative shift
is irrelevant for our purpose, and I'y is given in (21). Using the plane wave

expansion of spherical harmonics Y;"(6, ), namely

eRT=dny N i Dikr)Y (0, 0)Y(8,7), (108)

1=0 m=—1

wherer =r; —ro = (1,0, ), k = (k, 5,7) and J;(z) is the Bessel function of
the first kind, we obtain from (105) that

3l {z’p(@) _ig(f)  q(9) pikor

4 k’o’l“ (k‘o’f’)?’ (k‘o’f’)2 ’ (109>

Q(s =iz +€)|,=0 = —
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where kg = wg/c. For m, =0
p(0) =sin*0  q(0) =1 — 3cos ), (110)
while for m, = +1
p(0) = %(1 +oos?8)  g() = %(3(:0829 _). (111)

The inverse Laplace transform of (103) with (107)-(109) yields the probability
amplitudes of |¢F)

() = e~ P HlEE] (112)
with
Reg(r) = g [p(ﬁ) Zi;n(kor) ~ q(?:{i;;/;or) N q(@(;s;(for)] (113)
and
3 [p(0)cos(kor)  q(0)cos(kor)  q(0)sin(kor)
Img(r)“ﬁ[ o G (ko) } (114)

Thus, the cooperative spontaneous emission rate or the inverse lifetime, I'*,

is
r+ 3 sin kor sin kor  cos kor
T =1F5|P 3 2
F() 2 k‘()’l“ (k’o’l“) (k’o’l“)

and the cooperative radiative level shift or the interaction potential, AE*,
is
3hl'y cos kor cos kqor N sin kor
4 ]{?07" (k?o?")s (/{307")2

When the atoms are well separated (kor > 1), then the single atom emission
rate is recovered from (115), namely

(115)

AE* =+ (116)

't =Ty, (117)
but when the atoms are close enough (kor < 1) we have
It = (1£1)D,, (118)

regardless of the value of m,.. The last result demonstrate, for the case of
N = 2 atoms, Dicke superradiance and subradiance, as discussed in the pre-
vious section.
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3.5 Retardation effects

In the previous section, we have neglected the propagation time of light
due to the approximations employed in solving the equation of motion. Thus,
the retardation time, /¢, does not appear in (112), so each atom is allowed
to influence the other instantaneously. However, by keeping the leading z-
dependence of ) one obtains [24] from (105) that

3T, [z’p(e) iq(0)  q(0) ]6(0) (119)

Qs =iz + €)jz<wo = — 4 | kor  (kor)?  (kor)?

Substituting in (103), for € < 1, yields

=i (R - e )
(120)

and by expanding the denominator into a power series we obtain

= S [ 300 (60 a®) | a0) Y ]t e
(121)

Finally, the inverse Laplace transform of (121) yields

E(t) = f: RE(n)e=# (%) (t - @) , (122)

Cc

L [,3i(p®)  q(0) | iq0) \ er]” [To nry 1"
RE(n) = — |+2 = o |2 (e 2| (123
(n) n! [ 2 (kor (kor)? * (kor)? ‘ 2 c (123)
and 1(t) is the unit step function. This solution describes many virtual
photon exchanges between the two atoms, taking into account the retardation

times nr/c, due to the finite speed of light. When neglecting these times in
(122), we have

- ?tnio:% { | (k‘oer) (z(()i;?) i (Z£0<f)>2) eikorr (F;t)n(’ |
124

thus (112) is recovered.
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As pointed out in Section 3.1, superradiance also exists in classical sys-
tems. Therefore, an analogous discussion can be given for the coupling of
two dipole oscillators by a classical electromagnetic field [25].

3.6 One-dimensional geometry

In the previous sections we have studied a three-dimensional system,
where the photons could be emitted into any of the free space modes. Now, we
consider superradiance in a one-dimensional geometry, a long pencil-shaped
system of atoms, where the wave vectors of the radiation are restricted to be
along the inter-atomic axis [24]. This situation corresponds to a directional
emission along the system axis. We follow the calculation given in Sections
3.4-3.5 and add in (106) the constrain that k = k7, where 7 is a unit vector
along the inter-atomic axis. Going to the one-dimemsional continuum limit
gives

F/
P'(s=iz+¢€)|,=0 = 70, (125)
where the one-dimensional spontaneous emission rate is
dchQ

= 126
0 hEQC ( )

and the reduced matrix element is given in (22). We also obtain that

. F/ i(wg—2)r

Q'(s =12+ €)]jz)<wo = ?Oe N (127)

The corresponding inverse Laplace transform yields the probability ampli-
tudes

Y 1+ —F—é(t—"—,") ( ”T)
t) = R cJ1(t—— 128
O = 3 R ), (125)
where . v .
e ikor]™ | 20 (4 _ ﬂ) 12
R = T 2 (- )] (126
When neglecting retardation effects in (128) one obtains that
CE(t) = e B 0] (130)
with '
g'(r) =e™r. (131)
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Thus, the one-dimensional cooperative spontaneous emission rate or the in-

verse lifetime, I'*, is
P/:I:
T = 1 = cos kor (132)
0
and the one-dimensional cooperative radiative level shift or the interaction
potential, AE*® is

/

r
AE* = :I:hQ0 sin kor. (133)

When the atoms are close enough (kor < 1), Dicke limit is obtained
" = (14+ 1)1, (134)

as in the three-dimensional case (118). But, when the atoms are well sepa-
rated (kor > 1), the single atom limit (117) is not recovered since the one-
dimensional inverse lifetime (132) is a periodic function of the inter-atomic
distance, while the three-dimensional one (115) falls off with the inter-atomic
separation. Similarly, the range of the one-dimensional interaction potential
(133) is infinite, while it is finite in the three-dimensional case (116).

Thus, we may conclude that there is a fundamental difference between
the one the the tree dimensional geometries. This difference is going to be
reflected in the calculation of photon escape rates from an atomic gas, pre-
sented in Chapter 5.

3.7 Scalar radiation field
Finally, we consider the case where non-degenerate atoms interact with
a scalar radiation field [26]. The corresponding Hamiltonian is

1= "0 S (e} el ~ lo)lol)y + 3 hnafon — DB, (1)

J=1 Jj=1

where the scalar field is

. hw 1k-r —tk-r
E(r) :zZUQEOg(ak kT gl g7k, (136)
k

We follow the calculation given in Sections 3.4-3.5, omit the summation over
the polarizations in (104)-(105) and replace (106) with

" 1 | hwyg

Cj (k) B ﬁ 2609

(gld]e)e’™ s, (137)
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Going to the free continuum limit, we obtain that

F//
P"(s =iz 4 €)= = 70 (138)
and o
; v iwg—z)r
QH(S =12+ E)‘\Z\<<wo = _?Owe E ) (139)
where the scalar spontaneous emission rate is
! 3
Iy = 51“0. (140)

The corresponding inverse Laplace transform yields the probability ampli-
tudes

E(t) = i R (n)e 5 (-2, (t - T) , (141)

c
where e
1 error r nry "
R™(n) = — |&i 2 (-] 142
(n) n![lkor} {2 c (142)
When neglecting retardation effects in (141) one obtains that
C//j: (t) — e—%gt[l:l:f"(r)]’ (143)
with ,
&)= it (141
r)=—i .
k‘()’r’

Thus, the scalar cooperative spontaneous emission rate or the inverse lifetime,
"+ is
NG3 sin kqor

=14 14
Pg k‘o’f’ ( 5)

and the scalar cooperative radiative level shift or the interaction potential,
AE" s

RI'j cos kor

2 ]{507’ .
When the atoms are well separated (kor > 1), then the single atom emission
rate is recovered from (145), namely

AE"™ = F

(146)

" =1y (147)
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and when the atoms are close enough (kor < 1) Dicke limit is obtained
"= = (1+£ 1)y, (148)

These results coincide with the ones associated with the vectorial case (117)-
(118). We will use the properties of the scalar case in the following chapters.
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CHAPTER /

Multiple scattering properties of superradiant
pairs

In Chapter 2 we have studied multiple scattering of light by a gas of non-
interacting atoms and have defined some physical parameters, like the elastic
mean free path and the group velocity, that characterize the photon trans-
port in random media. Let us stress that in this study, the mutual influence
between the scatterers has been neglected. In Chapter 3 we have considered
cooperative effects, such as superradiance and subradiance, which originate
from the interaction between atoms through the radiation field. In the rest
of the dissertation we combine these two elements, i.e., study multiple scat-
tering of photons in disordered media while taking into account cooperative
effects. Chapter 4 deals with the multiple scattering of superradiant pairs
[13, 14], while Chapter 5 considers higher order terms that account for coop-
erative effects between more than two atoms [15].

We start by describing the model which consists of pairs of two-level atoms
placed in an external radiation field where the Doppler shift and recoil effects
are negligible. Then, we calculate the average interaction potential of a pair
of atoms in a Dicke state by averaging upon the random orientations of pairs
of atoms with respect to the wave vector of a photon incident on the atomic
cloud. Next, we study the scattering of a photon by such pairs and compare
the results to the case where a classical wave is being scattered by a pair of
atoms. This comparison allows to find an unexpected connection between
superradiance and mesoscopic effects. Finally, we consider the multiple scat-
tering of photons by pairs of atoms and calculate the elastic mean free path
and the group velocity of photons in the random medium.

4.1 Model

As in Section 3.4, atoms are taken to be degenerate, two-level systems
denoted by |g) = |J;, = 0,m, = 0) for the ground state and |e) = |J. =
1,m. = 0,+£1) for the excited state. The energy separation between the two
levels is hwg and the natural width of the excited level is hl'g. We consider
a pair of such atoms, placed at positions r; and r,, in an external radiation
field where the corresponding Hamiltonian is

H=Hy+V, (149)
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with

hu) 2 1
TZ Z (| Teme) (Jeme| = | Tymg) (Jgmgl); + > hwgal ax.. (150)

_ ke

The interaction V between the radiation field and the electric dipole moments
of the atoms is

=—> d;-E(r)), (151)

where E(r) is the electric field operator given in (4) and d; is the electric
dipole moment operator of the j-th atom. According to (71), for a given
Am = m, — m, transition, d; may be written as

= (g|d|e)b; + (e|d|g)bl, (152)

where the atomic raising and lowering operators have been defined in (54).
As in Section 2.1, we assume that the typical speed of the atoms is small
compared to Ve = o/k but large compared to vy, = hk/p, where p is
the mass of the atom, so that it is possible to neglect the Doppler shift and
recoil effects.

4.2 Dicke states

The absorption of a photon by a pair of atoms in their ground states leads
to a configuration where the two atoms, one excited and the second in its
ground state, undergo many virtual photon exchanges which give rise to an
interaction potential and to a modified lifetime as compared to independent

atoms. These two quantities have been obtained in Section 3.4 and are given
n (115)-(116).

4.2.1 Average interaction potential and lifetime

For a photon of wave vector k incident on an atomic cloud, the interaction
potential between two atoms is obtained from (116) by averaging upon the
random orientations of the pairs of atoms with respect to k. According to
(110)-(111), (p) = 2/3 and (g) = 0 regardless of m,., where (- - -) denotes
angular averaging. Thus, the average interaction potential is

hl'g cos kqor

VEr) = (AF*) = F 52 20

e

(153)
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Similarly, the average inverse lifetime is obtained from (115) and is given by

T(r) = (IF) = T (1 S kor) . (154)
k’o’r’

We notice that expressions (153)-(154) coincide® with the ones obtained
by considering the interaction of atoms with a scalar radiation field (145)-
(146). This is due to the averaging procedure, in which the longitudinal
contribution in (115)-(116) vanishes as (¢) = 0. We also notice that whereas
for a single pair of atoms, the potential (116) is anisotropic and decays at
short distance like 1/r3, on average over angular configurations, the inter-
action potential (153) becomes isotropic and decays like 1/r, and for close
enough atoms (kor < 1) in a superradiant state it becomes attractive. A
related behavior for the orientation average interaction potential has been
obtained for the case of an intense radiation field [27], and it has recently
been investigated in order to study effects of a long range and attractive po-
tential between atoms in a Bose-Einstein condensate for a far detuned light
[28]. This latter potential corresponds to the interaction energy between two
atoms in their ground states in the presence of at least one photon. Let us
stress that the average interaction potential (153) is different, as it corre-

sponds to the interaction energy of Dicke states |L0) in vacuum.

4.2.2 Scattering properties
In order to study the scattering properties of Dicke states we use the

collision operator
T(z) =V +VG(2)V, (155)

introduced in Section 2.1, where V is given by (151) and G is the resolvent
associated with the Hamiltonian (149). The matrix element that describes
the transition amplitude from the initial state |i) = |1 — 1;ké), where the
two atoms are in their ground states in the presence of a photon of frequency
w = ck and polarization €, to the final state |f) = |1 — 1;k’é’) is

Tyi = (fIT(z = hw — wo))[i), (156)

with k = k’. By using the closure relation we may write Ty; as a sum of a
superradiant and a subradiant contribution

Ty =T +T", (157)

3Up to the replacement of T’} by Ty.
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with

T* = (fIVIp* N ™G (2 = h(w — wo))|6™) (¢ V]i), (158)
where |¢*) are the Dicke states |L0) in vacuum introduced in (101). The two
matrix elements in (158) represent the absorption and the emission of a real
photon by the pair of atoms. They are easily obtained from (151)-(152) and
lead, for resonant scattering, to the following expressions for the scattering
amplitudes

- p k-r k' -r . .
+ _ i(k—k’)-R * ol 2 +
T =Ce oS (—2 ) cos ( 5 ) E (d*-e")(d-&)G (159)

me=—1
and
o k- K - Lo .
T~ = Ce'k k) Rgip (Tr) sin ( 5 r) Z (d*-&™")(d-&)G™. (160)
Mme=—1
We have defined S 2T
C= WQT(;O (161)
r=r;—r, R:rl—;rZ (162)

and the natural width, the reduced matrix element and its corresponding
unit vector are given in (21)-(22). The propagators G* are the expectation
values of the resolvent in the Dicke states |¢*), namely

G* = (¢*|G(ho)]6™), (163)

where close to resonance 6 = w — wy < wy. The propagators result from the
sum of an infinite series of virtual photon exchanges between the two atoms
in the pair and are given in terms of (115)-(116) by

r+\
G* = (ha — AE* + ihT) : (164)
The average propagator is obtained by averaging (164) over the random
orientations of the pairs of atoms with respect to the wave vector k of the

incident photon. However, in a first stage, we replace the average propagator
(G*), by the following effective propagator

G* = (h(s — (AE*) + mﬂ;j) _1. (165)
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Expression (165), according to Section 4.2.1, is the propagator associated
with a scalar radiation field. Using (153)-(154), we obtain that

T T ikor -1
Gt = [h <5+z?°i7°ekor>} . (166)

This expression constitutes, a priori, a rough approximation of the exact
average (GF). We shall calculate, in Section 4.4, the exact average propagator
and show that it is rather complicated, whereas the approximate expression
using a scalar wave (166) gives similar qualitative results. Thus, in the
following, we will use the scalar wave approximation in order to provide, in a
rather simple way, the main features of multiple scattering by superradiant
pairs.
With the help of (166), the scattering amplitudes are

e k- K- S ;
T = Ce® )R og <_r> cos ( r) G Z (d*-€*)(d-¢) (167)

2 2 L
and
. k- K - Lo .
T- = Ceile k) Ry (Tr) sin ( 5 r) G mg_l(d* ") (d-2).  (168)

We notice that at short distances (kor < 1), the subradiant amplitude 7.
becomes negligible as compared to the superradiant term 7. Therefore,
at short distances, only the superradiant term contributes to the scatter-
ing amplitude (157). More precisely, at short distances the effective prop-
agator G diverges for §/I'y = 1/(2kor) and GJ is purely imaginary for
d/Tg = —1/(2ker). Thus, for 6/T'y < 1/(2kor) the imaginary part of the
subradiative term (168) is negligible as compared to the imaginary part of
the superradiative term (167) and for |§|/I'y < 1/(2ker) both the real part
and the imaginary part of (168) are negligible as compared to (167).
We can interpret these results by saying that the time evolution of the
initial state 1
) — + -
|e12; 0) \@[ch ] (169)
corresponds, for times shorter than 1/T, to a periodic exchange of a virtual
photon between the two atoms at the Rabi frequency
(AE™) — (AET)

Qr = . 1
. : (170)
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At short distances, with the help of (153), we obtain

Op ~
R ]{707"’

(171)
so that the Rabi frequency is much larger than I'y, thus the atoms undergo
many virtual photon exchanges before they return to their ground states and
a real photon is emitted. At large distances, we have

Lo

Qp = —
R ]{507"

| cos kor|, (172)
so that the Rabi frequency becomes much smaller than I'y and the atoms
make only a few oscillations before a real photon is emitted. Thus, their
interaction potential is negligible.

Finally, we notice that the angular distribution of the light scattered
by two atoms in a superradiant state is nearly identical to that of a single
atom. This follows from the fact that at short distances the corresponding
additional phase shift, korcos, between waves emitted by the two atoms
becomes negligible (9 is the angle between the direction of the emitted pho-
ton and the axis between the two atoms).

4.2.3 Superradiance and mesoscopic effects

It is interesting to derive the results of the previous section in a way
that reveals a connection with mesoscopic effects [1]. To this purpose, we
consider the resonant interaction of two non-degenerate two-level atoms (each
characterized by an energy separation hwy and a natural width Al'y of the
excited state) with the classical scalar radiation field, whose free propagator

is given by
ikr

go(r) = — (173)

Ay’

where close to resonance k ~ ko. The scattering amplitude defined in (156)
can be rewritten? as a sum of two contributions [8], namely

Ty =T, + Ty (174)

Amplitude T} represents two processes, a single scattering by the first atom,
placed at ry, and the process in which the wave is being absorbed by the first

4This rewriting of the amplitude TY; is defined up to a proportionality constant, which
accounts for the quantum nature of the radiation field and the photon polarization.
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atom but emitted by the second one, placed at ry. It is given by

t I . ,
_ i(k—k')r i(kr1—k’ra)
Tl_l_itzgg[e Shtgee ] (175)
Similarly, amplitude T5 is
t o . ,
_ i(k—k')r i(kra—k’r1)
L= 1—ag [e 2 |t g el 1]. (176)
Here
_Am Tg/2

t=——— 1 —— 177
ko 6 4115 /2 (177)
is the classical, scalar analogous of (20), i.e., is the amplitude of a scalar wave
scattered resonantly by a single atom at the origin, and I'j is given in (140).
The prefactor t/(1—t2g2) accounts for the summation of the infinite series of

virtual ”scalar photon” exchanges between the two scatterers. Substituting
(175)-(176) in (174) yields

1 ateon |08 () con () sin ()sin ()]
fi 1-— tgo 1+ tg() ’

where we have used (162). When inserting (173) and (177) in (178) we have

I/ cos (KX) cos (Kx I/ sin (¥5) sin (Kx
o) et
2 kor

5 Ty
+ Z? + 2 kor

sz — 4_7Tei(k—k’)-R
ko

»F”
0+i5 —

Thus, the analogous expressions of (167)-(168) have been obtained, and the
superradiant and the subradiant terms can be identified.

Now, we single out in the total amplitude 7%; the single scattering con-
tribution T}, where

t D o
_ i(k—k’)r1 i(k—k )-rz] 180
s € € )
1—t2g3 [ * (180)
and write the intensity associated with the higher order scattering term
shown in Figure 2 as

t2go

ey 1+ cos(k + k) (r; —rs)]. (181)

Ty — T, = 2'
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Figure 2: Schematic representation of the two amplitudes that describe double
scattering of a scalar wave. The wavy line accounts for the exchange of a
virtual ”scalar photon” between the two atoms. This diagram is analogous to
the coherent backscattering in mesoscopic physics.

The structure of relation (181) is very reminiscent to that of the so-
called coherent backscattering intensity which occurs in mesoscopic physics
in the context of the multiple elastic scattering of light. In the latter case,
averaging over the spatial positions r; and ro makes the interference term
cos(k + k') - (r; — rg) vanish in general, with two exceptions:

1. k + k' ~ 0 : In the direction exactly opposite to the direction of
incidence, the intensity is twice the classical value. This phenomenon
is known as coherent backscattering.

2. r1 = ry : Closed multiple scattering trajectories which are at the origin
of the phenomenon of weak localization.

In (181) the interference term reaches its maximal value for ry = ro. When it
happens we obtain from (175)-(176), (167) and (178) that 77 = T5 o< 1. /2,
up to a proportionality factor. Thus, for a closed trajectory, the contribution
is due to the superradiant term alone.

4.3 Transport properties of superradiant pairs

Now we consider resonant multiple scattering of a photon by superradiant
pairs built out of atoms separated by a short distance r and coupled by the
attractive interaction potential V,*. This situation corresponds to a dilute
gas that is assumed to fulfill

r < N L n 3 (182)
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where n is the density of pairs and \g = 27 /kq is the atomic transition wave-
length. The limiting case (182) corresponds to a situation where the two
atoms that form a superradiant pair, through exchange of a virtual photon,
constitute an effective scatterer and cooperative interactions between other-
wise well-separated pairs are negligible. Let us stress that we study here a
simplified model where only pairs of atoms have been taken into account.
A more realistic model should include higher order terms that account for
cooperative effects between more than two atoms. We do not consider these
terms, as the purpose of the current model is to examine the contribution of
superradiant pairs to the transport properties of the gas. In Chapter 5 we
will study the contribution of the higher order terms to the multiple scatter-
ing properties of the photon.

4.3.1 Effective self-energy

We use the Edwards model, introduced in Section 2.2.1, to describe the
medium as a discrete collection of N superradiant pairs in a volume 2. As
each pair, located at R;, is characterized by its scattering potential u(R—R}),
the disorder potential is given by

UR)=> uR-R,). (183)

J=1

In the limit of a high density of weak scattering pairs the Edwards model
reduces to a Gaussian model characterized by the condition (28).

According to Section 2.2.2; the resolvent G of a scattered photon is related
to the free photon resolvent Gy, i.e., in the absence of disorder potential, by
the equation

G = Gy + GoUG. (184)

Averaging (184) over disorder and using the properties of the Gaussian model
yield the Dyson equation

(G)a = Go + GoX(G)a, (185)

where (- - -)4 denotes averaging over the random potential and X is the pho-
ton self-energy. As explained above, the first term >; describes independent
scattering events. Therefore, the first contribution to the self-energy is pro-
portional to the density of scatterers and to the average single scattering
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amplitude and it is given, for kor < 1, by
6 _
X = %CJQJEHFOG; (186)
0

where C, ;. is obtained by averaging the polarization-dependent part of (167)
over Zeeman sublevels m for € = £, and it is given in (25).

The additional average, denoted by -, is taken over distances r up to
a maximal value r,, which accounts for all possible mechanisms that may
break the pairs. The value of r,, can be estimated by comparing the kinetic
energy K of a superradiant pair to its average potential energy V.*. We have
K ~ h?/(pr?) and from (153) we obtain that V& ~ —hTs/(2kor). Minimizing
the average energy

h? hly

Er)~ —— — 187
(r) 7 (187)
with respect to r yields
b = 4140 (188)
T = 4—
’ pLo
or o
kory, = 42 (189)
'Uma:c

where the speeds v,,;, and v, have been defined in Section 4.1. For typical
values, I'y = 10" s~ and ky = 10" m~!, one obtains that kor,, ~ 0.05 < 1,
as it has been assumed.

For J, =0and J. =1, Cyp = 1 and using (166) we rewrite (186) as

6rn 1 [™ dr
= k__/ S (190)
0™ Jo T, + Shor +1

We stress again that, in our approach, a pair of atoms in a superradiant state
is considered as a single scatterer and the medium parameters are derived
from ¥; as it will be shown in the next sections. In contrast to our treatment,
others [29, 30] consider multiple scattering of a real photon by independent
atoms and use the second term 35, which describes interference effects be-
tween the scatterers, to calculate corrections to the elastic mean free path
and to the refractive index of the medium. In the latter approach, no dis-
tinction has been made between the external photon that performs multiple
scattering on all atoms and virtual photons exchanged between two atoms
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in a superradiant state, leading to the average interaction potential V. .

4.3.2 Elastic mean free path
As explained in Section 2.2.2; the elastic mean free path [, is obtained
from the imaginary part of the self-energy, namely
ko

7 = —Im%,. (191)

Therefore, from (190)-(191) we obtain that

1 67N 0
— = ko, = 192
L6 " R fl( o ro) (192)
where we have defined the function®
1 2u dx
= — - . 193
i) =5, L (0 + 30 1)

It is interesting to compare [, to the elastic mean free path [y that corresponds
to resonant scattering of a photon by independent atoms. The latter quantity
is obtained by replacing I'g by I'¢/2 in (192) (since the inverse lifetime of a
single atom is half the one related to a superradiant pair) and 1/z by 0 in
(193) (since the inter-atomic distance is taken to be infinite for a single atom)

and it is given by
k2 26\°
(o) = " |1+ (=) |. 194
0(9) 67rn[+<Fo)] (194)

In Figure 3 the ratio between these two quantities is plotted as a function of
the reduced detuning 0/I"y from resonance for several values of kqr,,. It can
be seen that away from resonance, for blue detuning, the elastic mean free
path [, becomes smaller than [y in a ratio roughly given by 1/(kor,,)?. At
resonance, we obtain from (192) that

21

(0) = 8mn (korm)? (195)
and hence b0) 4
z&nzﬁ%my<L (196)

5The integral is easily carried out analytically and the explicit expression is given in
Appendix A.
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Figure 3: Ratio between the elastic mean free paths ly and l. as a function
of the reduced detuning §/Ty for kor,, = 0.05,0.07, and 0.1. Away from
resonance, for blue detuning, the elastic mean free path l, becomes smaller
than ly in a ratio roughly given by 1/(kor,,)?. At resonance, the ratio between
the elastic mean free paths is given by (196).

4.3.3 Group velocity
According to Section 2.2.2, the group velocity of a photon v, is derived
from the real part of the self-energy and is given by
2

c 1 ¢ d
— =2 (1= Z—2ReX 1
vy, M < 2w dwRe 1) ’ (197)

where the refractive index is

0= \/1 . <£>2Re21. (198)

For a dilute gas n ~ 1, and by substituting (190) in (197) we obtain that

c n 0
~]1—— korm, =— |, 199
'Ug((S) ncf2< o’ F()) ( )
where we have defined the characteristic density
k3T,
c— L~ 2
e =G o (200)
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and the function®

WL,
fg(u,v)—2u/0 d [1+(v+%)2}2. (201)

By replacing I'g by I'g/2 in (199) and 1/x by 0 in (201), we obtain the group
velocity vy of light interacting with independent two level-atoms

S S (202)

For the following typical values, I'y = 10" s, kg = 10" m~! and n = 10'°
cm ™, we obtain that n/n, ~ 10°. Figure 4 displays the group velocities v,
and vy plotted as a function of the reduced detuning 6/T for n/n. = 10° and
korm = 0.1. We can see that v, diverges at quite a large and negative value
of the detuning /Ty ~ —1/(2k¢r,,). But near resonance it is well behaved,
meaning that it remains finite and positive. At resonance, according to (199),

the group velocity is giving by

:1—1-47?&@

ngO) o (korm)?. (203)

We can also see that this behavior differs substantially from the one obtained
for vg. For densities n > n., the group velocity vy diverges at two symmetric
values of order unity of the detuning and it takes negative values in between
(i.e., also at resonance). This problem has been recognized a long time ago
[31] and an energy velocity, which describes energy transport through a diffu-
sive medium, has been defined [32]. However, the diffusion coefficient, which
will be discussed in the next section, is derived from the group velocity and
not from the energy velocity [1]. Moreover, a closed expression for the energy
velocity has been obtained only for the case of a resonant Mie scattering [8].
Thus, it is interesting to notice that the inclusion of cooperative effects even
at the lowest order, i.e., taking into account superradiant pairs, allows to
obtain a group velocity which is well behaved at resonance, unlike the case
of resonant scattering by independent atoms.

6The integral is easily carried out analytically and the explicit expression is given in
Appendix A.
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Figure 4: Group velocities v, (solid line) and vy (dotted line) as a function
of the reduced detuning §/Ty for n/n. = 10° and kor,, = 0.1. The group
velocity vy diverges at two symmetric values of order unity of the reduced
detuning and it takes negative values in between. The group velocity v,, near
resonance, remains finite and positive.

4.3.4 Diffusion coefficient and transport time
Diffusive transport of photons through a gas is characterized by the pho-
ton diffusion coefficient

D(G) = 50, (G)1.(9) (204)

that combines the elastic mean free path” and the group velocity, both de-
rived from the complex valued self-energy (190). The diffusion coefficient
is of great importance since it enters into expressions of various measured
physical quantities, such as the transmission and the reflection coefficients
of a disordered medium [1]. In addition to these average quantities, an inci-
dent pulse that probes a nearly static configuration of scatterers may provide

"Strictly speaking, the diffusion coefficient is defined by the transport mean free path,
lir = le/(1 — (cos®)), rather than by the elastic mean free path, l.. Here {(cosd) =
J dY cos? do/dQ is the average of the cosine of the scattering angle ¥ with respect to the
differential cross section do/df). However, for a single atom as well as for superradiant
pairs the differential cross sections obtained from (20) and (167) yield {cos®¥) = 0 [9], thus
ltr = 1. and definition (204) holds.
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an instantaneous picture of the medium that displays a random distribution
of bright and dark spots. This snapshot, known as a speckle pattern, can
be characterized by the angular-correlation function and the time-correlation
function of the light intensity (diffusing wave spectroscopy). In the first case,
the correlation function of the transmission coefficient between two distinct
directions of the transmitted wave is measured. In the second case, the in-
tensity of the transmitted wave is measured at different times, so that the
motion of the scatterers must be taken into account. As pointed before, in
both cases the diffusion coefficient plays an important role. Its expression,
deduced from (192) and (199), depends on the range r,,, and on the detuning
d/Ty. Since the group velocity and the elastic mean free path are significantly
modified for superradiant states, we thus expect the diffusion coefficient to
be different from its value obtained for independent atoms. At resonance
and for n > n,, the diffusion coefficient, using (195) and (203), is given by

_ FO —4
We also define the transport time® by
le(9)
~(0) = . 206
Tt ( ) ’Ug((S) ( )

At resonance and for n > n., it can be rewritten with the help of (195) and
(203) as
1

2l
in accordance with our assumption of superradiant states. Near resonance,
the transport time depends weakly on the detuning. But, away from it, 7,
depends on the detuning and thus on frequency, as it can seen from Figure
5, where the inverse of the transport time 7;,' /Ty is plotted as a function of
the reduced detuning §/T for n = 10*° cm™2, Ty = 107 s7% and ko = 107
m~! for several values of kor,,.

7 (0) = (207)

4.4 Average self-energy
So far, we have used the effective approach introduced in Section 4.2.2,
where we have considered the case of a scalar wave being scattered by a pair

8The transport time is defined as ti = Iy /vg. But, as explained in the previous
footnote, for superradiant pairs Iy, = e, thus definition (206) holds.
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korm =0.05

Figure 5: Inverse of the transport time 7" /Ty as a function of the reduced
detuning 6 /Ty for n = 10%em=3, Ty = 107s7 and kg = 107m~* for kor,, =
0.05,0.07, and 0.1. Near resonance, the transport time depends weakly on
the detuning. But, away from it, 1, depends on the detuning and thus on
frequency.

of two-level atoms. In this simple approach, the propagator of a scalar wave
(166) has been calculated and the self-energy (186) has been obtained by
averaging (166) over the distance between the two atoms in a pair. This
effective approach leads to simple expressions for the elastic mean free path
(192) and the group velocity (199) of the wave. In this section we calculate
these quantities for a given Am transition and kyr < 1, while taking into
account the vectorial nature of the wave. To this purpose, we average the
propagator (164) over the random orientations of the pairs of atoms (with
respect to the wave vector of the incident photon) as well as over the distance
between the two atoms in a pair. Therefore, the average self-energy is now
given by
g _bm 1
ko 4mr,,
where the averaging is over the inter-atomic axis r (both over magnitude
and orientations). The evaluation of (208) for a Am = 0 transition is rather
cumbersome and it is presented in Appendix B. By following the procedure
described in the previous section, we obtain the corresponding elastic mean
free path [; and the group velocity v;. In Figure 6 the ratio between Iy given

RL\G™ (r)dr, (208)
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Figure 6: Ratio between the elastic mean free paths ly and I, as a function of
the reduced detuning § /T for korp,, = 0.05,0.07, and 0.1. At resonance I, is
larger than ly, but away from resonance it becomes smaller.

by (194) and [/ is plotted as a function of the reduced detuning 6/I'y for
several values of kgr,,. As in the effective approach, at resonance [, is found
to be larger than [y, but away from resonance it becomes smaller. In Figure
7 the group velocity vy, is plotted as a function of the reduced detuning §/Ig
for n/n. = 105 and kor,, = 0.1. Around resonance, the group velocity vy
is finite and positive, as in the scalar case, but much larger as compared to
(199) and it is close to ¢. Thus, we may conclude that in both approaches
the superradiant effect leads to a finite and positive group velocity, unlike
the one obtained for light interaction with independent atoms. However, the
group velocity of a scalar wave is much smaller compared to the one of a
photon.

4.5 Conclusions

We have considered multiple scattering of a photon by pairs of atoms
that are in a superradiant state. On average over disorder configurations,
an attractive interaction potential builds up between close enough atoms,
and it decays as 1/r. The contribution of superradiant pairs, resulting from
this potential, to scattering properties is significantly different from that of
independent atoms. This shows up in the behaviors of the group velocity,
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Figure 7: Group velocity vj as a function of the reduced detuning 6/ for
n/n. = 10° and kor,, = 0.1. Around resonance, the group velocity v, is finite
and positive and it is close to c.

the elastic mean free path and the diffusion coefficient. We have considered
a simplified model where only pairs of atoms have been taken into account.
The purpose of the current model is to show that already for a dilute gas in
the weak disorder limit, cooperative effects modify significantly the transport
properties of light. A more realistic model should include higher order terms
that account for cooperative effects between more than two atoms and it is
presented in the next chapter.
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CHAPTER 5

Multiple scattering and cooperative effects

In the previous chapter we have studied the multiple scattering properties
of superradiant pairs. We have considered a simplified model of multiple
scattering, where only the cooperative effects of pairs of atoms have been
taken into account. In the following we consider higher order terms that
account for cooperative behavior between more than two atoms [15]. To this
purpose we are interested in the cooperative spontaneous emission rate of
an arbitrary atomic system, namely the photon escape rate from the atomic
gas.

We start by describing the model which consists of N identical atoms
placed at random positions in an external radiation field. Then, in order
to study the photon escape rate from the atomic gas, the effective Hamilto-
nian equation is introduced and the average density of photon escape rates
is derived from it. Next, numerical results are presented and a scaling func-
tion is defined in order to analyze them. Later, the one-dimensional case
is considered and compared to the three-dimensional geometry. A possible
explanation of the results in the framework of random networks is finally
suggested.

5.1 Model

As in Section 3.4, atoms are taken to be degenerate, two-level systems
denoted by |g) = |J;, = 0,m, = 0) for the ground state and |e) = |J. =
1,m. = 0,=£1) for the excited state. The energy separation between the two
levels is hwg and the natural width of the excited level is AI'y. We consider a
collection of N identical atoms, placed at random positions r;, in an external
radiation field and the corresponding Hamiltonian is

H=Hy+V, (209)
with
N 1
Hy = hwy Z Z (|Jeme) (Jeme|); + Z hwkaleaka. (210)

=1 me=— ke
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The interaction V between the radiation field and the electric dipole moments
of the atoms is

V== "d;E(r), (211)

where E(r) is the electric field operator given in (4) and d; is the electric
dipole moment operator of the i-th atom. As in Section 2.1, we assume that
the typical speed of the atoms is small compared to vy = [o/k but large
compared to vV, = hk/p, where p is the mass of the atom, so that it is
possible to neglect the Doppler shift and recoil effects.

5.2 Photon escape rates from atomic gases

In order to study the cooperative spontaneous emission rates, namely
the photon escape rates from the atomic gas, first the effective Hamiltonian
equation is introduced, then the photon escape rates are obtained from the
effective Hamiltonian equation and finally, the average density of photon es-
cape rates is formally defined.

5.2.1 Effective Hamiltonian equation

For the sake of simplicity, we start by considering a single non-degenerate
atom in the quantum radiation field. The corresponding Hamiltonian is
obtained from (209) for N =1, r = 0, and J. = 0, namely

H = hwgle)(e| + Y hwpal.ax. — d - E(0). (212)
ke

When tracing over the radiation degrees of freedom of the density operator
associated with (212), the atomic density operator is obtained. Let us denote
it by p, the corresponding populations by py, = (g|plg) and pe. = (e|p|e) and
the coherences by p,e = (g/ple) and p., = (e|p|g). The evolution equations
of these matrix elements are [4]

dt Lopee

dgtge = iWopge %pge

dg:g = —iWoPeg %peg
Pee — Topee (213)



Set (213) can be rewritten in a form of Lindblad equation [33], namely
dp 1
dt — ih

where the atomic Hamiltonian is

[Ha, pl + L(p), (214)

Hy = huwle) (el (215)
and r
L(p) = —70(p|€)<6| + le)(elp) + Tolg)(elple){gl- (216)
Another way to present (213) is by the effective Hamiltonian equation [4]
dp 1 i ;
ar %(Heffp - pHeff) + Lobpb', (217)

where the raising and lowering operators are defined in (54) and the non-
Hermitian effective Hamiltonian describes the atomic Hamiltonian (215), as
well as the natural width of the excited state (21), which is due to the coupling
to the quantum vacuum, namely

r
Hgp= (hwo —m?()) le) (e]. (218)
As in Section 2.1.2, the small radiative level shift of the excited state has
been neglected.

Next, we consider N non-degenerate atoms in a scalar radiation field,
introduced in Section 3.7. The corresponding Hamiltonian is

H=hwy» (le)e])i+ Y hwpalax — Y diE(r;), (219)
i=1 k i=1

where the scalar field is

. hw iker —ikr
E(r)=1 Z \/ 2606(% ek _ gl g7k, (220)
k

By solving the equations of motion of the creation and annihilation operators,
namely

daf{ Lo
—= = — H 221
dt ih[a’k? ] ( )
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and p .
ax
— == H 222
dt ih [akv ] ) ( )
the scalar electric field operator in the Heisenberg picture can be written as
a sum of two terms’

E(r,t) = Ef(r,t) + Ey(r, ). (223)

E¢(r,t) represents the contribution of the free field which is independent of
the dipole moments (and hence is irrelevant for our purpose), while Fy(r,t)
is the source term which originates from the radiating atoms. The source
field is given by

N e—iko\r—ri\

i=1

where kg = wp/c and C' depends on the radiation wavelength and on the
electric dipole matrix element. Expression (224) represents the contribution
of N atomic sources, each one of them is located at r; and radiates a scalar
wave if it is in its excited state at time t.
The evolution equation of the expectation value of an operator O in the
Schrodinger picture is
d0) 1
dt — ih
When substituting (223) in (219), from equation (225) applied to an atomic
operator, one obtains for the atomic density operator
dp 1

dt = %(Heffp_pH;[ff) —I—FSZUZ]bprI (226)
ij

(0, H]). (225)

The effective Hamiltonian is

N4 N N4
gy = (o= 55) ey +nlE vl eom
i=1 itj
where -
N S1n 07"2‘]‘
Uy = (228)

9The derivation is given in Appendix C.
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and .
elkoTij

‘/;;.:

For (229)
Here r;; = |r; —r;| and I is the scalar spontaneous emission rate of a single
atom (140). The effective Hamiltonian has two components. The first is
the single atom Hamiltonian including the natural width of the excited state
as in (218). The second one is the contribution of the cooperative effects
between any two atoms. As discussed in Section 3.7, the real part of (229) is
the cooperative level shift of two atoms in a Dicke state |10) interacting with
a scalar radiation field, while its imaginary part is the cooperative correction
to the single atom emission rate. In particular, for the case of a single atom,
Uy = 1 and (217) is recovered!?.

Finally, we consider N degenerate atoms in the quantum (and vectorial)
radiation field, where the corresponding Hamiltonian is given by (209). A
similar calculation yields the same effective Hamiltonian equation (226), but
now I'{ is replaced by I'g, summations over m, are added,

3 sin kor; ; sin kor;;  cos kors
Ui == |pji——L — q;5 J J 230
T2 {p] korg ((lfoﬁ'j)?’ (Korij)? (230)
and
3 cos kori; cos kory;  sinkor;; ,
Vij=5 —pi-7J+qz~( - L) | — iU 231
2 { T kor T\ (koriy)® (koriy)? ’ (231)
For m, =
Dij = SiIl2 Hij qij = 1-3 COS2 92-]-, (232)
while for m, = £1
1 2 1 2
Pij = 5(1 -+ cos 92]) qij = 5(3 COS eij — 1) (233)

Here 0;; = cos™'(Z - #;;), where 7;; is a unit vector along the direction joining
the two atoms. According to Section 3.4, the real part of (231) is the coop-
erative level shift of two atoms in a Dicke state |10), while its imaginary part
is the cooperative correction to the single atom emission rate. As discussed
in Section 4.2.1, by averaging (231) upon the random orientation of the pairs

10Up to the replacement of T'j by T.
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of atoms, the scalar case (229) is recovered.

5.2.2 Photon escape rates

After obtaining the effective Hamiltonian equation, in the following we
derive from it the cooperative spontaneous emission rates, namely the photon
escape rates from the atomic gas. Again, we start with the single atom case,
where the effective Hamiltonian equation is given by (217). The evolution of
the population of the ground state is

Yo yglbptlg), (234)
or with the help of (54)
gy
dt

as in (213). We may conclude that the evolution rate of the population of
the ground state, which is also the photon escape rate, is governed by the
last term of the effective Hamiltonian equation. For a single atom the rate
is Fo.

Now, we generalize to the scalar N-atom problem, where the effective
Hamiltonian equation is (226). The evolution of the population of the ground
state is given by

d
M = F//ZUZ] gN|bjpbj|glgN> (236)

= FOpeeu (235)

Following [34, 35], the eigenvalue equation of U;; is
N
> Uijuy =Tl (237)
j=1

where I'" is the n-th eigenvalue associated with u”, the n-th eigenfunction.
Assuming orthonormality, namely

N
> urul = 6y, (238)
n=1

from (236)-(238) we obtain that

d ~ .
Pau.. gdz\;gl IN F// Z Fn .gN|A”_pA”+|gl...gN), (239)
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where the generalized collective raising and lowering operators are

N
Z upbl AT =" ulb. (240)
j=1

By inspecting (239), we conclude that the photon escape rates from the
atomic gas (in units of I'j) are the eigenvalues of the coupling matrix U
given by (228). In particular, for the single atom case, since Uy = 1, we
have I'" = 1 and w!' = 1, thus (234) is recovered'!. For N = 2, we obtain
from (239) that

d
pglg2 g192 P/OI Z Fnﬂ%& (241)

where
Pps = ((e1g2|uf + (grealuy) p(uy|eige) + uz|giea)). (242)

In the special case where the atoms are confined to a volume much smaller
than the radiation wavelength cubed, i.e., in Dicke limit (kor;; < 1), then

U:(} 1) (243)

UI:%<1) (244)

u2:%<1_1>. (245)

Therefore, phe = (10]p|10) is the expectation value of the atomic density
operator in the superradiant Dicke state (68), while p%q = (00[p|00) is the
expectation value of the atomic density operator in the subradiant Dicke
state (67). The photon escape rate is 2I'] in the first case, while it is zero in
the second one, as in (148).

The result that the spectrum of the coupling matrix U is the photon
escape rate can be straightforwardly generalized to the vectorial case, where
U is given by (230). It may also be obtained by either a generalized Wigner-
Weisskopf model [36, 37] or a photo-detection theory [4] sketched below for
the scalar case.

Thus, I'! = 2 with

and I'? = 0 with

HUp to the replacement of T'j by T.
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The probability to detect the outgoing photon k at time ¢ at a detector
placed outside the gas at R = RR, where R = k, is proportional to

S(R,t) x (Ef (R, 1) E; (R, 1)), (246)

where EfF (R, t) is the annihilation part of the source field (224), E; (R, 1) is
its creation part'? and (- - -) denotes the expectation value with respect to
the eigenstates of the effective Hamiltonian (227). Explicitly, (246) reads

SR etko(|R—ri|—[R—rj]) B e

When the detector is placed in the far field, one can use the Fraunhoffer
approximation, R
ko|R —r;| ~ koR — koR - 1y, (248)

and obtain
x <Ze"’f°R"ﬁbI <t>bj<t>> . (249)
ij

The probability to detect the outgoing photon at all angles at time t is
obtained by integrating (249) over the corresponding solid angle and is given

by
sin korij 4
—— bl (t)b; 2
<§j - <>> (250)

We notice that expression (250) is proportional to the expectation value of
the imaginary part of the effective Hamiltonian (227). Thus, the eigenvalues
of the coupling matrix (228) determine the photon escape rates from the
atomic gas.

5.2.3 Average density of photon escape rates

In the previous section, we have seen that the spectrum of the coupling
matrix U, given by (228) in the scalar case and by (230) in the vectorial case,
is the photon escape rate (in units of I'y*?) from the atomic gas. Formally, U

12The free field, E, does not contribute to the detection probability.

13In the following, we will ignore the difference between the scalar spontaneous emission
rate of a single atom, I'j, and the one corresponds to a vectorial field, I'y. We shall denote
both quantities by I'y.
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is an Euclidean random matrix [38], i.e., an N x N matrix, whose elements
are a function of the position of N random points in an Euclidean space.
The average density of the photon escape rates (in units of I'y) is defined as

N

1
PIT)==» oI —-TIn 251
(1) = § 26— 1), (251)
where the average, denoted by ~~~, is taken over the spacial configurations

of the atoms. Using the relation

! :}U3<l)—%ﬁﬂx% (252)

T 4+ 1€ T

where PP(x) is the principal part of z, we have that

,HDz—%Mﬂ@:F+kL (253)

with ]
R(z) = NTr(zI —-U) 1, (254)

where [ is an N X N unit matrix.
Let us consider some limits:

1. Dilute gas (kori; > 1)
In this case, U = I and R(z) = (z — 1)7}, thus

P(I) =6 —1). (255)

In this limit the single atom spontaneous emission rate has been recov-
ered.

2. Dicke limit (kor;; < 1 for N > 1)

Now,
11 1
11 --- 1
U=1. . : (256)
1 1 1
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and

z

R(z):%(z_lN—FN_l), (257)

thus

P(T) = %[5@ ~N) 4 (N — D)3(T). (258)

In this case the eigenvalue I' = 0 is the (/N — 1)-degenerate subradiant
mode and I' = N is the non-degenerate superradiant mode, so that
(80) has been recovered and in particular for N = 2, expressions (118)
and (148) are obtained.

In both limits discussed above, U is either given by (228) or (230).

5.3 Numerical results

In order to study the average density of photon escape rates (253) we
consider N atoms enclosed in a cubic volume L3 = (a)g)?, where for resonant
scattering, A\g = 27/ko is the radiation wavelength. The atoms are dis-
tributed with a uniform density n = N/L3. We define the disorder strength
by W = 1/(kol.), where [, is the photon elastic mean free path (39). Accord-
ing to (24), for resonant scattering, the average single scattering cross section
varies as the radiation wavelength squared, so that the disorder strength may

be written as
N

W = )
2ma’

(259)

Let us discuss the limits of (259):

1. Weak disorder (W < 1)

In this limit, as discussed in Section 2.2.2., I, > Ao, so that the
light reaches its far field behavior between successive scattering events.
Thus, the scattering events may be considered as independent ones.

2. Strong disorder (W > 1)

Now, [, < )\g, thus the scattering events are dependent ones.

By a numerical calculation we have obtained P(T") for different values of
disorder strength W and size a, both for the scalar case, where the coupling
matrix U is given by (228), and the vectorial case defined by (230). The
behavior of the average density of photon escape rates is presented in Figures
8-10 for the different cases.
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Figure 8: Behavior of P(T') for different values of the disorder strength W,
of the size a and for N = 216 in the scalar case. (a) At low disorder, P(I")
is peaked around I' = 1 (b) for larger disorder, P(I') becomes broader and
shifted towards the origin and eventually (c) it accumulates near I' = 0 (d)
Dicke limat.

First, we observe that P(I') obtained for the scalar case (Figure 8) is
qualitatively the same as the ones obtained for the vectorial cases (Figures
9-10)'. Moreover, the dilute gas limit and Dicke limit are exactly the same,
as discussed in Section 5.2.3. Thus, as the scalar model has the advantage of
being easier to handle, the reminder of the chapter is devoted to its study.

As presented in Figure 8, for a very dilute gas, we recover the single atom
limit namely U = I, so that P(I') is narrowly peaked around I' = 1 (in
units of T'g) as expected from resonant scattering of a photon by a single
atom (Figure 8.a). For stronger disorders, P(I') becomes broader and it is
shifted towards lower values of I (Figure 8.b). Eventually for large enough
disorders, most of the eigenvalues are close to I' = 0 (Figure 8.c). Such a
vanishing escape rate corresponds to photons localized in the atomic gas. By
increasing further the disorder W, at fixed number N of atoms, we reach

14 Although their similarity, Figures 8-10 are not identical. This is due to the angular
dependence of U which exists in the vectorial cases but lacks in the scalar case.
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another regime (Figure 8.d) where P(I') has two peaks, one at ' = 0 and a
second one at I' = N. This is the Dicke limit which occurs when the atoms
are contained in a volume much smaller than A3. The eigenvalue T' = 0 is
the (N — 1)-degenerate subradiant mode and I' = N is the non-degenerate
superradiant mode, as discussed in Section 5.2.3.

5.4 Scaling function

In order to characterize P(I"), we look for a suitable parameter. It seems
that the mean value of I' is an appropriate choice. However, since I',,c0n =
[Tr(U)]/N and, according to (228), U; = 1, we obtain that [';eqn = 1 re-
gardless of disorder strength and system size. For instance, in the Dicke
limit (258), I'yean = [(N —1) x 0+ 1 x N]/N =1 and in the dilute gas case
(255), Tjpean = 1 as well. Therefore, we seek for a better parameter that can
characterize P(T').

A possible choice when inspecting the shape of P(I") displayed in Figure
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8 is to consider the relative number of states defined by
Ce(a, W) = / ar P(T) , (260)
1

which have an escape rate larger than 1 (in units of I'g). To obtain its
dependence upon the system size a and the disorder W, we introduce the
conveniently normalized function g(a, W) defined between 0 and 1 by

gla, W) =1—20.(a, W) . (261)

When g(a, W) — 0, as in Figure 8.a, the photons are delocalized, while when
g(a,W) — 1, as in Figure 8.c, the photons are localized. Thus, ¢ is a measure
of the relative number of states having vanishing escape rates.

When the size of the system is increased a bit (e < 1), g is given by

dlng

o (262)

gla(l+€)] =~ g(a) + eg
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If
dlng(a, W)
I T 263
Tna B(g), (263)
where (3(g) is a function of g alone, then g(a, W) has a scaling form, and
(262) can be written as

gla(t+€)] = flg(a), €. (264)

Physically, (266) states that the value of g, as the size of the system is
increased a bit, is determined solely by its value at the previous length scale.
The solution of (263) can be written as

9(a, W) = fla”/h(W)], (265)

where v is an exponent and h(W) is some function of W. The validity of the
solution can be verified by defining the inverse function f~'(g) = a”/h(W).
In terms of this function expression (263) reads

A9 )
fIf Y9l

which is indeed a function of g alone. A famous example of scaling is the
theory of electron localization in disordered media developed by the ”gang
of four” [39]. In the following we will show that g(a, W) defined by (261) has
a scaling form, i.e., it obeys (263) or equivalently (265)'5. To that purpose,
let us distinguish between two regimes, the large sample regime, where a > 1
and the Dicke regime where a < 1.

B(g) =

(266)

5.4.1 Large sample regime

The behavior of g(a, W) as a function of the system size a > 1 for different
disorder strength W is presented in Figure 11. The results collapse on a single
curve (Figure 12) when plotted as a function of 2ral/. Thus, the scaling
hypothesis (263) has been verified over a broad range of size and disorder.
By using (39) and (259), we recognize that the scaling variable is the optical
depth b, namely

b— ZE — 2ralV, (267)

15We have checked that the scaling behavior of g does not depend on the choice of the
cutoff parameter in (260), provided it fulfills 0 < ¢ < 1. If it is chosen to be 0 < ¢ < 1
instead of ¢ = 1, then the scaling function obeys |g| < 1 instead of 0 < g < 1, but the
scaling behavior is the same, as shown in Appendix D.
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Figure 11: Behavior of the scaling function g as a function of the system size
a > 1 for different disorder strengths W'.

The observation obtained from Figure 12 that the scaling function increases
with the optical depth can be explained as follows. As the number of scat-
tering events is increased, it takes more time for the photon to leave the gas,
thus the relative number of states having a vanishing escape rate is increased.
Since (3(g), defined in (263), is always positive, we conclude that the photons
undergo a crossover (rather than a phase transition) from delocalization to-
wards localization, and in the thermodynamic limit a localized phase exists.
These results differ substantially from those obtained in the context of An-
derson localization of photons where weak and strong disordered phases are
separated by a phase transition in dimension d > 2. Nevertheless, it must be
noticed that in our model, we study the spectral properties of the Euclidian
random matrices U and not of the Laplacian in the presence of disorder.

5.4.2 Dicke regime
In the Dicke regime, P(I") is given by (258). Using (261), we obtain the

scaling behavior
2 1
Wy=1-—=1——/—
displayed in Figure 13. We conclude that the scaling variable is the number
of the atoms.

(268)
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depth b = 2waW in the large sample regime. All the points represented in

Figure 11 collapse on the same curve, thus confirming the scaling assumption.
The solid line is a fitting function, given by (280).

5.5 One-dimensional geometry
Now we consider a one-dimensional atomic system, where the coupling
matrix, according to Section 3.6, is given by

Uij = COS kOTz’j (269)

The average density of photon escape rates is presented in Figure 14. A re-
markable difference between the one-dimensional case and the three-dimensional
cases (Figures 8-10) is observed. Unlike in the three-dimensional geometry,
the single atom limit is never reached and the photons are always localized
in the atomic gas. However, Dicke limit is the same in both geometries.
The behavior of g(a, W) as a function of the system size a > 1 for different
disorder strength W is presented in Figure 15. The results collapse on a
single curve (Figure 16) when plotted as a function of 1/(2waW), so that the
scaling hypothesis (263) is verified, namely

4 2
Wi=1-—=1- .
g(a'7 ) N WQW

(270)

For system size a < 1, U is given by (256) and with the help of (258), we
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Figure 13: Behavior of the scaling function g as a function of the inverse
number of the atoms 1/N = 1/(2ra®W) in Dicke regime. The solid line is a
fitting function, given by (268).

obtain that 5 )
Wy=1-==1-——— 271

as in the three-dimensional case. Thus, in both cases the scaling variable is
the number of the atoms.

Since g(a, W) — 1, the photon are always localized and as ((g), according
to (266), is giving by

8l) =2 >0, (272)

a localized phase exists in the thermodynamic limit. The fundamental differ-
ence between the one and three-dimensional geometries, i.e., the existence or
the absence of a crossover between delocalized and localized photons, is due
to the different nature of the coupling matrices. While U falls off with the
inter-atomic separation in the three-dimensional case, it is a periodic func-
tion of the inter-atomic distance in the one-dimensional geometry. Thus, the
single atom limit is never reached.

5.6 Small world networks

In this section we provide a possible explanation to the results obtained
above in the framework of random networks. To this purpose, we start with
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Figure 14: Behavior of P(I') for different values of the disorder strength W,
of the size a and for N = 216 in a one-dimensional geometry. The single
atom limit is never reached and the photons are always localized in the atomic
gas.

a brief description of random graph theory including small world networks
[40], and apply it to our random atomic system.

Mathematically, a network is represented by a graph. A graph is a pair of
sets G = {P,E}, where P is a set of N vertices Py, Ps, ..., Py and £ is a set
of links that connect two elements of P. Graphs are usually represented by
a set of dots, each corresponding to a vertex, two of these dots being joined
by a line if the corresponding vertices are connected.

Any graph G with N vertices can be represented by its adjacency matrix
A(G) with N x N elements A;;, whose value is A;; = A;; = 1 if vertices 7 and
7 are connected and 0 otherwise. The spectrum of G is the set of eigenvalues
of the adjacency matrix A(G). A graph with N vertices has N eigenvalues
An, and the corresponding spectral density is

N

V()) = % S 60— M), (273)

n=1
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Figure 15: Behavior of the scaling function g as a function of the system size
a > 1 for different disorder strengths W in a one-dimensional geometry.

A special case is the fully connected graph, where

A= . (274)

and its corresponding spectral density is [41]

V() = 15— V) + (N = 13N (275)
A more general graph represents a regular (or ordered) lattice in which each
vertex is connected to the K vertices closest to it.

Another class of graphs represents random networks in which the links
are distributed randomly. For example, a random graph can be defined [42]
as NN labeled vertices connected by s links which are chosen randomly from
the N(IN — 1)/2 possible ones.

A model that interpolates between an ordered lattice and a random net-
work and combines their properties has been proposed [43]. The algorithm
behind the model is the following (Figure 17):
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number of the atoms 1/N = 1/(2raW) in the large sample regime in one-
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1. Start with order

Start with a one-dimensional lattice with periodic boundary conditions,
i.e., a ring lattice, in which every vertex is connected to its first K
neighbors (K/2 on either side).

2. Randomize

Randomly rewire each link of the lattice with probability ¢, such that
self-connections and duplicate links are excluded. This process intro-
duces long-range links which connect vertices that otherwise would be
part of different neighborhoods.

By varying ¢ one can monitor the transition between order (¢ = 0) and
randomness (¢ = 1). For small values of ¢ the network behaves as a small
world, namely that any two vertices can be connected through a short chain
of intermediate vertices.

The model has its roots in social systems, which appear to display simul-
taneously properties typical both of regular lattices and of random graphs.
Most people are friends with their immediate neighbors: colleagues, neigh-
bors, etc. In this respect social networks are similar to regular lattices. On
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Figure 17: Small world model, which interpolates between a reqular ring lat-
tice and a random network. We start with N = 20 vertices, each connected
to its K = 4 nearest neighbors. For ¢ = 0 the original ring is unchanged. As
¢ increases, the network becomes increasingly disordered until for ¢ = 1 all
links are rewired randomly. After [43].

the other hand, it is widely believed that one can get from almost any mem-
ber of a social network to any other via only a small number of intermediate
acquaintances. Within the population of the world, for instance, it has been
suggested that there are only about ”six degrees of separation” between any
human being and any other [44]. This behavior is represented by long range
links of the model and it is a property of random graphs.

This small world network, which combines the properties of ordered lat-
tices and random networks, provides a model for the topology of a wide vari-
ety of systems, such as the internet, neural networks, and coupled oscillators.
The properties of small world networks may have significant consequences for
many real-world applications, including biological evolution and information
propagation.

In order to understand the coexistence of the properties related to regular
lattices and random networks we introduce the average path length, 1(¢),
which is the average shortest path between any randomly chosen vertices.
Formally,

l(¢) = m; Yij (276)

where y;; is the shortest path between vertices 7 and j and ~~~ denotes config-
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uration averaging. For a ring lattice 1(0) oc N [45], while [(1) oc In N' [46]'°.

Thus, for small ¢, [ scales linearly with the system size, while for large ¢ the
scaling is logarithmic. The origin of the rapid drop in [ as ¢ increases, is the
appearances of shortcuts between vertices. Every shortcut, created at ran-
dom, is likely to connect widely separated parts of the graph, and thus has a
significant impact on the characteristic path length of the entire graph. Even
a relatively low fraction of shortcuts is sufficient to drastically decrease the
average path length, yet locally the network remains highly ordered. This is
the small world behavior, mentioned above.

For an arbitrary value of the the fraction ¢ of rewired links, the average
path length of a ring lattice is given by

N

= —
T

K N), (277)

where f(x) is a scaling function, obtained by a mean field method [47]

flz) = ﬁ tanh ™! (ﬁ) . (278)

Expression (277) has been confirmed by numerical simulations [48] and renor-
malization group techniques [49]'7. The scaling function f(z) and the scaling
variable x = ¢K N have simple physical interpretations. The variable z is
two times the average number of random links on the graph for a given ¢
and f(x) is the average of the fraction by which the distance between two
vertices is reduced for a given x. As the asymptotic forms of (278) are

Inzx

flrx1l)=1 f(x>>1):7, (279)

the limits of [ discussed above are recovered. According to (277), the onset of
small world behavior depends on the system size, N, thus there is a crossover
(rather than a phase transition) between a regular lattice to a small world
network.

16The derivation is given in Appendix E.

1"While in our treatment each vertex is connected to its first K mneighbors (K/2 on
either side), in [47] each vertex is connected to its first 2K’ neighbors (K’ on either
side). Thus, the equivalent expressions of (277)-(278) are | = & f(¢K'N) and f(z) =

1 -1 T
22242z tanh ( \/x2+2x) .
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Now, we return to our random atomic network and explain the results
obtained in the previous sections in the framework of random graphs. First,
we notice that Dicke regime, whose spectral density is (258), can be exactly
mapped onto a fully connected graph, whose spectral density is (275). In the
large sample regime, displayed in Figure 12, for alW’ > 1 the system may be
described as a random graph of atoms sitting at vertices and randomly (but
not fully) connected to other atoms by exchange of photons. At small values
aW < 1, we recover a gas of independent atoms, which is the limiting case
of a graph of vanishing connectivity. By applying the mean field solution
(277) to the data presented in Figure 12, we find that a very good agreement
(R? = 0.99) is obtained when the following fitting function is introduced

g(z) = Cxf(x). (280)

Here the scaling variable is z = b/4, where b is the optical depth (267),
C ~ 0.1 and f(x) is given in (278). For a dilute gas (r < 1), using (279),
we have that g(x) = Cz, so with the help of (261) we obtain
or, =1 — CMQW. (281)
This is the first correction to the value 2I', = 1, associated with the sin-
gle atom limit. This limit corresponds to a regular graph with vanishing
connectivity.
For x > 1, using (279), we have that g(z) = C'lnz, so that
or, =1-Cln 7Ta2W. (282)
This result corresponds to the random graph limit where cooperative effects,
by a photon exchange, connect atoms that otherwise would be part of dif-
ferent neighborhoods. Let us stress that for a fixed number of atoms, by
increasing x constantly, (282) eventually breaks down. This is due to the
replacement of the large sample regime (280), which exhibits a small world
behavior, by Dicke limit (268), which corresponds to a fully connected graph.
To conclude, by using a mapping onto a random network problem, we
have described the crossover between a weakly connected network of atoms
emitting photons almost independently at small disorder to a small world
network where atoms are related through small chains of intermediate atoms
exchanging photons.
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5.7 Conclusions

We have studied the photon emission rates from an atomic gas while tak-
ing into account the cooperative effects between the scatterers. The average
density of photon escape rates from a gas of N atoms has been obtained from
the spectrum of the N x N Euclidean random matrix U for a broad range of
sample size and disorder strength. A scaling function, which measures the
relative number of states having vanishing escape rates has been introduced.
For a three-dimensional gas two regimes have been identified: In the large
sample regime, the photons undergo a crossover from delocalization towards
localization as the optical depth is increased, while in the Dicke regime the
photons are always localized. For a one-dimensional geometry, due to the
periodic nature of the coupling matrix, the single atom limit is never reached
and the photons are always localized.

We have suggested a possible explanation to the three-dimensional results
in the framework of random networks. The photons undergo a crossover be-
tween a weakly connected network of atoms emitting photons almost inde-
pendently at small disorder to a small world network where atoms are related
through small chains of intermediate atoms exchanging photons.

These results differ substantially from those obtained in the context of
Anderson localization of photons where weak and strong disordered phases
are separated by a phase transition in dimension d > 2. Nevertheless, it
must be noticed that in our model, we study the spectral properties of the
Euclidean random matrices U and not of the Laplacian in the presence of
disorder.
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CHAPTER 6

Conclusions and outlook

In this dissertation we have studied multiple scattering of photons in
disordered atomic media while taking into account cooperative effects, which
originates from the interaction between atoms through the radiation field.

At first stage we have considered a simplified model where only pairs of
atoms have been taken into account. On average over disorder configurations,
an attractive interaction potential builds up between close enough atoms in
a superradiant state, and it decays as the inverse of the inter-atomic sepa-
ration. The contribution of superradiant pairs, resulting from this potential,
to scattering properties is significantly different from that of independent
atoms. This shows up in the behaviors of the group velocity, the elastic
mean free path and the diffusion coefficient. For instance, the group velocity
corresponds to light scattering by superradiant pairs is finite and positive
near resonance (as well as at resonance), unlike the one associated with in-
dependent atoms. Thus, already for a dilute gas, cooperative effects modify
significantly the transport properties of light.

Next, we have studied a more realistic model that includes higher order
terms that account for cooperative effects between more than two atoms.
To this purpose we have considered N identical atoms, placed at random
positions in an external radiation field. The photon escape rates from the
atomic gas have been derived from the effective Hamiltonian equation by
diagonalizing the N x N Euclidean random matrix U for a broad range of
sample size and disorder strength. For a three-dimensional geometry U;; =
sinx;;/x;;, while for a one-dimensional gas U;; = cosx;;, where z;; is the
dimensionless random distance between any two atoms.

A scaling function, which measures the relative number of states having
vanishing escape rates has been introduced. For a three-dimensional gas two
regimes have been identified: In the large sample regime, the photons undergo
a crossover from delocalization towards localization as the optical depth is
increased, while in the Dicke regime the photons are always localized. For a
one-dimensional geometry, due to the periodic nature of the coupling matrix,
the single atom limit is never reached and the photons are always localized.

We have suggested an explanation of the three-dimensional results in the
framework of random networks. The photons undergo a crossover between a
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weakly connected network of atoms emitting photons almost independently
at small disorder to a small world network where atoms are related through
small chains of intermediate atoms exchanging photons.

These results differ substantially from those obtained in the context of
Anderson localization of photons where weak and strong disordered phases
are separated by a phase transition in dimension d > 2. Nevertheless, it
must be noticed that in our model, we study the spectral properties of the
Euclidean random matrices U and not of the Laplacian in the presence of
disorder.

The problem we have considered involves a new class of random oper-
ators whose behavior is very different from either the disordered Laplacian
or Gaussian random matrices. The mapping of the problem of cooperative
effects in atomic gases onto a small world network may be interesting in the
study of the statistical properties of random networks. Finally, the analysis
we present in this dissertation may suggest a different approach and new
protocoles for experiments on photon localization in cold atomic gases.
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APPENDIX A

Elastic mean free path and group velocity of
superradiant pairs

In this Appendix, we calculate explicitly expressions (192) and (199) for
the elastic mean free path and the group velocity. At resonance, simple ex-
pressions for the elastic mean free path (195) and the group velocity (203)
are obtained by a pertubative expansion with respect to the small parameter
ko’f’m.

1. Elastic mean free path

The elastic mean free path is given by (192) in terms of the function f;
defined in (193). The integral in (193) is easily carried out analytically and
it leads to

1 6mn 1 b a—2
=——|(—A B Al
L0) K2 aC <2a T +C) (A1)
where
1,2
A=1 aom A3
n(a%—bxm%—ix?m) (A3)
B="_ tan~' (b + 1:Em) (A4)
2 2
and ]
C=—=kyr, <l (A5)

At resonance (0 = 0) we have a = 1, b = 0 and by expanding (A4) with
respect to kor,, we obtain

2 4
B~ —(1—-——|. A6
Thus,
k2 1

le( ) = 87r—n (korm)zu (A7>

as given in (195).
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2. Group velocity

The group velocity is given by (199) in terms of the function f, defined
in (201). The integral in (201) is easily carried out analytically and it yields

clnF

———— A
v,y(0) n. a?C (A8)
where
1 1 a—2 3 2 a
F=0b-—2)A ArCE BB +(1-2 A
o - DA+ 2 G- a-ho ()
b+ i
Al 2 A10
a+ bay, + 112, (A10)
and )
= — 2 . All
14 (b+ 3z,)2 (ALL)
At resonance (§ = 0) we have a = 1, b = 0 and by expanding (A10) and (A4)
with respect to kgr,, we obtain
A~ (é - 1) (A12)
T \ 22,
and ) A
B~ —1|1——). Al
= (- 5) A
Thus,
c
=14 =—(korm)?, Al4
B g, o) (A1)
as given in (203).
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APPENDIX B
Average self-energy of superradiant pairs

The aim of this Appendix is to calculate the average self-energy (208)
for a Am = 0 transition in the case where kqr < 1. First, we average the
superradiative propagator (164) over the orientation of the inter-atomic axis
and obtain analytical expressions for its real and imaginary parts. Then,
by averaging over the inter-atomic distance up to r,,, we obtain the average
self-energy (208).

For a Am = 0 transition and kor < 1, the superradiative propagator
(164) may be written with the help of (115) and (116) as

§ 3 /3cos?0—1 L(1+cos?h) -
Gt =|=—+-= 2 ' B1
AloG [ro T3 ( G P T hor ) H} » (Bl

where the inter-atomic axis is r = (r, 0, ¢). Averaging over the orientations
1

hCo(G) = 4—/77,F0G+dcos Ody (B2)
T

yields for the imaginary part,
P+Q

AloIm(G*) = — 7 (B3)
and for the real part,
hToRe(GTY = W_P + W.,Q, (B4)
where we have defined
1+ 283 cos(2) + 3
P 1 i, + 20 cos(3) + (B5)
8AfB cos(2) 1 —2Fcos(3) + B2
B 1 T 41— 3?
@ = TAgsm(D) (2 +tan 2ﬁsin(g)) (B6)
and
W+ = —VA(cosy T 1) (B7)



The auxiliary parameters are given by

8= (%)i = cos_l(—wi—c) : (B8)
where ; s\
A= W60k \ (o) 5) (B9)
o= (ot 2) (R Gomer)] 00
and 1725 3 (1 1 ?
C:1+Z{F_O+2k:or (é‘W)} ' (B

Finally, we average (B3) and (B4) over the inter-atomic distance up to r,,

namely
— r [m™ P
prm(@) =~ [ 4P
Tm 0 /6

(B12)

and

AToRe(GT) = L /Tm dr (W_P+W,Q). (B13)
0

Tm

The integrals can be evaluated numerically and give the average self-energy
(208) since

1 . J—
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APPENDIX C

Scalar electric field operator in Heisenberg
picture

In this Appendix we establish expression (223) for the scalar electric field
operator in the Heisenberg picture. The scalar electric field operator (220)
can be written as

E(r)=E*(r)+ E (), (C1)

where its annihilation part is

E+(I‘) = Z gkﬁ’ik'rak, (CQ)
Kk
with
[ hawy,
gk =1 2609 (03)
and its creation part is
E~(r) = [E¥(r)]". (C4)
The equation of motion of the annihilation operator is
dak 1
— = —|ax, H
dt Z-h[a'ka ]7 (05)

where the Hamiltonian is given in (219). Explicitly,

da . i = * —iker;
d—tk = —lwgax + 7 ;dié'ke kers, (C6)

The solution of (C6) reads

. t N
—iwy, ¢ * —ikery twT
ay(t) = e <ak(0) + ﬁ/o dr ;:1 di(1)Ep e righw ) : (C7)

Thus, (C2) can be rewritten as

E*(r,t) = Ef (v, 1) + Ef (r,1), (C8)
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where the free field contribution is

Ef(r,t) =) &e™ e a(0), (C9)
k

while the source term, originates from the radiating atoms, is

. t N
Ef(r,t) = % /0 dry " di(r) Y [ eilortmr) e lemrl, (C10)
i=1 k

According to (152), the electric dipole moment operator can be written as

di(1) = d (1) + d; (7), (C11)
where
df (1) = (gldle)bi(T) (C12)
and
d; (1) = [df ()]". (C13)

Thus, (C10) reads

B t) =~ é {/Otdfd;r(T)f(r—r,-,t—T)+/td7'd;(7)f(r—r,-,t—7) |

h 0
(C14)
with |
flrt) = & elienion, (C15)
K
By setting o
df (1) = e d (1) (C16)
and defining 7" =t — 7, we may rewrite (C14) as
AR Y R
Ef(r,t) = 7 Z {e“"ot/ dr'df (t — ")g(r — vy, 7') + e‘“"ot/ dr'd; (t — m)h(r — vy, 7') |,
i=1 0 0
(C17)
where '
glr —r;,7') = e f(r —r;, 7) (C18)
and '
h(r —r;,7') = €7 f(r —r;, 7). (C19)
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Since (C15) is centered around ¢t = r/c, expression (C17) can be approxi-
mated as
Ef(r,t) ~ A(r,t) + B(r,t), (C20)

where
P & . |r — 1y o
A(r,t) = i ; e"otd (t — TZ) /0 dr'g(r — r;, ') (C21)

and

C

. N 00
B(r,t) = %Ze—wcz; (t - @) /0 dr'h(r —r;, 7). (C22)
=1

Similarly, solving the equation of motion of the creation operator, namely

o
o _ Lol (C23)

it i
yields for the creation part of the scalar electric field operator (C4)

E~(r,t) = Ef_(r, t)+ E; (r,1), (C24)
where
E; (r,t) = [Ef (r,0)] (C25)
and
E; (r,t) = [Ef (r,1)]". (€26)

Therefore, the scalar electric field operator in the Heisenberg picture can

be written as
Blr,t) = Ey(r,) + Ey(r,), (C27)

with, according to (C9) and (C25),

Ef(I', t) = Z 5k€ik'r€_iwktak(0) + h.c. (028)
k

and, according to (C20) and (C26),

N

_ iwot 3+ 4 r — 1 o
By(r,t) =) e™'d, (t — ) F(r—r;) + he., (C29)

i=1
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where

Fa) =1 [ dre i) - ) (c30)
0
A standard calculation [16] leads to
1 kg ethor
F(r)= p [5(r) + . kor} ; (C31)

where kg = wyp/c.
Finally, for r # r; and by neglecting retardation effects, substituting
(C31) in (C29), yields

T bi(t) + hec, (C32)

where C' depends on the radiation wavelength and on the electric dipole
matrix element. Thus, expression (223) has been established.
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APPENDIX D
Generalized scaling function

In this Appendix we show that the scaling behavior of g defined by (261)
does not depend on the choice of the cutoff parameter in (260), provided it
fulfills 0 < ¢ < 1. To this purpose we define a generalized version of the
function g, namely

o0
gela, W) =1— 2/ dr P(T). (D1)
(&
0.8
0.6 ]
& 2w =0.1
0.4r < 2MW=0.2
X x 21w =03
o + 2nw=04
L o * 2nwW=05
02 j 2nw =06
-« o2w=1
ok 2 O 2w=15
X 2nw=2
o + 2w=3
* 2nw=4
-0.2[ 2w =7
0 2nw=9
% O 2nw=20
-0.4F O 2nw=30
X 21w =40
21w = 50
0.6+ v 2mW =60
06 A 2nW=70
[> 2nw =80
| 2nw=90
-0.8[ % 21w =100
1 . . . . .
0 20 40 60 80 100 120

2naw

Behavior of the scaling function g with ¢ = 1/2 as a function of the optical
depth b = 2maW in the large sample regime. The solid line is a fitting
function, given by (D4).

We start with the three-dimensional geometry discussed in Section 5.4.
In Dicke regime (a < 1), the average density of photon escape rates is given
for N > 1 by (258), i.e.,
1
PT) = N[(S(F—N)vL(N— 1)6(T)]. (D2)
Thus, in order to characterize P(I'), the cutoff parameter must fulfill 0 <
¢ < N and the generalized function (D1), under this constrain, is
2 1

gc(a,W):l——:l

S D
N radW’ (D3)
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regardless of c.

In the large sample regime (a > 1), according to Figure 8, in order to
characterize P(I') the cutoff parameter must fulfill 0 < ¢ < 1. We have
checked that the scaling behavior of g. does not depend on the choice of the
cutoff parameter, provided it fulfills the previous condition. However, if it is
chosen to be 0 < ¢ < 1 instead of ¢ = 1, then the generalized function (D1)
obeys |g.| < 1 instead of 0 < g; < 1, but the scaling behavior is the same, as
shown in the enclosed figure for ¢ = 1/2 and in Figure 12 for ¢ = 1.

The fitting function of the data presented in the enclosed figure is the
shifted small world function (280), namely

G12(x) = =1+ Cxf(z). (D4)

Here the scaling variable is z = 2b/3, where b is the optical depth (267),
C' ~ 0.2 and f(z) is given in (278).

Therefore, by combining the constrains on ¢, we obtain that for 0 <
¢ < 1 the scaling behavior of g does not depend on the choice of the cutoff
parameter.

This result can be applied directly to the one-dimensional case discussed
in Section 5.5.
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APPENDIX E
Average path length of ring lattices

The average path length (276), which is the average shortest path between
any randomly chosen vertices, is defined for a network of N vertices with a
rewiring probability ¢ as

16) = mgy (EL)

where y;; is the shortest path between vertices 7 and j and ~~~ denotes con-
figuration averaging. In this Appendix we calculate (E1) for a ring lattice in
the limiting cases where ¢ = 0 and ¢ = 1.

1. Regular lattice
For a regular ring lattice, where each vertex is connected to its K first
neighbors (K/2 on either side), expression (E1) can be written as

;N
[(0) = —— 6 E2
0= 52 (E2)
where y; is the shortest distance between vertex 0 and vertex ¢. This shortest
distance is given for 1 < i < floor(/N/2) by
2 mod(%) = 0
floor(2) +1 mod(2) #0
where due to boundary conditions yy_; = y;. Substituting (E3) in (E2) reads

KF(1+F)  (N-1-KF)(1+F)
== * N -1 ’

(E4)

or



For N > 1, (E5) gives [(0) o N. Thus, in a regular lattice the average path
length scales linearly with the system size.
For example, for N = 11 and K = 4, we have

Y1 ="Y2 =Yg = Y10 = 1, (E7)
Ys =Ys =Yr =Yg = 2 (ES)
and

Thus, (E2) or (E4) yield

Ix(1+2) 2x3 18
[ = = —
(0) 0 10 10

which coincides with a direct substitution in (E5).

2. Random network

The simplest case of a random network defines the probability p that any
two randomly chosen vertices are connected. In the limit of small p and large
N, but with a finite value of A = pN, the Poisson distribution is obtained.
Therefore, the average number of first neighbors of a specific vertex is A.
Since a given vertex has on average A first neighbors, A? second neighbors,
etc., [(1) obeys the following relation

A ~ N (E11)

Thus, {(1) o In(N), and we conclude that in a random network the average
path length scales logarithmically with the system size.
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APPENDIX F
Publications

This Appendix includes the papers written during the research. The
first one ”Effect of superradiance on transport of diffusing photons in cold
atomic gases”, published in the Physical Review Letters journal, deals with
the scalar model of superradiant pairs presented in Sections 4.1-4.3. The
second paper "Superradiance and multiple scattering of photons in atomic
gases”, published in the Physical Review A journal, studies the vectorial
model of superradiant pairs developed in Section 4.4 and compares the latter
approach to the scalar one introduced in the previous article. The last paper,
"Photon localization and Dicke superradiance in atomic gases: crossover to
a small-world network”, submitted to the Physical Review Letters journal,
summarizes the results of Chapter 5.
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PRL 96, 093601 (2006)

PHYSICAL REVIEW LETTERS

week ending
10 MARCH 2006

Effect of Superradiance on Transport of Diffusing Photonsin Cold Atomic Gases

A. Gero and E. Akkermans

Department of Physics, Technion—srael Institute of Technology, Haifa 32000, Israel
(Received 25 August 2005; published 6 March 2006)

We show that in atomic gases cooperative effects like superradiance and subradiance lead to a potential
between two atoms that decays like 1/r. In the case of superradiance, this potential is attractive for close
enough atoms and can be interpreted as a coherent mesoscopic effect. The contribution of superradiant
pairs to multiple scattering properties of a dilute gas, such as photon elastic mean free path and group
velocity, is significantly different from that of independent atoms. We discuss the conditions under which
these effects may be observed and compare our results to recent experiments on photon transport in cold

atomic gases.

DOI: 10.1103/PhysRevL ett.96.093601

The issue of coherent multiple scattering of photons in
cold atomic gases is important since it presents a path
towards the onset of Anderson locaization transition, a
long standing and still open issue. The large resonant
scattering cross section of photons reduces the elastic
mean free path to values comparable to the photon wave-
length for which the weak disorder approximation breaks
down, thus signaling the onset of Anderson localization
transition [1,2]. Another advantage of cold atomic gasesis
that sources of decoherence and inelastic scattering such as
Doppler broadening can be neglected. Moreover, propaga-
tion of photons in atomic gases differs from the case of
electronsin disordered metals or of electromagnetic waves
in suspensions of classical scatterers for which mesoscopic
effects and Anderson localization have been thoroughly
investigated [1]. Thisproblem isthen of great interest since
it may raise new issues in the Anderson problem such as
change of universality class and, therefore, new critical
behavior. New features displayed by the photon-atom
problem are the existence of internal degrees of freedom
(Zeeman sublevels) and cooperative effects such as sub-
radiance or superradiance that lead to effective interactions
between atoms [3]. These two differences may lead to
qualitative changes of both mesoscopic quantities and
Anderson localization. Some of the effects of a Zeeman
degeneracy have been invegtigated in the weak disorder
limit [4] using a set of finite phase coherence times [5]
which reduce mesoscopic effects, such as coherent back-
scattering [1,6]. The aim of this Letter is to investigate the
influence of cooperative effects and more specificaly of
superradiance on the multiple scattering of photons. We
show that two atoms in a Dicke superradiant state [7]
interact by means of a potentia which, once averaged
over disorder configurations, is attractive at short distances
and decays like 1/r. This potential, analogous to the one
considered in [8,9], has important consequences on trans-
port properties since the contribution of superradiant pairs
of atoms in a dilute gas provides smaller values of both
group velocity and diffusion coefficient so that the photons
become closer to the edge of Anderson localization.

0031-9007/ 06,/96(9)/093601(4)$23.00

093601-1

PACS numbers: 42.50.Fx, 32.80.F, 42.25.Dd

Atoms are taken as degenerate two-level systems de-
noted by [g) = |j, = 0, m, = 0) for the ground state and
le) = |j, = 1, m,) for the excited state, where j isthetotal
angular momentum and m is its projection on the quanti-
zation axis, taken as the 2 axis. The energy separation
between the two levels including radiative shift is ho,
and the natural width of the excited level is hl". We con-
sider a pair of such atomsin an external radiation field and
the corresponding Hamiltonian is H = H, + V, with

2

H),= = ;U@)(d — lgXegll + %hwkalgaks’ D

Axe (a,‘:S) is the annihilation (creation) operator of a mode
of the field of wave vector k, polarization &, and angular
frequency w; = clk|. The interaction V between the ra-
diation field and the dipole moments of the atoms may be
written as

V =—d; E(r) —d;E(r,), )

where d; is the electric dipole moment operator of the Ith
atom and E(r) is the electric field operator.

The absorption of a photon by a pair of atoms in their
ground state leads to a configuration where the two atoms,
one excited and the second in its ground state, have mul-
tiple exchange of a photon, giving rise to an effective
interaction potential and to a modified lifetime as com-
pared to independent atoms. These two quantities are
obtained from the matrix elements of the evolution opera-
tor U(7) between states such as |ge,;0). There are six
unperturbed and degenerate states with no photon, given by
{lg1€2::0), le1;22:0)} in a standard basis where i, j =
—1,0, 1. The symmetries of the Hamiltonian, namely, its
invariance by rotation around the axis between the two
atoms, and by reflection with respect to a plane containing
this axis, allows one to find combinations of these states
that are given by |¢f) = %[leligz;(» + €lgyey;;0)] with

e = *1,sothat (S |UW)| ) = 8,6 S5(1) and
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S§(t) = (e1;82;0lU(1)ley;82; 0
+ €(g1e5;0|U(t)|ey;82; 0). (3

The states | ¢¢) are the well-known Dicke states, otherwise
defined as|LM), where L isthe cooperation number and M
ishalf of thetotal atomic inversion[7] sothat |¢;") = [10)
and |¢;) = |00). For large times, ¢t > r/c, where r is the
distance between the two atoms, up to second order in the
coupling to the radiation, we obtain that

it ,hl“f}

Se(r) = 1 ——[AE; -

4)

n 2

The two real quantities AES and I's are, respectively, the
interacting potential and the probability per unit time of
emission of a photon by the two atoms in a Dicke state
|#¢). A standard calculation [10] gives

3nl'r coskyr coskyr  sinkyr
AEE =e—| —p. . + 5
L M ke ’((kor)3 (kor)2>} ©
and
Ie 3 sinkqr sinkgr  coskyr
=1 -l —p g -0 | (6
i =15 (G )} ©

where ky = w,/c. We have defined p; = 1 — #? and ¢; =
1 — 3¢2, £ being aunit vector along the two atoms. At short
distance kyr < 1, we obtain that I';” = 2I" for the super-
radiant state |¢;") = |10) and I';’ = 0 for the subradiant
state |¢; ) = 100).

For a photon of wave vector k incident on an atomic
cloud, the potential we shall denote by V, is obtained by
averaging upon the random orientations of the pairs of
atoms. Since (g;,) = 0 and {p;) = 2/3 regardless of i, we
obtain for the average potential Vv,

r
€V, (r) = (AEf) = — o O ™
2 kor
and the average inverse lifetimes of Dicke states are
Ty = r[1 + eska’} ®)
k()r

which retains the same features as (6) for kyr << 1.

Let us characterize the interaction potential V,. Whereas
for asingle pair of atoms, the potentia (5) is anisotropic
and decays at short distance like 1/, a behavior that
originates from the transverse part of the photon propaga-
tor, we obtain that on average over angular configurations,
the potential (7) between two atomsinaDickestate M = 0
becomes isotropic and decays like 1/r. This behavior is
also obtained by considering the interaction of two-level
atoms with a scalar wave. This could have been anticipated
since the transverse contribution ¢; to the photon propa-
gator averagesto 0. A similar expression for the interacting
potential has been obtained for the case of an intense
radiation field [8,9]. But this latter potential is fourth order
in the coupling to the radiation and it corresponds to the

interaction energy between two atomsin their ground state
in the presence of at least one photon. The average poten-
tia V, we have obtained is different. It is second order in
the coupling to the radiation and it corresponds to the
interaction energy of Dicke states M = 0 in vacuum.

We turn now to scattering properties of Dicke states. The
collision operator is given by T(z) = V + VG(z)V, where
V is given by (2) and G(z) is the resolvent whose expec-
tation value in a Dicke state M = 0 is obtained by a
summation of the series of exchange of a virtual photon
between the two atoms. The matrix element that describes
the transition from the initial state |i/) = |1 — 1; k&) where
the two atoms are in their ground state in the presence of a
photon (k&) to the final state, |f) = [1 — 1;k’&’), is the
sum of the superradiant and subradiant contributions, T =
TF+ T, with T= = (fI[VI¢=Xod"|G(w — wy)|$™) X
(= |VIi) [11]. A standard derivation leads to the following
expressions for the average amplitudes 7

k' -r
2

N k-
T} = Ae'k"K)R cos<Tr> cos( )Ge+ ©)

and

T, = Ae'k k)R sin<£> sin<E>Ge_. (10)
2 2
We have definedr =r, — r,, R=(r; + 1r,)/2, and A =
%dz(éj - 8)(&} - &") (d is a reduced matrix element and
Q) the quantization volume). The average propagators G-
associated, respectively, to the superradiant and subradiant
states are,

—

G =(¢~1G(8)lp™) =

—,
(s + ik =L )

kor

where close to resonance, 6 = w — wy < w, and where
we have used (7) and (8) for the average potential and for
the average inverse lifetimes. At short distances kyr << 1,
the subradiant amplitude T, becomes negligible as com-
pared to the superradiant term (9). Therefore, the potential
(7) is attractive and decays like 1/r. We can interpret these
results by saying that, at short distances (kyr < 1), the
time evolution of the initial state [4(0)) = le;, g5;0) =

%[Iq’ﬁ) + |¢ )] corresponds for times shorter than 1/T

to a periodic exchange of avirtual photon between the two
atoms at the Rabi frequency ((AE™) —(AE"))/h =~
I'/(kyr) which is much larger than T'. For larger times,
the two atoms return to their ground state and areal photon
(k'g") is emitted. At large distances (kor > 1), the Rabi
frequency becomes smaller than I', so that the excitation
energy makes only a few oscillations between the two
atoms, thus leading to a negligible interaction potential
[12].

It isinteresting to derive the previous results in another
way that emphasizes the analogy with weak localization
corrections [1,2].
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To that purpose, we write the scattering amplitude T
defined previously as a superposition of two scalar ampli-
tudes T, and T, [13], each of them being a sum of single
scattering and double scattering contributions, that is

t

T =—
' 1-2G2

[eik—K)T 4 (Geilkri—kir)]  (12)
and

t i 1. i(k-r,—k'’-

— = [2G(2) [ez(k k') 'r, + tGoez(k r,—k rl)]. (13)
Heret = 27T /ky)/(6 + il'/2) isthe amplitude of ascalar
wave scattered by a single atom at the origin and the
prefactor ¢/(1 — *G3) where G, = —e'*o" /47rr accounts
for the summation of the series of virtual photon exchange
between the two scatterers. We single out in the total
amplitude T = T, + T,, the single scattering contribution
T,, and write the intensity associated to the double scatter-
ing term shown in Fig. 1 as

T,

G,

2
——— | [1+cos(k +K')-(r; —ry)]
1 -G}

71 =2|

(14)

We recognize in the bracket the well-known Cooperon
interference term which is at the basis of coherent effects
in quantum mesoscopic systems such as weak localization
and coherent backscattering [1,2,6]. The interference term
reaches its maximum value 1 for r; = r, so that we obtain
from (12) and (13) that T, = T, <« (1/2)T,", up to a pro-
portionality factor [13]. Thus, thetotal amplitude isexactly
given by the superradiant term with no subradiant
contribution.

We consider now multiple scattering of a photon by
superradiant pairs built out of atoms separated by a dis-
tance r and coupled by the attractive interaction potential
V,. This situation corresponds to a dilute gas that fulfills
r< Ay < n; '*, wheren; isthe density of pairsand A, =
21/ ko is the atomic transition wavelength. Based on this
inequality, we may consider the two atoms that form a
superradiant pair through exchange of a virtual photon as
an effective scatterer and neglect cooperative interactions

FIG. 1. Diagrammatic representation of the two amplitudes
that describe double scattering of a scalar wave. The wavy line
accounts for the photon exchange between the two atoms. This
diagram is known in quantum mesoscopic physics as a
Cooperon.

between otherwise well-separated pairs. The photon be-
havior is described by the configuration average of its
Green's function, whose expression is obtained from a
standard derivation [1]. In the limit of large enough den-
sities of weakly scattering pairs, it reduces to the calcula
tion of a self-energy given in terms of the average

propagator (11) by
_ 677'hlﬂn,»6+ _ 6mn; frm dr

1) 1 .
ko korm 0 r‘l’m‘i‘l

s

(15)

The average, denoted by —, istaken over distances r up to
amaximal value r,, < k; ' which accounts for all possible
mechanisms that may break those pairs. In the considered
limit, the density of the gas can be assimilated to that of the
pairs. The imaginary part of X' defines the elastic mean
free path 1, by ko/1, = —Im3", namely,

i 2kory,
:37Tn, 1 fo dx (16)

1
I, K krw o 1T+@+DHT

It is interesting to compare I, to the mean free path [, =
4 [1 + (26/T)*] that correspondsto near resonant elastic

67n;
scattering of a photon by independent atoms. At resonance
(6 =0), wehavely/l, = 3(kor,)* < 1. Away from reso-
nance, the elastic mean free path /, becomes smaller than [
and for blue detuning it is reduced in aratio roughly given
by 1/(k0rm)2'

Another important physical quantity is the group veloc-
ity v, givenin terms of the refraction index » by ¢/v, =
n+ . Since 3! is proportional to the polarizability,
the refraction index depends on its rea part, namely n =
[1 - (c/w)*Re=V]1/2. From (15), we notice that 5 = 1
for al values of the detuning 6/I" and in a large range of
densities n; so that

¢ n; 1 0
— -k d 17
v, T (kor’”’ F)’ (17

where we have defined n, = (k3 /67) wLO and the function

, —(A+ 1y
flkoran )= [ IZ@F) g

T+ @+ )

Thisexpression of v, divergesat alarge and negative value
of the detuning 2 =~ —1/(2kor,,) and beyond it takes both
positive and negative values. Otherwise it iswell behaved,
meaning that it remains finite and positive for al values of
the density n;. At resonance, the group velocity is

< 4mn; wy )
Ug =1+ k—g T(korm) . (19)

The present expression of v, differs substantially from
the one obtained for light interaction with independent
two-level atoms. There, for densities n; > n. where n,
defined above is usually overwhelmingly small, the group
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velocity isknown to diverge at two symmetric values of the
detuning of order unity and takes negative values in be-
tween (i.e., also at resonance). For instance, in a gas of
85Rb atoms, where n; = 6 X 10'° cm™3, Ay = 780 nm,
and 5 = 5.9 MHz, we have n;/n, = 10°. The validity of
the concept of group vel ocity in such systems hasthus been
often questioned [14] and an energy velocity has been
defined which describes energy transport through a diffu-
sive medium [15].

Transport of photons through a diffusing gas is charac-
terized by the diffusion coefficient D = }v,1, that com-
bines the elastic mean free path and the group velocity
[1,16], both derived from the complex valued self-energy
(15). The diffusion coefficient D is of great importance
since it enters in expressions of al measured physical
quantities such as reflection and transmission coefficients,
angular correlations of speckle patterns, time correlation
functions of the intensity (diffusing wave spectroscopy),
etc. [1]. Moreover, the critical behavior of transport close
to Anderson localization transition at strong disorder is
also obtained from the scaling form of D. Its expression,
deduced from (16) and (17), depends on the range r,, and
on the detuning &/T". Since the group velocity and the
elastic mean free path are significantly modified for the
case of superradiant pairs, we thus expect the diffusion
coefficient to be different from its value obtained for
independent atoms. We aso define the transport time by
7+(8) = I,/v, = 3D/v’. At resonance, it can be rewritten
with the help of (19) as 7,,(0) = 5~ which is consistent with
our considering of superradiant pairs. Wewould like never-
theless to call attention to the fact that, away from reso-
nance, 7,(8) depends on frequency.

We now compare our results to recent measurements of
the diffusion coefficient D and of the group velocity v,
obtained for multiple scattering of light at resonance, in a
cold atomic gas of °Rb [17]. Since the range r,, cannot be
directly determined, we first use Egs. (16) and (17) to
obtain an expression independent of k,r,, given by the

ratio ("gg)z = 8mn./kic = 2I'/c?. For 5Rb atoms, this
ratio equals 8.2 X 10710 s/m?, which isin good agreement
with the value 4.8 X 10710 s/m? obtained from measure-
ments of D and v,. Finally, from the previous numerical
expression we deduce for the maximal range of interaction
r. thevaue kqr,, = 0.51 aso consistent with our assump-
tion of superradiant states. Therefore, multiple scattering
of photons by superradiant pairs provides a relevant
mechanism that needs to be considered, in addition to
others, e.g., scattering by independent atoms, for descrip-
tion of multiple scattering properties of dilute cold atomic
gases.

We have considered multiple scattering of a photon on
pairs of atoms that are in a superradiant state. On average
over disorder configurations, an attractive interaction po-

tential builds up between close enough atoms that decays
like 1/r. The contribution of superradiant pairs, resulting
from this potential, to scattering properties is significantly
different from that of independent atoms. It leads to awell
defined but much smaller group velocity as compared to ¢
and correlatively to a smaller diffusion coefficient. For
densities considered in recent experiments on cold 3°Rb
atoms, the quantity k!, that describes eventually the close-
ness to a localization transition, is reduced at moderate
detunings, by 1 order of magnitude. This effect is expected
to be even stronger for larger densities which could then be
close to the localization edge.

Thisresearch is supported in part by the Israel Academy
of Sciences and by the Fund for Promotion of Research at
the Technion.
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We study the influence of cooperative effects such as superradiance and subradiance on the scattering
properties of dilute atomic gases. We show that cooperative effects lead to an effective potential between two
atoms that decays as 1/r. In the case of superradiance, this potential is attractive for close enough atoms and
can be interpreted as a coherent mesoscopic effect. We consider a model of multiple scattering of a photon
among superradiant pairs and calculate the elastic mean free path and the group velocity. We study first the case
of a scalar wave which allows us to obtain and to understand basic features of cooperative effects and multiple
scattering. We then turn to the general problem of a vector wave. In both cases, we obtain qualitatively similar
results and derive, for the case of a scalar wave, analytic expressions for the elastic mean free path and for the
group velocity for an arbitrary detuning (near resonance).

DOI: 10.1103/PhysRevA.75.053413

I. INTRODUCTION

Coherent multiple scattering of photons in cold atomic
gases is an important problem since it presents a path toward
the onset of the Anderson localization transition, a long-
standing and still open issue. The large resonant scattering
cross section of photons reduces the elastic mean free path to
values comparable to the photon wavelength, for which the
weak-disorder approximation breaks down, thus signaling
the onset of the Anderson localization transition [1,2]. An-
other advantage of cold atomic gases is that sources of de-
coherence and inelastic scattering such as Doppler broaden-
ing are often negligible. Moreover, propagation of photons in
atomic gases differs from the case of electrons in disordered
metals or of electromagnetic waves in suspensions of classi-
cal scatterers, for which mesoscopic effects and Anderson
localization have been thoroughly investigated [1]. This
problem is thus of great interest since it may raise new issues
in the Anderson problem, such as a change of universality
class and therefore new critical behavior. New features dis-
played by the photon-atom problem are the existence of in-
ternal degrees of freedom (Zeeman sublevels) and coopera-
tive effects such as subradiance or superradiance [3], which
lead to effective interactions between atoms [4]. These two
differences are expected to lead to qualitative changes of
both mesoscopic quantities and Anderson localization. Some
of the effects of Zeeman degeneracy have been investigated
in the weak-disorder limit [5] using a set of finite phase
coherence times [6], which reduce mesoscopic effects, such
as coherent backscattering [1,7].

The influence of cooperative effects and more specifically
of superradiance on the multiple scattering of photons has
been recently investigated [8]. It has been shown that in
atomic gases superradiance and subradiance lead to a poten-
tial between two atoms, analogous to the one considered in
[9,10], which decays as the inverse of the distance between
them. In the case of superradiance, this potential is attractive
for close enough atoms, and can be interpreted as a coherent
mesoscopic effect. The contribution of superradiant pairs to
multiple-scattering properties of a dilute gas has been calcu-
lated by using an effective propagator that describes a scalar
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wave being scattered by a pair of two-level atoms. Simple
expressions for the photon elastic mean free path and group
velocity have been derived at resonance and found to be
significantly different from those of independent atoms. To
be more specific, near resonance, as well as at resonance, the
superradiant effect leads to a finite and positive group veloc-
ity, unlike the one obtained for light interaction with inde-
pendent atoms.

In this paper we provide, for the case of a scalar wave,
closed expressions for the suprerradiant contribution to the
elastic mean free path and the group velocity for an arbitrary
(near resonance) detuning, and calculate the dependence of
the transport time on it. In addition, we estimate the maximal
interatomic separation in a superradiant pair, which accounts
for possible mechanisms that may break the pair. We also
compare the effective approach presented in [8] to a more
realistic one that takes into account the vectorial nature of
the wave.

The paper is organized as follows: In Sec. Il we describe
the model, which consists of pairs of two-level atoms placed
in an external radiation field where the Doppler shift and
recoil effects are negligible. In order to investigate the influ-
ence of the cooperative effects of such pairs on the multiple
scattering of photons we briefly review, in Sec. Ill, Dicke
states and some of their properties. Then we calculate the
average interaction potential of a pair of atoms in a Dicke
state by averaging over the random orientations of pairs of
atoms with respect to the wave vector of a photon incident
on the atomic cloud. Next, we study the scattering of a pho-
ton by such pairs and, in Sec. IV, compare the results to the
case where a classical wave is being scattered by a pair of
atoms. This comparison allows us to find an unexpected con-
nection between superradiance and mesoscopic effects. In
Secs. V and VI, we consider the multiple scattering of pho-
tons by pairs of atoms and calculate the elastic mean free
path and the group velocity of photons in the random me-
dium. Finally, our analysis is compared to other approaches
in Sec. VII and its results are summarized in Sec. VIII.

I1. MODEL

Atoms are taken to be degenerate, two-level systems de-
noted by |g)=|j4=0,m,=0) for the ground state and |e)=|j
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=1,m,=0, £1) for the excited state, where j is the total an-
gular momentum and m is its projection on a quantization
axis, taken as the Z axis. The energy separation between the
two levels, including radiative shift, is Zwg, and the natural
width of the excited level is #I'. This simple picture of a
two-level atom neglects the rather complicated energy struc-
ture of a real atom, which reflects various internal interac-
tions, e.g., Coulomb interactions, spin-orbit interactions, hy-
perfine interactions, etc. But, due to selection rules which
limit the allowed transitions between states, in some cases a
certain state may couple to only one other. Thus, the two-
level atom approximation is close to reality and not merely a
mathematical convenience.

We consider a pair of such atoms in an external radiation
field and the corresponding Hamiltonian is H=Hy+V, with

2
hw
Ho= =" O.E (leXel-lgXal) + kE ho@lae. (1)
=1 e

A, (als) is the annihilation (creation) operator of a mode of
the field of wave vector k, polarization &,, and angular fre-
quency wy=c|k|. The interaction V between the radiation
field and the dipole moments of the atoms is given by

2
V=—|2d|-E(I’|), (2)
=1

where E(r) is the electric field operator

% . o
Er)=i> \/ﬁ(akeéke'k-f—aLséke-'k-f). 3)
ke 0

Q) is a quantization volume and d; is the electric dipole mo-
ment operator of the Ith atom. As an odd operator, which
changes sign upon inversion, d; may be written as

d=(gld|e)A +(eld|g)A} (4)
where the atomic raising and lowering operators are
Al =(lexal A7 =(gxel). (5)

We assume that the typical speed of the atoms, v
=\kgTo/ i, is small compared t0 v=I/k but large com-
pared to vin=7%K/ 1, where u is the mass of the atom and T,
is the temperature, so that it is possible to neglect the Dop-
pler shift and recoil effects. Indeed, for a temperature of T,
=1073 K, the typical speed of the atom is v =0.3 m/s. Since,
for a wave number of k=10 m™ and a natural width of I’
=107 s7%, vpax=1 m/s and v,i,=0.01 m/s, both assump-
tions are satisfied.

I11. DICKE STATES
A. Interaction potential and lifetime

The absorption of a photon by a pair of atoms in their
ground state leads to a configuration where the two atoms,
one excited and the second in its ground state, have multiple
exchange of a photon, giving rise to an effective interaction
potential and to a modified lifetime as compared to indepen-
dent atoms. These two quantities are obtained from the ma-
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trix elements of the evolution operator U(t) between states
such as |g;&,;0). There are six unperturbed and degenerate
states with no photon, given by {|g;,;0),/€;;g,;0)} in a
standard basis where i,j=-1,0,1. The symmetries of the
Hamiltonian, namely, its invariance by rotation around the
axis between the two atoms, and by reflection with respect to
a plane containing this axis, allows us to use combinations of
these states that are given by

1
|0 = E[|eligz;0> + €0,651;0)] (6)
with e=+1, so that
(¢ U] ) = 30 50) (7)
and
S(t) = (e1;0;0/U(t)|e1;g2;0) + €(g1€,;;0|U(t)|e1;05;0).
(8)

The states |¢f) may be rewritten in terms of the well-
known Dicke states |LM), where L is the cooperation number
and M is half of the total atomic inversion [3]. For two
atoms, the singlet Dicke state is

1
|00y = E[|9192> - |g:8)] 9)

and the triplet Dicke states are
111) =es&,),

1
|10) = \T§[|elgz> + o],

11-1)=19:92)- (10)

The states |11) and |1—-1) correspond, respectively, to both
atoms in their excited states and both atoms in their ground
states. The singlet state |00) and the triplet state |10) both
correspond to one atom in the excited state and the other in
the ground state, but |00) is antisymmetric where |10) is sym-
metric under an exchange of the atoms. Therefore, we may
rewrite (6) as |¢)=]10;0) and |¢;)=|00;0).

For times such that t>r/c, where r is the distance be-
tween the two atoms, up to second order in the coupling to
the radiation, (8) reads

it
f

The two real quantities AES and I'{ are, respectively, the
interaction potential and the probability per unit time of
emission of a photon by the two atoms in the state |¢f). The
calculation of these two quantities requires second-order per-
turbation theory with respect to the interaction (2). For this
purpose we define an initial state where one atom is excited
and the other is in its ground state without any photon, and a
final state where the two atoms are exchanged. We also de-
fine intermediate states of two types: both atoms in their
ground states with one virtual photon present and both atoms

<AEf— |ﬂ) (11)

St =1- >
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in their excited states with one virtual photon present. Sum-
ming the corresponding diagrams [11] gives

o 3l _ _coskor _ cos Kor  sin kor
ATy [ Pt '<<k0r>3 ' (korﬂﬂ
(12)
and
i, 3| sinkor (sinkor  cos kor
rt 2"{ P '((kor>3 (kor)2>]'
(13)
where we have defined ky=wy/c,
pi=1-F, q=1-3%, (14)

and ¥=(1, 0, ¢) is a unit vector along the direction joining
the two atoms. For a Am=m,—my=0 transition,

Po=sin%6, go=1- 3 cos?6, (15)
while for a Am=+1 transition,

1 1
pi=§(1+c0320), q,_,=£(3 cos’6-1). (16)
At short distance kor <1, we obtain that I'; =2T" for the
superradiant state |¢;)=|10;0) and I'; =0 for the subradiant

state |¢;)=|00;0).

B. Average interaction potential

For a photon of wave vector k incident on an atomic
cloud, the potential between two atoms that we shall denote
by V. is obtained from (12) by averaging over the random
orientations of the pairs of atoms with respect to k. Since,
according to (15) and (16), (g;)=0 and (p;)=2/3, we obtain
for the average potential Vg

. hI" cos kor
eVe(r) =(AEf) = - 2 kr (17)
and the average inverse lifetimes of Dicke states are
. sin Kor
<Fi>:l“(1+e ket ) (18)

which retain the same features as (13) for kor < 1.

Let us now characterize the interaction potential V..
Whereas for a single pair of atoms the potential (12) is an-
isotropic and decays at short distance as 1/r2, a behavior that
originates from the transverse part of the photon propagator,
we obtain that, on average over angular configurations, the
potential (17) between two atoms in a Dicke state |LO) in
vacuum becomes isotropic and decays as 1/r. This behavior
coincides with the one obtained by considering the interac-
tion of two-level atoms with a scalar wave. This could have
been anticipated since in that case the transverse contribution
q; to the photon propagator averages to 0. A related behavior
for the orientation average interaction potential has been also
obtained for the case of an intense radiation field [9], and it
has recently been investigated in order to study effects of a
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long-range and attractive potential between atoms in a Bose-
Einstein condensate for far-detuned light [10]. This latter po-
tential, which is fourth order in the coupling to the radiation,
corresponds to the interaction energy between two atoms in
their ground states in the presence of at least one photon. The
average potential V. we have obtained is different from that
case: it is second order in the coupling to the radiation and it
corresponds to the interaction energy of Dicke states |LO) in
vacuum.

C. Scattering properties

In order to study the scattering properties of Dicke states
we introduce the collision operator T(z)=V+VG(2)V, where
V is given by (2) and G(z)=(z—H)™! is the resolvent where
the Hamiltonian H is the sum of (1) and (2). The matrix
element that describes the transition amplitude from the ini-
tial state |iy=|1-1;ks), where the two atoms are in their
ground states in the presence of a photon of frequency w
=c|k| and polarization &, to the final state |f)=|1-1;k’e’) is

T=(f[T(z= (o~ w)))]i) (19)

where |k|=|k’|. By using the closure relation we may write
T as the sum of a superradiant and a subradiant contribution,
T=T"+T [12], with

T = (f[VI¢*H(¢*|G(z=fi(w = wp)) [ "N $|VIi),  (20)

where |¢*) are the Dicke states |LO) in vacuum. The two
matrix elements in (20) represent the absorption and the
emission of a real photon by the pair of atoms. They are
easily obtained from (2)-(5) and lead to the following ex-
pressions for the scattering amplitudes:

B ’ k k, ‘
TH= Ak )'Rcos<7r>cos(7r>6* (21)
and

) k-r kK'-r
T =Aek*k >'Rsin<7>sin(7)e'. (22)

We have defined r=r;-r,, R=(r;+r,)/2, and
ﬁ -~ Nk A,k
A= 2 d(d- &)@ -3, (23)
Eoﬂ

where the reduced matrix element and the corresponding unit
vector are

Gedljg ~_1,. :
d="T=%  d="(jemdd|igmy. 24
i1 gJemeldligmy) (24)

The propagators G* are the expectation values of the resol-
vent in the Dicke states |¢*), namely, G*=(¢*|G(% )| ¢*),
where close to resonance d=w—wy<< wy. The propagators
result from the sum of an infinite series of virtual photon
exchanges between the two atoms in the pair and are given in
terms of (12) and (13) by

ri -1
Gt= (ﬁ(s—AEi+ iﬁ;) . (25)
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The average propagator is then obtained by averaging G*
over the random orientations of the pairs of atoms with re-
spect to the wave vector k of the incident photon. However,
we shall consider in a first stage the effective propagator
obtained for the case of a scalar wave. This amounts to writ-
ing for the effective propagator the expression

ikor\ |-1
Ge= {ﬁ((wz gio )] : (26)

where we have used (17) and (18) for the average potential
and for the average inverse lifetimes. This expression consti-
tutes a priori a rough approximation of the exact average.
We shall calculate later, in Sec. VI, the exact expression of
the average propagator and show that it is rather compli-
cated, whereas the approximate expression using a scalar
wave gives similar qualitative results. Therefore, it allows for
a better understanding of relevant physical quantities such as
the elastic mean free path and group velocity. From now on,
we thus use the scalar wave approximation in order to pro-
vide, in a rather simple way, the main features of multiple
scattering by superradiant pairs.
With the help of (26), the scattering amplitudes are

k- k'
T Aekk)Rcos< 5 )cos( 5 )G; (27)

and

T, = AdKkK )Rsm(k )mn(u)G;. (28)
2 2
At short distances kor <1, the subradiant amplitude T, be-
comes negligible as compared to the superradiant term T;.
Therefore, the potential (17) is attractive and decays as 1/r.
More precisely, at short distances the effective propagator G
diverges for 8/T'=1/(2kor) and G; is purely imaginary for
S8IT'==1/(2kgr). Thus, for 8/T'<1/(2kyr) the imaginary part
of the subradiative term (28) is negligible as compared to the
imaginary part of the superradiative term (27) and for
|8] /T < 1/(2kyr) both the real part and the imaginary parts of
(28) are negligible as compared to (27).
We can interpret these results by saying that, at short dis-
tances (kor < 1), the time evolution of the initial state

1
[#(0) = lengz:0) = L% + [¢7)], (29)
v
corresponds, for times shorter than 1/T", to a periodic ex-
change of a virtual photon between the two atoms at the Rabi
frequency

AE") - (AE*
0, = AE)-(AE) 0
f
which is much larger than I" since, with the help of (17),
r
Qr=—. 31
S (3D)

For larger times, the two atoms return to their ground states
and a real photon (k’g’) is emitted. At large distances
(kor>>1), the Rabi frequency becomes smaller than I, so
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that the excitation energy makes only a few oscillations be-
tween the two atoms, thus leading to a negligible interaction
potential.

We finally notice that the angular distribution of the light
scattered by two atoms in a superradiant state is nearly iden-
tical to that of a single atom. This follows from the fact that
at short distance kyr <1, we can neglect higher-order multi-
polar corrections so that the corresponding additional phase
shift kor cos ¥ between waves emitted by the two atoms be-
comes negligible (9 is the angle between the direction of the
emitted photon and the axis between the two atoms).

IV. COOPERATIVE EFFECTS AND COHERENT
BACKSCATTERING

It is interesting to derive the previous results in another
way that emphasizes the analogy with coherent backscatter-
ing [1,2]. To that purpose, we write the scattering amplitude
T defined previously in (19) as a superposition of two “clas-
sical,” scalar amplitudes T, and T, [13], each of them being
a sum of single-scattering and double-scattering contribu-
tions, that is,

Sh tsz(é(k K4 1Gyeknkm) - (32)
and
T2= 12 EZGZ(eI(k K)T2 4 1Gyelkrek ), (33)
Here
dm L7z (34)
ko 5+il'/2

is the amplitude of a scalar wave scattered by a single atom
at the origin, and the prefactor t/(1-t?G3), where
gk’
Gy=- 35
0 dar (35)

accounts for the summation of the series of virtual photon
exchange between the two scatterers. We can single out in
the total amplitude T=T;+T, the single-scattering contribu-
tion Tg and write the intensity associated with the higher-
order scattering term shown in Fig. 1 as

tZG
1-12G

IT-TJ?=2 [1 +cos(k + k) -r)].

(36)

The structure of relation (36) is very reminiscent of that of
the so-called coherent backscattering intensity, which occurs
in the multiple elastic scattering of light. But although they
are analogous, (36) differs from coherent backscattering. In
the latter case, averaging over the spatial positions r; and r,
makes the interference term cos(k+k’)-(r;=r,) vanish in
general, with two exceptions:

(1) k+k’=0. In the direction exactly opposite to the di-
rection of incidence, the intensity is twice the classical value.
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FIG. 1. Schematic representation of the two amplitudes that de-
scribe double scattering of a scalar wave. The wavy line accounts
for the exchange of a virtual photon between the two atoms. This
diagram is analogous to the coherent backscattering in quantum
mesoscopic physics.

This phenomenon is known as coherent backscattering.

(2) ry=r,. These are closed multiple-scattering trajecto-
ries which are at the origin of the phenomenon of weak lo-
calization.

In (36) the interference term, i.e., the second term in the
square brackets, reaches its maximum value 1 for r{=r, so
that we obtain from (32), (33), and (27) that T,=T,
«(1/2)T,, up to a proportionality factor [13]. Thus, the total
amplitude is given by the superradiant term with no subradi-
ant contribution.

V. MULTIPLE SCATTERING AND COOPERATIVE
EFFECTS

A. Effective self-energy

We consider now multiple scattering of a photon by su-
perradiant pairs built out of atoms separated by a distance r
and coupled by the attractive interaction potential V. This
situation corresponds to a dilute gas that is assumed to sat-

isfy
r< o< n'®, (37)

where n; is the density of pairs and \o=27/k, is the atomic
transition wavelength. The limiting case (37) corresponds to
a situation where the two atoms that form a superradiant pair,
through exchange of a virtual photon, constitute an effective
scatterer, and cooperative interactions between otherwise
well-separated pairs are negligible. Let us stress that we
study here a simplified model where only pairs of atoms
have been taken into account. A more realistic model should
include higher-order terms that account for cooperative ef-
fects between more than two atoms, but we do not consider
such higher-order terms, i.e., including superradiant clusters
of three or more atoms. The purpose of the current model is
to examine the contribution of superradiant pairs to the trans-
port properties of the gas. We use the Edwards model [1,14]
to describe the medium as a discrete collection of N; super-
radiant pairs in a volume ). Each pair, located at R, is
characterized by its scattering potential u(R-R;). Therefore,
the disorder potential is given by

PHYSICAL REVIEW A 75, 053413 (2007)

20 2 2 2

FIG. 2. Pertubative expansion of the self-energy in a power
series in the parameter niué. Solid lines account for the free photon
Green’s function gy. Pairs of dotted lines, connected by X, stand for
the two-point correlation function B. The first term X1, proportional
to niug, accounts for independent scattering events, while the sec-
ond term 3,, proportional to nizué', describes interference effects
between pairs of scatterers.

N;
U(R) = |2 uR-R). (38)
=1

We assume that the scattering potential is short range com-
pared to the wavelength, and we approximate it by a (con-
veniently regularized) & function potential u(R)=uy8(R). In
the limit of a high density of weakly scattering pairs, but
with a constant value of niué, it can be shown [1] that the
correlation function defined by

B(R-R')=n, f dR"U(R" - R)U(R"-R’)  (39)

becomes
B(R-R")=nudR-R’). (40)

In other words, in this limit, the Edwards model reduces to a
Gaussian white noise model characterized by the condition
(40).

The Green’s function g of a scattered photon is related to
the free photon Green’s function g, i.e., in the absence of
disorder potential, by the equation [1]

g=go + goUg. (41)

Averaging (41) over disorder and using the properties of the
Gaussian model discussed above yields the Dyson equation

(@d =90+ 92(g (42)

where (---)4 denotes averaging over the random potential.
The function X, known as the self-energy, represents the sum
of all irreducible scattering diagrams. The pertubative expan-
sion of the self-energy in a power series controlled by the
parameter niuﬁ is represented in Fig. 2.

For small values of n,u3, the main contribution is obtained
by keeping only the first term X; which describes indepen-
dent scattering events. Therefore, the first contribution to the
self-energy is proportional to the density of scatterers and to
the average scattering amplitude, and it is given, for kor <1,

by

_ 6’7Tni

21—?

A, iTGe (43)

where
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12j+1
e 32,41

(44)

The latter quantity is obtained by averaging A in (27) over
Zeeman sublevels m that appear in its definition given by
(23) and (24). o

The additional average, denoted by ---, is taken over dis-
tances r up to a maximal value r,, which accounts for all
possible mechanisms that may break the pairs.

The value of r,, can be estimated by comparing the kinetic
energy K of a superradiant pair to its average potential en-
ergy Vi. We have K=7#2/ur? and from (17) we obtain that
V¢ =-hI'/2kor. Minimizing the average energy

a2 AT
E(r)=—-— 45
(r) i 2k (45)
with respect to r yields
3 2
Korm= ) (46)
ul’
or
— Unmin
korm=4——-7, (47)
Umax

where the speeds v, and v,5, have been defined in Sec. 1.
For typical values I'=107 s™* and k,=10" m~* we obtain that
Korm=0.05. Thus, we can use the results obtained in Sec.
111 C and consider the superradiant term only.
For jq=0and je=1, Ay; =1, and using (26) we rewrite (43)
as
_6mn 1 (m dr

El_?ﬂ o AT +1/(2kyr) +i° (48

We stress again that, in our approach, a pair of atoms in a
superradiant state is considered as a single scatterer, and the
effective medium parameters are derived from 3, as will be
shown in the next sections. In contrast to our treatment, oth-
ers [16,19] consider multiple scattering of a real photon by
independent atoms and use the second term X,, which de-
scribes interference effects between the scatterers, to calcu-
late corrections to the elastic mean free path and to the re-
fractive index of the medium. A further comparison between
these two points of view is given in Sec. VII.

B. Elastic mean free path
The elastic mean free path I is obtained from the imagi-
nary part of the self-energy, namely,

E:—|m21. (49)

le
Let us stress that (49) is equivalent, in the case of a dilute
gas, to the known formula
1
le=—, 50
o o (50)
where the total cross section o is obtained for kyr <1 from
(27) by means of the optical theorem
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FIG. 3. Ratio between the elastic mean free paths Iy and I, as a
function of the reduced detuning /T for kyr,,=0.05, 0.07, and 0.1.
Away from resonance, for blue detuning, the elastic mean free path
I becomes smaller than I, in a ratio roughly given by 1/(kyr )2, At
resonance, the ratio between the elastic mean free paths is given by
(57).

ZQ T+ ’ ~r
0'e=—E Im(To(k=k'",e =€) (51)

and (---),, represents an averaging over Zeeman sublevels.
The equivalence in this case is proven easily if one uses (44)
and the usual expression for the inverse lifetime

_ 9K

- 37TEoﬁ’

(52)

where the reduced matrix element is defined in (24). There-
fore, from (48) and (49) we obtain that

1 6w ( 5)
=——f = 53
|e(5) k(z) 1 kOrm F ( )
where we have defined the function
1 (% dx
fi(u,v)=— P —— 54
() ZUL 1+ (v +1/%)? (54)

The integral is easily carried out analytically and the explicit
expression is given in Appendix A. It is interesting to com-
pare |, to the elastic mean free path |, that corresponds to
near-resonant elastic scattering of a photon by a single atom.
The latter quantity is obtained by replacing I" by I'/2 in (53)
(since the inverse lifetime of a single atom is half the one
related to a superradiant pair) and 1/x by 0 in (54) (since the
interatomic distance is taken to be infinite for a single atom)
and it is given by

e (7]
|°(5)"67mi (%) | (55)

In Fig. 3 the ratio between these two quantities is plotted as
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a function of the reduced detuning /1" from resonance for
several values of kor
At resonance, we obtain from (53) that

ko1
le(0) = Bam, (Kor )2 (56)
and hence
0(0) 4 2
10) 3(k0 m” < 1. (57)

Away from resonance, for blue detuning, the elastic mean
free path |, becomes smaller than |, in a ratio roughly given
by 1/(korm)?. This is a direct consequence of the existence of
the attractive potential V.

C. Group velocity

Another important physical quantity that characterizes
multiple scattering of a photon is its group velocity v given
in terms of the refractive index % by the usual relation

d
£ = 17+ (1)—7], (58)
Vg do

The refractive index for a dilute medium is

7=(1+nRea)"?, (59)
where the dynamic atomic polarizability « is proportional to
the self-energy

1({c)\?
a:——(—> El' (60)
ni w
Thus, we obtain that
c 2 1/2
7= 1—(—) ReX;| . (61)
w
Substituting (61) into (58) yields
1 cd
3:—(1——— Re21>. (62)
vg 7 2wdw

From the self-energy (48), we notice that =1 for all values
of the detuning &/T" and in a large range of densities n;, so
that

c n, 5)
=1-—f = 63
where we have defined the characteristic density
3
r
ne=o L (64)
677 [0}

and the function

2u
fo(uv) = —f

The integration is easily performed and the explicit expres-
sion is given in Appendix A. By replacing I" by I'/2 in (63)

1-(+1x° 1/x)?

[1 +(v+ 1/x)2]2 (65)
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0
/T

FIG. 4. Group velocities vg (solid line) and v, (dotted line) as a
function of the reduced detuning &/T for n;/ng=10° and kyr,=0.1.
The group velocity v, diverges at two symmetric values of order
unity of the reduced detuning and it takes negative values in be-
tween. The group velocity vg, near resonance, remains finite and
positive.

and 1/x by 0 in (65), we obtain the group velocity vq of light
interacting with independent two-level atoms,

c _n 1-(240)
SRR S L (66)
vo(0) n.[1+(28T)7]
For the typical values I'=107 s7%, ky=10" m™, and n,

=10'% cm™3, we obtain that n;/n,=10°.

Figure 4 displays the group velocities vg and v, plotted as
a function of the reduced detuning &/T for n;/n,=10° and
Kor m=0.1.

vg appears to diverge at quite a large and negative value
of the detuning &/1"=-1/(2kyr,). But near resonance it is
well behaved, meaning that it remains finite and positive. At
resonance, according to (63), the group velocity is

c 2
040) =1+ 477"3 T (ko Fm)” (67)

This expression of vy differs substantially from the one
obtained for v,. For densities n;>n,, the group velocity v,
diverges at two symmetric values of order unity of the de-
tuning and it takes negative values in between (i.e., also at
resonance), as can be seen in Fig. 4. This problem was rec-
ognized a long time ago [15] and an energy velocity has been
defined which describes energy transport through a diffusive
medium [16,17]. However, the diffusion coefficient, which
will be discussed in the next section, is derived from the
group velocity and not from the energy velocity [1]. More-
over, a closed expression for the energy velocity vg has been
obtained only for the case of resonant Mie scattering [18].
The expression is similar to (67) and is given by
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YT ) (68)
Ve kO I

It is then interesting to notice that the inclusion of coopera-
tive effects even at the lowest order, i.e., taking into account
superradiant pairs, allows one to obtain a group velocity that
is well behaved at resonance, unlike the case of resonant
scattering by independent atoms.

D. Diffusion coefficient and transport time

Diffusive transport of photons through a gas is character-
ized by the photon diffusion coefficient

D(5) = 304(415) (69)

which combines the elastic mean free path and the group
velocity, both derived from the complex-valued self-energy
(48). The diffusion coefficient D is of great importance since
it enters into expressions of various measured physical quan-
tities, such as the transmission and the reflection coefficients
of a disordered medium [1]. In addition to these average
quantities, an incident pulse that probes a nearly static con-
figuration of scatterers may provide an instantaneous picture
of the medium that displays a random distribution of bright
and dark spots. This snapshot, known as a speckle pattern,
can be characterized by the angular-correlation function and
the time-correlation function of the light intensity (diffusing
wave spectroscopy). In the first case, the correlation function
of the transmission coefficient between two distinct direc-
tions of the transmitted wave is measured. In the second
case, the intensity of the transmitted wave is measured at
different times, so that the motion of the scatterers must be
taken into account. As pointed out before, in both cases the
diffusion coefficient plays an important role, as it enters in
the relevant expressions. Moreover, the critical behavior of
transport close to the Anderson localization transition at
strong disorder is also obtained from the scaling form of D.
Its expression, deduced from (53) and (63), depends on the
range r,, and on the detuning &/T". Since the group velocity
and the elastic mean free path are significantly modified for
superradiant states, we thus expect the diffusion coefficient
to be different from its value obtained for independent atoms.
We define the transport time by

18
Ug(é).

At resonance and for n,>>n, it can be rewritten with the help
of (56) and (67) as

T (6) = (70)

1
Ttr(O) - El (71)

in accordance with our assumption of superradiant states.
Near resonance, the transport time depends weakly on the
detuning. But, away from it, 7, depends on the detuning and
thus on frequency, as can seen from Fig. 5 where the inverse
of the transport time r{rl/l“ is plotted as a function of the
reduced detuning &/T for n;=10'° cm™3, I'=10" s7%, and k,
=10’ m™* for several values of Kyr
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FIG. 5. Inverse of the transport time 7,*/T as a function of the
reduced detuning &/T for nj=10°cm™, I'=107 s7!, and kg
=10" m™! for kor,=0.05, 0.07, and 0.1. Near resonance, the trans-
port time depends weakly on the detuning. But, away from it, =,
depends on the detuning and thus on frequency.

VI. AVERAGE SELF-ENERGY

So far, we have used the effective approach introduced in
Sec. 11 C, where we have considered the case of a scalar
wave being scattered by a pair of two-level atoms. In this
simple approach, the propagator of a scalar wave (26) has
been calculated and the self-energy (43) has been obtained
by averaging (26) over the distance between the two atoms
in a pair. This effective approach leads to simple expressions
for the elastic mean free path (53) and the group velocity
(63) of the wave. In this section we calculate these quantities
for a given Am transition and Kyr <1, while taking into ac-
count the vectorial nature of the wave. With this purpose, we
average the propagator (25) over the random orientations of
the pairs of atoms (with respect to the wave vector of the
incident photon) as well as over the distance between the two
atoms in a pair. Therefore, the average self-energy is now
given by

67Tni 1
ko 4,

where the averaging is over the interatomic axis r (over both
magnitude and orientations). The evaluation of (72) for a
Am=0 transition is rather cumbersome and it is presented in
Appendix B. By following the procedure described in the
previous section, we obtain the corresponding elastic mean
free path I, and the group velocity vg. In Fig. 6 the ratio
between |, given by (55) and I, is plotted as a function of the
reduced detuning &/T" for several values of kyr .

As in the effective approach, at resonance I/, is found to be
larger than |y, but away from resonance it becomes smaller.

In Fig. 7 the group velocity v/ is plotted as a function of
the reduced detuning &/T for n;/n.=10° and kyr,=0.1.

Around resonance, the group velocity vé is finite and posi-
tive, as in the scalar case, but much larger as compared to

3= J ACG*(r)dr, (72)
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FIG. 6. Ratio between the elastic mean free paths Iy and I, as a
function of the reduced detuning &/T" for kgr,=0.05, 0.07, and 0.1.
At resonance, | is larger than lo, but away from resonance it be-
comes smaller.

(63) and it is close to c. Thus, we may conclude that in both
approaches the superradiant effect leads to a finite and posi-
tive group velocity, unlike the one obtained for light interac-
tion with independent atoms. However, the group velocity of
a scalar wave is much smaller compared to the one of a
photon.

VII. DISCUSSION

In this section we compare our analysis to other ap-
proaches [16,19] where resonant multiple scattering of light
has been considered. There, using a multiple-scattering ex-
pansion for the calculation of the self-energy up to second
order in nu3, a correction to the elastic mean free path and to

1.0086
1.0085F 1

1.0084 1

1.0083

1.0082 v'lec ]
g

1.0081

1.008 1
1.00791 1
1.00781 1
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-5

FIG. 7. Group velocity vé as a function of the reduced detuning
SIT for n;/n.=10° and kqr,=0.1. Around resonance, the group ve-
locity vé is finite and positive and it is close to c.
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the refractive index has been obtained. In the latter approach,
no distinction has been made between the external photon
that performs multiple scattering on all atoms and virtual
photons exchanged between two atoms in a superradiant
state, leading to the average interaction potential V.. This
distinction needs to be made for dilute enough atomic gases
since in that case the average distance n;*'® between atoms is
large. Moreover, in this case, the dipole-dipole interaction
induced by the external photon depends on the detuning, a
situation that corresponds to the case of intense radiation
presented in [9] but not to the current experiments made on
cold atomic clouds [20].

VIIl. CONCLUSIONS

We have considered multiple scattering of a photon by
pairs of atoms that are in a superradiant state. On average
over disorder configurations, an attractive interaction poten-
tial builds up between close enough atoms, which decays as
1/r. The contribution of superradiant pairs, resulting from
this potential, to scattering properties is significantly differ-
ent from that of independent atoms. This shows up in the
behaviors of the group velocity, the elastic mean free path
and the diffusion coefficient which are different from their
values obtained for independent atoms. We have considered
the case of a scalar wave and have shown that it allows to
define an effective long-range and attractive potential for
pairs of atoms in a superradiant state. Then, we have studied
the case of a vector wave and have shown that the results
obtained in the scalar case remain qualitatively valid. We
have considered a simplified model where only pairs of at-
oms have been taken into account. A more realistic model
should include higher-order terms that account for coopera-
tive effects between more than two atoms [21]. The purpose
of the current model is to show that already for a dilute gas
in the weak-disorder limit, cooperative effects modify sig-
nificantly the transport properties of light.
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APPENDIX A

In this appendix, we establish expressions (53) and (63)
for the elastic mean free path and the group velocity. At
resonance, simple expressions for the elastic mean free path
(56) and the group velocity (67) are obtained by a pertuba-
tive expansion with respect to the small parameter Kqr .

1. Elastic mean free path

The elastic mean free path is given by (53) in terms of the
function f; defined in (54). The integral in (54) is easily
carried out analytically, and it leads to
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! ——6Wn‘i<£A 2272 +c> (A1)
(8 K aC;\2a * 2a ' )
where
a=1+ (8l b=4r, (A2)
1
_Xgn
4
A=in| ————— |, (A3)
a+ bxm+£—1xfn
B —f—tan‘l(b+1x ) (Ad)
) 2" M)
and
1
Ci=  =kfm<1. (A5)

m

At resonance (6=0) we have a=1, b=0 and by expanding
(A4) with respect to kgr,, we obtain

2 4
Blza(l‘y)- (A0)
Thus,
K1
0= g (A7)

as given in (56).

2. Group velocity

The group velocity is given by (63) in terms of the func-
tion f, defined in (65). The integral in (65) is easily carried
out analytically and it yields

c n F
=1-——= (A8)
Ug(é) ncacl
where
F_b(l l)A a;ZA'_l_(g g)B
1"N\a 4/t 4 "t \2 a7t
_bBi‘l'(l_ )Cll (Ag)
1
b+EXm
Al=- , (A10)
a+bxy+ x4
and
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1
, 2
Blz—ﬁ. (A11)
1+ (b+ Exm>

At resonance (6=0) we have a=1, b=0 and by expanding
(A10) and (A4) with respect to kyr,, we obtain

, 2[4
A = —(—2 - 1) (A12)
Xm \ Xy,
and
2 4
B, =~ —(1——2) (A13)
Xm 33X
Thus,
Cc 2 n;
=1+ =—(Korm)?, Al4
050) 3nc(ko m) (A14)

as given in (67).

APPENDIX B

The aim of this appendix is to calculate the average self-
energy (72) for a Am=0 transition in the case where kyr < 1.
First, we average the superradiative propagator (25) over the
orientation of the inter-atomic axis and obtain analytical ex-
pressions for its real and imaginary parts. Then, by averaging
over the interatomic distance up to r,, we obtain the average
self-energy (72).

For a Am=0 transition and kor <1, the superradiative
propagator (25) may be written with the help of (12) and (13)
as

1
=(1 + cos?0
3cos?6-1 2( )

(kor)®

o )
BY)

AIG" = 9 + 3
r 4
where the interatomic axis is r=(r, 6, ¢). Averaging over the
orientations
+ 1 +
A(G") = a J Al'G*d cos 6 de (B2)
o

yields for the imaginary part

AT IM(G*) = - P;ZQ (B3)
and for the real part
Al Re(G") =W_P + W.,Q, (B4)
where we have defined
2
P= 8A,8 clos(y/2) In( 1 i ig zgzgjg : §2> - B9
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Q—;<7—T+tan‘11_—ﬁ2> (BG)
T apBsin(y/2)\ 2 2Bsin(y/2))’
and
W+ =— Ay (cos y ¥ 1). (B7)
The auxiliary parameters are given by
C2>1/4 —1( B, )
=== | = - — , B8
B (Az y=cos 2VAC, (B8)
where
e ©9)
271602\ (or)? 2/
5 i(ilw_@i(lL”
2T 4kr \(kor)2 2/ T 2kgr\2  (kor)?/ |
(B10)

and

PHYSICAL REVIEW A 75, 053413 (2007)
e e |
2 L 2kr\2  (kn)?/ ]

4
Finally, we average (B3) and (B4) over the interatomic
distance up to ry,

AT IM(G*) = -

ifmolrp+Q (B12)

2
'mJo B

and
_ 1 ('m
Al Re(G*) = r—f dr(W_P + W, Q). (B13)
mJ 0

The integrals can be evaluated numerically and give the av-
erage self-energy (72) since

f #0G*(r)dr = AT(G"). (B14)

4,
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We study the photon propagation in a gas of N atoms, using an effective Hamiltonian that
accounts for photon mediated atomic dipolar interactions. The density P(I') of photon escape rates
is obtained from the spectrum of the N x N random matrix I';; = sin(xz;;)/x:;, where z;; is the

dimensionless random distance between any two atoms.

A scaling function is defined to study

photons escape rates as a function of disorder and system size. Photon localization is described
using statistical properties of random networks whose mean field solution displays a ”small world”

behavior.

PACS numbers: 42.25.Dd,42.50.F%,72.15.Rn,87.23.Ge

Cold atomic gases provide an interesting framework to
study photon localization resulting from coherent multi-
ple scattering. Unlike uncorrelated disordered systems,
new additional features such as cooperative effects (e.g.
super- and subradiance) [1] modify our current descrip-
tion of coherent multiple scattering of photons. The
synchronization of the atomic dipoles can be seen as a
correlation between the scatterers. Studying cooperative
emission is thus a particular example of transport in a
system with long range correlations. Photon localization
and cooperative effects show up as an overall decrease
of the escape rate of photons. For weak disorder, atoms
scatter photons independently. For stronger disorder, co-
operative effects become important and lead to vanishing
escape rates, so that photons are trapped in the gas for
very long times. In this letter, we show that this photon
localization occurs as a crossover rather than as a phase
transition like for Anderson localization [2]. We show
that this crossover is described by means of a single scal-
ing function. For large disorder, the atomic system can
be viewed as a highly connected random network whose
statistical properties are well reproduced by the mean-
field solution of a ”small-world” network model [3]. For
even larger densities, we retrieve the expected Dicke limit
which can be mapped onto an ideal fully connected net-
work. We consider a collection of N identical atoms at
rest, taken to be degenerate two-level systems respec-
tively denoted, for the atom ¢, by |g;) = |j; = 0, mg = 0)
and |e;) = |je = 1,m, = 0,%1) for the ground and ex-
cited states. j is the total angular momentum and m is
its projection on a quantization axis . The energy sep-
aration between the two levels, including the radiative
shift, is iwg and the natural width of the excited level is
hT'g. The atoms are placed at random positions r; and
are coupled to the electromagnetic field E through their
dipole operator d;. The Hamiltonian is,

N N
H= Z hwole;) (es| + Z hwkaLsaka - Z d;-E(r;) (1)
i=1 ke i=1

where CLLE is the creation operator of a photon with wave

vector k and polarization e. We consider the limit where
only one photon is present. The trace over the photon
degrees of freedom leads to the following effective Hamil-
tonian for the atomic gas,

Ao 25
— ;20 Nles| o 220 ATAT
He = (hWO_ZT)Z|€z><ez|+ 9 Z‘/;]Ai A7 (2)
i=1 i#£]
where A = |e;)(g;| is the atomic raising operator and
A; = (A)!. The potential Vi; = B;; — i7;; is complex
[_p cos kori; ( cos korj

valued and,
si k, 77
’ + 111 OT;):|
(koriz)® — (korij)
sin ko7 (Sin korij cos korij >:|
_ — 3
[p Forg O\ (korip)?  (koriy)? 3)

where kg = wo/c and r;; = |r; — r;| is the distance be-
tween any two atoms. The quantities p and ¢ depend on
the atomic transition. For Am = m, —mg =0,

Bij =

kOTij

Yij =

Nl W N w

po = sin® 0ij, qo=1— 3 cos? 0i; (4)

and for a transition Am = *1,

Dt = %(1 +cos?0;;), qx = %(30032 0;; —1) . (5)
The angle 0;; is obtained from the unit vector t;; =
(1,05, pi;) defined along the direction joining two atoms.

Expressions (2) and (3) for the Hamiltonian and the
effective interacting potential V;; are well known [4, 5].
For distances between atoms that are small compared
to the coherence length of the light emitted by a single
atom, we obtain the potential V;;, which corresponds to
an instantaneous photon exchange between two atoms
[6].

To characterize the photon transport properties, we
consider the average density P(T") of escape rates I' of a
photon propagating in the atomic gas. Escape rates have



already been considered for the study of superradiance
[5, 7] and of Anderson localization of classical waves [8].
To obtain P(T"), we consider first the simplest situation of
a photon scattered by two atoms, for which it is possible
to calculate from (2) the photon propagator [5] whose
scalar part, at resonance, is G = (2/hlo)(i — Viz) ',
where hI'gV12/2 is the photon self-energy. Its imaginary
part accounts for the correction to the inverse lifetime
of the atomic excited state, which is also the photon es-
cape rate. For the case of N atoms, the photon escape
rate, expressed in units of I'g, is obtained from -;; given
in (3) for ¢ # j together with v; = 1. To show this,
we calculate the probability to detect a photon outside
the gas. This calculation is standard in photo-detection
theory [9] and it has been used in the study of superra-
diance [7]. The N x N matrix +;; thus defined, is ran-
dom and depends on the atomic positions r; with the
constraint that its trace is equal to N. Related random
matrices have been studied in various contexts and they
have been termed euclidean random matrices [10]. The
average density P(T") of photon escape rates is then ob-
tained from the eigenvalue spectrum of ;;, i.e., from the
linear system

N
Jj=1

This equation has been considered in the continuous limit
and for very specific geometries of the atomic gas [7].
Here we study a random and uniform distribution of
atoms. The average density of escape rates P(I") is for-
mally defined by P(T") = —(1/7) ImR(z = T'+407), with

R(z) = %ﬂ (z%[w]) . (7)

The average -~ is taken, at fixed density, over spatial
configurations of the atoms. For Gaussian ensembles of
random matrices [11], the average density of states obeys
a semi-circle law. Here, as we shall see, the behavior of
P(T) is very different.

The matrix 7;;, defined in (3), depends on the dis-
tances r;; between atoms and on the angles 6;;. We
expect localization properties and cooperative effects to
depend mostly on r;; and not on 6;;. We therefore con-
sider the scalar model obtained from (3) by averaging ~;,
over 6;;. Using (4) and (5), we thus obtain for the scalar
model, the N x N matrix,

o Sin x;;
Lij = (vij) = (8)
xij
where x;; = kor;; are distances expressed in units of

the wavelength A\ = 27/kg. We have checked that P(T")
obtained for the vector case 7;; and for the scalar case I';;
are qualitatively the same [12]. The scalar model (8) has
the advantage of being easier to handle and the remainder

of this letter is devoted to its study. To that purpose, we
consider N atoms enclosed in a cubic volume L? = (\a)3
where distances are measured in units of the wavelength
A. The atoms are distributed with a uniform density
n = N/(Xa)3. The disorder strength W is defined for
resonant scattering, using the total cross section o ~ A2,
by W = no)\/2n = N/2na® = p/2n where p = N/a? is
the dimensionless density of atoms.
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FIG. 1: Behavior of P(T') for different values of the disorder
strength W, of the size a and for N = 216. (a) At low disor-
der, P(T') is peaked around ' = 1 (b) for larger disorder, P(T")
becomes broader and shifted towards the origin and eventually
(c) it accumulates near I' =0 (d) Dicke limit.

The eigenvalues of the matrix I';; are nonnegative
since the three-dimensional Fourier transform of sinc|z| is
d(]k| —1) > 0. This property applies also to the vectorial
case 7;; given by (3). We have obtained P(T") for differ-
ent values of disorder strength W and size a (see Fig.1).
We observe the following behaviors. For a very dilute
gas, we recover the single atom limit namely I';; — d;;,
so that P(T") is narrowly peaked around I' = 1 (in units
of Ty) as expected from resonant scattering of a photon
by a single atom (Fig.1.a). For stronger disorders, P(T")
becomes broader and it is shifted towards lower values of
I’ (Fig.1.b). Eventually for large enough disorders, most
of the eigenvalues are close to I' = 0 (Fig.1.c). Such a
vanishing escape rate corresponds to photons localized
in the atomic gas. By increasing further the disorder W,
at fixed number N of atoms, we reach another regime
(Fig.1.d) where P(T") has two peaks, one at I' = 0 and a
second one at I' = N. This is the Dicke limit which occurs
when the atoms are contained in a volume much smaller
than A3. The eigenvalue I' = 0 is the (IV — 1)-degenerate
subradiant mode and I' = N is the non-degenerate su-
perradiant mode. In this limit, the escape rate matrix



[[';;] given by (8), becomes

11 ---1
11 ---1
Cyl=1 . . - (9)
11 ---1
Using (7), we obtain the density:
N -1 1
PIl)=——90T)+ =0(I' = N) . 1
) =Yty + s -n) . (o)

To characterize P(T"), we look for a scaling function. A
natural choice when inspecting the shape of P(I") dis-
played in Fig.1 is to consider the relative number of states
Te(a, W) defined by

Fe(a,W)_/loo dr P(T) , (11)

which have an escape rate larger than 1 (in units of T'y).
To obtain its dependence upon the system size a and the
disorder W, we introduce the conveniently normalized
scaling function g(a, W) defined between 0 and 1 by

gla,W)=1—-2T(a,W) . (12)

g thus defined, measures the relative number of states
having a vanishing escape rate. At finite size, we expect
g(a, W) to have a scaling form, namely :

dlng(a, W)

9122 — () (13)

where 3(g) is a function of g only. The solution of this
equation can be written g(a, W) = a* f(a/E(W)). We
have verified this scaling hypothesis over a broad range
of size and disorder. The results displayed in Fig.2 for
different values of disorder, collapse on a single curve (see
Fig.3) when plotted as a function of the scaling parameter
aW. Restoring the unit length, this parameter is the
optical thickness 2raW = L/l where | = \/2xW is the
photon elastic mean free path [13].

In the Dicke limit (Fig.1.d), P(T') is given by (10).
Using (12), we obtain the scaling behavior g(a, W) =
1—(2/N)=1-1/(ma®W) displayed in Fig.4.

These results can be understood in the framework of
statistical mechanics of random networks. To show this,
we start from the Dicke limit which corresponds to the
escape rate matrix (9). This matrix describes a collection
of N fully connected atoms with identical strengths equal
to 1. This system can be exactly mapped onto an ideal
fully connected graph whose spectral density is given by
(10) [14]. At lower but still large values, 2raW =~ 200
(see Fig.3), the system may be described as a random
graph of atoms sitting at vertices and randomly (but not
fully) connected to other atoms by exchange of photons.
At small values aWW < 1, we recover a gas of independent
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FIG. 2: Behavior of g as a function of the system size a for
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FIG. 3: All the points represented in Fig.2 collapse on the
same curve thus confirming the scaling assumption (13). The
solid line represents the mean field solution given by (14).

atoms, which is the limiting case of a graph of vanishing
connectivity (or coordination number). Statistical prop-
erties of such disordered networks have been extensively
studied [15]. The existence of a crossover between regu-
lar and random networks has been obtained numerically
[16] and described by means of a mean-field solution [17].
An important feature of this crossover is that for finite
but small values of the disorder, the network behaves as
a "small world” [18], namely that any two vertices can
be connected through only a short chain of intermediate
vertices. When applied to our atomic random network,
the mean field solution [17] leads to the expression,

_ 4Az anh ! x
00 = e ()

for the scaling function g(z) [12]. The scaling variable is
x =maW/2 and A ~ 0.1 is an integration constant. The



0 0005 001 0015 002 0.025 0.03 0035 0.04
1/ 2m’w

FIG. 4: Scaling behavior of g(a,W) = 1 — 1/(ma®*W) in the
Dicke limat.

solid line in Fig.3 is a fit of the numerical results using
the mean field expression (14). The agreement is rather
good.

For a small optical thickness, x o« aW < 1, the ex-
pression (14) gives g(x) = Az. Using (12) leads to
2y ~ 1 — (An/2)aW. This is the first correction to
the free value T'g/2 obtained for a very dilute gas. In
the opposite limit aW > 1, of a dense gas, we obtain
from (14), g(x) = Alnz. This corresponds to the ”small
world” limit where, as a result of strong cooperative ef-
fects, any two atoms can be connected by photon ex-
change only through small chains of intermediate atoms.
This description breaks down for values of x so large that
we enter the Dicke regime (10) (see Fig.4). The largest
value of x can be estimated by saying that at fixed num-
ber N of atoms, x «x aW ~ N.

To summarize, we have characterized the escape rates
of photons propagating in an atomic gas by means of
a scaling function g(z), where z o« aW is proportional
to the optical thickness. For weak disorder, it describes
delocalized photons with reduced escape rates. In the op-
posite limit, g(z) saturates to 1, meaning that photons
remain localized inside the gas. This last regime includes
the Dicke limit. Using a mapping onto a random net-
work problem, we have described the crossover between
a weakly connected network of atoms emitting photons
almost independently at small disorder to a ”small world”
network where atoms are related through small chains of
intermediate atoms exchanging photons. These results
differ substantially from those obtained in the context of
Anderson localization of photons where weak and strong
disordered phases are separated by a phase transition in
dimension d > 2. It must be noticed nevertheless, that in

our model, we study the spectral properties of the ran-
dom matrices (8) and not of the Laplacian in the presence
of disorder.

The problem we have considered involves a new class of
random operators whose behavior is very different from
either the disordered Laplacian or Gaussian random ma-
trices [11]. The mapping of the problem of cooperative
effects in atomic gases onto a ”small world” network may
be also interesting to study from a different perspective
the statistical mechanics of random networks. Finally,
the analysis we present in this letter may suggest a dif-
ferent approach and new protocoles for experiments on
photon localization in cold atomic gases.
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-I90 YV NIPNI IMLR-PIAN PNINT TINND D TYITN NNV TIIX IMOVN-IT ININIVIO
DT D19 DINILX NI Y TYIN N NT ININIVID NP

S DND IMYNYN MINY |50 SROXIVINNND DISNN ,DONIP-990 MINT DY DIPIINON
, 390NN NDVIDN DY YXINNN YVDONN PNIN MV PO NINA NONX MNON .OX TN DIMIVN
Sy MIPNIA ODAPNNN NYNND DMV IUN ,DINNNN PDITH DTPN) WYY NNAND MPNINIA
SV NMIANN MPNND ,NANTY TOTTN MIPRIVINI DPRY DINIVNND NN HY D27 DNV
L(MNRY NTINN2 DY DY) NTINND TIND TPODY MIAVN NN NIN NIV IRINNN NPVIN
DTN DDIVND NN NN NOAPNNN D TN

NPIP DTV TORIPX DNPINT ,0MOLNX N N2 7PXNINPIMNP NAY ,IPNND DY MW IpoNa
MIVIND NPNILR-PAN NPEPRIVIND NN INNNDN YDOPIN ININODNN DIPTI IN INYN
DYIVPADNN DAPNN N IMIOVN N PNOVID DY VDN AP 1D DXNYIIN NN NINNY .NPIPN MY
,Uij=sin(xi)/Xij 0110 NM000 10 100-190 700N 12y N 1700 1INIPR N800 HY
PPN NN Xjj IR L U;=Cos(Xi) 27y NN NYAI0ND STON-TN 1) DY NIpnav Tiya
SV MIPNI LTIV AVINK D3N VIDNN AP .DNYID DINILN NV PA TN ION INIPND
NN HNN ,ITON X TVT DY (1IN NI NIIWHN DTN DY TIND 20T DINH NIY PHTINN N
-NON AVVIND NAY N YXIAN IIVONN L(PAY 1)) PIN T N2 1YY (D9DT 1)) wHN 1To
THN-TN PIVDIND NIAY YN NTHN

DYPTHIN NN ,NIIYNN DTN ITON ONX NITTA MOND PVIdN DY VIDNN ANP NN NNID NIVNA
VP 2¥P YHYA DX HYW YON 19DNY T MNNN WX (scaling function) S5 mxpna
L(NIPN D) TIND DN T NOITY DOTHN-NON NN 1D DXTND NN ,NNMYNNINI DN
DPMN-RY axpn oMy oNvvn  (optical depth) »vo9RN PN NOTINHD  IXRIIND

VYN asp 12, (localization) opyn axnd P9 XN VPN a8p 11, (delocalization)
DV 7997 ,0°HPINN THN OMIVIN MIPTININD D122 7D 772NN, .DIND N
PN J9IND NMMNMY DN MIRNIN .NIND 7210 SW KDY (Crossover) n»sn Yv 7Onn 02w

NN 11295 , 010 Y (Anderson) NPOITIN NMOXVYPIY YW qWpna MDAPNNN NONRN
TOTIN-TN MIVNINNDID . NNPIND I P NHDPIN-RIN NIRIN P2 72YN0 DM MTNN-NoN
DNRNN L,ONPTININD 212)2 MAID) DHPINN NN DMV DIND GNIY VINN ANP
JDOITIN 279 NINNDY

MNONT NNVON2 THN-NONN DIVMINMDA WIAPNNIY  MINNIND 920N OOWNN DN
DMIVNN I ,YON ITO X DY 28NN DII2IY DMNVIN 1Y .NPRIPN MNYI DY NPLDVLVLON
YOPZ D21 7Y NNINN ANND ,0YNI INRNNY JI9IND PIVID DXV 4317 19INL D NT OIVIPN
,D00W DL YW YOP NDDN TIT MY N DNYP ©MLVXN 12 (Small world network)
VI 0NN DXHNNN

NRY DTV X POITIR NMSVOPIY 79y NNNNN P WIAPNNY NMINRIND P2 MWN
N MNONA INDDN HYW XD U 1INIPRN N8IVNN DY NPHNIVPIDN NMNONN NX DMPIN
70



8PN

NO2IN ,NONTD NP2 DNNN DXNLYA N2 MDYN ITIDN XY THNI OD) MNTPNND
DY) MNTPNM ODINA NP Y NV PN THNT NN MNTPNN ,NIDNNI IINIVPON
,270 DMIPNN 99D MAMYN THNI MNTPANN DX MIINID NPHIIN MNONN .OMNPDID
A2 TPTINMH MNMINNN NN OX PN D) DY N0 DD OO IN

TNNN IYRD OIX INMN ANY NI DIV NNXR DY P 19NN D1 IX — P77 IPN THNN TUND
WA, 02 PO IRNND NYRIN NIPNN INDIY DIV D17 OND W DIN — YT DY
DX 7Y MR DY D27 DNV POW DY IPNND 0227 0271129 DY J0UN INNND NINKNIY
.DMPMILN

1OP 9N OPTI AWK .(Mie) M >y PN YNV NI HYI PPPIVPINITH TN NN N

NPaY NN TN 12, (Rayleigh) 59 91195 11910 9 719 ,nPN 93 TIRD DN TIND
DN TIND DITY NN OPTI 12 PTIN NIPHN TP NPIN DN THIND TION SNNONN
MON IR NVAY AYAN TNN ONPAY |, TIVMINNIN NPPVINT PPIN NX ONXIN 20N TINY
239970 THN NLY SV 5T ATO2 XIM DI TN

MYTN MYOIND 92210 19 20291 YVXNNNN MIANMN PONIP DIY NI DIVNX NI 9NN TWND
DY NAT NN TNN 712Y DMV RVINN YNIVNT DITVPID NININ M SV IR
MPTNY TIND NP NPIPN MPTN I PNTINN NV, NINTY 10 NV DAPNNIY IDORN
PPN D3 TN YD SNNONND NDAT NOWIN TNN ,TMLNRN I

;MY 990102 DI19VY NN’ OPNIVN D) MY NN HY D27 DN DY PNON

NN NN 1T DD NYW) .OMONRIP D3NN 7Y M5PD D) DY NN IR NINND ,NMNIYNIN
(NPPIVND TINNRD NMNI) NPHINAN YAIND NMNIT NN DI 1D PVINPN PN NN NNN VP
NTYY DIT9NN DIIN,ININD DY INVPIN PANIND NN NIAYNL NNPID NMIYN MWD DX NN HY
DY INNNN YORIP-1ID DNV NN MWL NYIIN DONIP 19IND DINVN PYTY NPIPN
YT DININRD DIWNHN 9N SOXNNX 1IN HOHYL ,DINLN 7Y SVLNN-NVPIN D) DY DN
YOMP DINVL MIXMN 19D OIMVNIY (MMY TPIVLIMNP DY DIOININON NNDNI) DNV
NON

Y INIVN T .OINN PA MTTNN MXPRIVIRND NN OXNIN D7IN DXNNONN DI 00N
MIAVNND TN ,ITIDN XY ONLX THNT DMV HY DM DNV TIDA NN N PPN

nenap-nm o (superradiance)  prnIp-100 WD, DIDOVIMNIP DOVPONA
PPN NTY TIT DIMVRN P2 PIPRIVININ DYINN , (Subradiance)

SV QDIND MIRVIDDN NVIYON AXP ,MNNDN MDY NNN ,NA NYNIND NN NPNIIP-IND
MO NNN N2 ,NPAPIP-NN NN IYwnn nyonn .N-9 01pna N%-9 nnann omvx N
NN DXOYONN DMLND N-D TINHY MINY DONNND MPINRLIODN NVIN AP ,MINK
NIV NPLININRD MNIN

TNNA OTPNNN IR MNON NN 797 J9INL ONIYN NOX DXOPIN D OIXRIN NX MY IPNNIA
8N ,DIMVND P2 TPIPRIVINNIND IRNIND D OXNIIN NN L,NYRIN IPONT OXIPN INIVN






P90 NOVPAA YITIPN PIIN 919 N1NINA NYYI IPNNN

,N0NN INMNIN DY YIIPN PIIN 9190 25 29PN MTINY MI8I2
SPNNN IRYNA NDNYOITNNND PRIV DY) N2 IMANYN

IPNNM IRV NIV M MNOY JY GONX TN Y100 NTIN MIN
20N PMYNN O

DU MYV MNODIN DY, TITOYN DY 2TID ININY YINIYDY »1aND NTIN
TONN TIOD DY DXOMWYN NONNIIV MNIIN

SMNYNWNA NXTIN NPODIN NN DY 11IDVY NTIN NN
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