
Superradiance-
mesoscopic fluctuations 
and 
localization in cold atomic    
gases



Aim of the talk

To present recent results obtained in quantum 
mesoscopic physics of photons in cold atomic 
gases and of matter waves (Bose-Einstein 
condensates) :

Intensity fluctuations and deviations from the 
Rayleigh law resulting from quantum 
interferences between Zeeman states.

Cooperative effects (superradiance): strong 
decrease of the group velocity and of the 
diffusion coefficient.

Interplay between disorder and non-linearities:  
localization of one dimensional matter waves.



Photon multiple scattering

Characteristic lengths:
Wavelength:
Elastic mean free path:

density of scatterers

Weak disorder independent scattering events λ0 = l ⇔

scattering cross section



• Photon-atom interaction:  dipolar interaction

A degenerate atomic dipole transition            allows

Rayleigh scattering and  Raman scattering

• Average light propagation in a cold atomic gas:

• Trace over the positions of the atoms

• Trace over the quantum numbers with a scalar atomic density matrix.

• Dilute medium                      of weak and resonant scatterers

(J, Je )

m

Light scattering in a dilute cloud of cold atoms 



r r '

P(r,r ') = ai
∗(r,r ') aj (r,r ')

i, j
∑

Before averaging : coherent speckle pattern 
Configuration average: most contributions 
vanish because of large and random phases.

Diffuson: D(i ) (r,r ') = aj (r,r ')
2

j
∑

Motion of a wavepacket  and  probability of 
quantum diffusion

P(r,r ') = aj (r,r ')
2

j
∑ + ai

∗(r,r ')aj (r,r ')
i≠ j
∑
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Part I

•Speckle correlations and intensity 
fluctuations of diffusing photons in cold 

atoms
Ohad Assaf and E.A. Technion



Speckle correlations and intensity fluctuations 
of diffusing photons in cold atoms

We are interested in obtaining the angular correlation function of
atomic speckle patterns at the         approximation i.e. without 
quantum crossings. 

Cab ′a ′b
(1) =

δTabδT ′a ′b

TabT ′a ′b

C (1)

Slab geometry:



TabT ′a ′b

δTabδT ′a ′b = ψ abψ ′a ′b

2

ψ ab = dr d ′r eik0 ( ŝa ⋅r− ŝb ⋅ ′r )∫ EC (r, ′r )
C
∑

Intensity Diffuson
D(i )

Paired amplitudes
are from the 
same realization.

Correlation Diffuson

D(c)

Paired amplitudes
are from distinct
realizations.



The average transmission coefficient involves the DiffusonTab D(i ) (r, ′r )

Tab = dr d ′r D(i ) (r, ′r )∫

The angular correlation function involves the Diffuson D(c) (r, ′r )

ψ abψ ′a ′b

2
= dr d ′r ei k0 ∆ŝa ⋅r−∆ŝb ⋅ ′r[ ]∫ D(c) (r, ′r )

∆ ŝa,b = ŝa,b − ŝ ′a , ′bwith 



and         are obtained from the iteration of  single scattering.
For the atom-photon system, single scattering is obtained from the

dipolar interaction energy           where    is the atomic dipole operator
and     the electric field.

D(i ) D(c)

Intensity Diffuson :                                      and          D(i ) m1 = m3 and m2 = m4 ε̂1 = ε̂3 and ε̂2 = ε̂4



Cab ′a ′b =
ψ abψ ′a ′b

∗
2

TabT ′a ′b

Intensity fluctuations:

Cabab =
δTab

2

Tab
2 Rayleigh law: 

Cabab = 1 ⇔ δTab
2 = Tab

2

X ≡
L

L0
(c )

⎛
⎝⎜

⎞
⎠⎟

2

− π 2 and L0
(c ) = D τ 0

(c )

 
Cabab ; π 4 eXΛD L2

−1
X

⎛

⎝
⎜

⎞

⎠
⎟

2

Inelastic mean free time, Doppler 
shift, finite size absorption…
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Part II

• Cooperative effects between atoms: 
Superradiance-Diffusion coefficient and group 
velocity.

Aharon Gero and E.A. Technion



Scalar waves in random media

Monochromatic electromagnetic wave (     ) at the scalar 
approximation :           is the electric field solution of  the
Helmholtz wave equation:

Disorder potential is continuous : fluctuations of dielectric 
constant

Gaussian white noise model: 
easy to do calculations

ψ (r)
λ0

−∆ψ (r) − k0
2µ(r)ψ (r) = k0

2 ψ (r)

V (r) = −k0
2µ(r) = δε ε

V (r) = 0

V (r)V ( ′r ) = Bδ (r − ′r )

Relate to scattering properties of individual scatterers



Edwards model for disorder:       identical localized, randomly 
distributed scatterers,

The potential         is short range compared to      so that 

In weak potential limit (Born approximation) the scattering 
cross section of a single scatterer is

V (r) = v(r − rj )
j=1

Ni

∑

Ni

v(r)

v(r − rj ) = v0δ (r − rj )

σ =
1

16π 2 v2 (k − k ') ≈
v0

2

4π

λ0

and                     where B = ni v0
2 ni =

Ni

Ω
= density of scatterers



Average amplitude of the field

Solution of the wave eq. with a source         is given in terms
of the Green’s function              :

Solution of 

may be expressed in terms of the free Green’s function        
without scattering potential:

Disorder average restores translational invariance and the Fourier 
transform of the Green’s function is 

ψ (r) = dr ' j(r ')G(r,r ')∫

j(r)
G(r,r ')

G0 (r,r ')

∆r + k0
2−V (r)⎡⎣ ⎤⎦G(r,ri ) = δ (r − ri )

G(r,r ') = G0(r,r ')− dr1∫ G(r,r1)V(r1)G0(r1,r ')

G(r,r ')

G(k)



G(k) = G0 (k) 1+ Σ(k)G(k)⎡⎣ ⎤⎦

Σ(k)

and the self-energy is given by the sum of irreducible scattering 
events

G(k) can be expressed in terms of the self-energy          as

The main contribution to the self-energy         neglects interference 
effects between scatterers,  

Σ(k)

In real space:



The self-energy is proportional to the average polarizability of the 
scattering medium, so that its real part gives the average index of 
refraction

and the group velocity of the wave inside the medium, 

η = ck
ω

η = 1−
c
ω

⎛
⎝⎜

⎞
⎠⎟

2

ReΣ1

⎛

⎝
⎜

⎞

⎠
⎟

1
2

vg ≡
dω
dk

c
vg

= η +ω
dη
dω

=
1
η

1−
c2

2ω
⎛
⎝⎜

⎞
⎠⎟

d
dω

ReΣ1

⎛

⎝⎜
⎞

⎠⎟



We have used a model of disorder where scatterers are independent :    
Edwards model or white noise

In atomic gases, there are cooperative effects (superradiance, 
subradiance) that lead to an interacting potential between pairs of atoms.

Dicke states and pairs of degenerate two-level atoms:

g = Jg = 0, mg = 0

e = Je = 1, me natural width Γ

Pair of two-level atoms in their ground state + absorption of a photon.
Unperturbed and degenerate 0-photon states 

Singlet Dicke state : 00 =
1
2

e1g2 − g1e2⎡⎣ ⎤⎦

Triplet Dicke states :

11 = e1e2 , 10 =
1
2

e1g2 + g1e2⎡⎣ ⎤⎦ , 1−1 = g1g2

T
e
x
t



Second order in perturbation theory in the coupling to photons

 

εVe(r) = −ε
hΓ
2

cosk0r
k0r

Γ(ε ) = Γ 1+ ε
sink0r

k0r
⎛
⎝⎜

⎞
⎠⎟

1
2

e1g2 − g1e2⎡⎣ ⎤⎦

Subradiant state

1
2

e1g2 + g1e2⎡⎣ ⎤⎦

Superradiant state ε = +1 ε = −1

Γ(+1) = 2Γ Γ (−1) = 0
Photon is trapped by 
the two atomsCharacteristics of superradiance

Superradiance

(attractive at short distance)
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Superradiance and Cooperon

• Scattering diagram of a photon on a 
superradiant state is analogous to a Cooperon

infinite number of 
exchanges of a virtual 
photon



Multiple scattering and superradiance
Consider multiple scattering of a photon by atoms in superradiant states,
i.e. coupled by the attractive potential 
Use Edwards model to calculate the self-energy         in the weak 
disorder limit 

Ve (r) ∝ −1
r

 k0 l? 1
atomic density
maximum 

separation between
the two atoms.

Index of refraction:

Elastic mean free path
Group velocity
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Absence of divergence of the group 
velocity

• The group velocity at resonance is

Divergence of the group 
velocity for scattering by 

independent atoms

Group velocity
for superradiant 

states
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Weak disorder:
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Part III

• Interplay between disorder and non-
linearities : localization of matter 
waves.

Sankalpa Gosh, IIT New Delhi
Ziad Muslimani, U. Florida
E.A. Technion



One-dimensional and interacting BEC’s in a                
random potential

Dimensionless Gross-Pitaevskii equation (mean field approx.)

with the dimensionless interaction parameter

Interesting cases:

1. Thomas-Fermi limit:          kinetic energy and                   

2. Bright soliton limit: in the absence of confinement and for     

Stationary limit:

: scattering lengthconfining potential: 



In the presence of disorder characterized by its 
amplitude and Fourier spectrum

Relative weight between disorder and 
nteraction characterized by the ratio:

between average kinetic energy 
and interaction energy of the cloud
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Thomas-Fermi limit

Stationary solutions:

Time-dependent solution:

Larger kinetic energy:
localization effects

Larger density:
larger interaction energy:
no Anderson localization
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Bright soliton 

Time-dependent solution

Stationary solution:  
keep the same shape as 
in the absence of 
disorder but with a 
broader width.

Weak disorder Strong disorder



Conclusions

1. Intensity fluctuations in multiple scattering constitute a genuine 
mesoscopic effect which allows to obtain accurate spectroscopic 
measurements of atomic structures.

2. Cooperative effects such as Superradiance play in important role and 
cannot be neglected especially if we are interested in reaching the 
photon localization threshold. They give rise to long range forces that 
modify substantially the nature and description (e.g. critical exponents
or critical dimensionality) of the Anderson localization transition.

3. Non linearities obscure localization effects due to disorder : 
Photon localization seems more appropriate than localization of 

matter waves (except perhaps for well tuned Feshbach resonances).
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Some relevant bibliography
• E. Akkermans and G. Montambaux, Physique 

mesoscopique des electrons et des photons, (Paris, 
EDP Sciences 2004) 618 pages. English translation, 
Mesoscopic physics of electrons and photons
(Cambridge University Press) Fall 2006, 658 pages. 

• A short review is available in E. Akkermans and G. 
Montambaux, J. Opt. Soc. Am.  B 21, 101 (2004)

• Superradiance and transport of diffusing photons, A. 
Gero and E. Akkermans, PRL 96, 093601 (2006)
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