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We present an experimental and theoretical study of the polarized photoluminescence spectrum of single
semiconductor quantum dots in various charge states. We compare our high resolution polarization sensitive
spectral measurements with a many-carrier model which we developed for this purpose. The model considers
both the isotropic and anisotropic exchange interactions between all participating electron-hole pairs. With this
addition, we calculate both the energies and polarizations of all optical transitions between collective, quantum
dot confined charge-carrier states. We succeed in identifying most of the measured spectral lines. In particular,
the lines resulting from singly, doubly, and triply negatively charged excitons and biexcitons. We demonstrate
that lines emanating from evenly charged states are linearly polarized. Their polarization direction does not
necessarily coincide with the traditional crystallographic direction. It depends on the shells of the single
carriers, which participate in the recombination process.
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I. INTRODUCTION

Quantum dots �QDs� are nanostructures which confine
electrons and holes in all three dimensions. This confinement
results in a discrete spectrum of single-carrier energy levels
and spectrally sharp optical transitions between them. The
photoluminescence �PL� spectrum of single self-assembled
semiconductor QDs is usually composed of many discrete
spectral lines. The variety of lines originates from optical
transitions between various many-carrier configurations and
different QD charge states.1–5

Several experimental techniques are used for identifying a
given spectral line by associating it with a specific optical
transition. These techniques include excitation intensity de-
pendent PL spectroscopy, which distinguishes between
single-exciton and multiexciton transitions,6 and second or-
der intensity cross-correlation measurements, which deter-
mines the temporal sequence by which the emission occurs
in general,6 and identifies radiative cascades in particular.7,8

PL excitation3,9 �PLE� as well as electro-PL10 and
magneto-PL11,12 spectroscopies are used to further provide
information regarding the QD’s charge state during the opti-
cal transitions. Unfortunately, even when all of these meth-
ods are combined, occasionally, some lines still remain
unidentified.13

Polarization sensitive PL and PLE spectroscopies have
also been applied to aid in line identification. Most notably,
the neutral exciton and neutral biexciton lines are split into
two cross linearly polarized doublets,14–16 while singly
charged excitonic lines are unpolarized, and display large
circular polarization memory9,17,18 when excited quasireso-
nantly. In this work, we focus our studies on polarization
sensitive PL spectroscopy of single semiconductor quantum
dots. We carefully measure the polarization of the PL spectra
under various excitation conditions. Our results are then
compared with, and analyzed by, a theoretical many charge-
carrier model. The method used for the calculation of the
many-carrier states and optical transitions between them is

the full-configuration-interaction method.19 In particular, our
model includes the electron-hole exchange interaction
�EHEI�.11,20,21 We show that the model provides a very good
understanding of the experimental measurements.

The paper is organized as follows: In Sec. II, we describe
the sample and the experimental setup used for the polariza-
tion sensitive PL spectroscopy. In Sec. III, we describe the
theoretical model, and in Sec. IV, we compare theoretical and
experimental results. A short summary is given in Sec. V.

II. EXPERIMENTAL METHODS

A. Sample

The sample was grown by molecular beam epitaxy on a
�001� oriented GaAs substrate. One layer of strain-induced
InGaAs QDs was deposited in the center of a one wavelength
GaAs spacer layer. The height and composition of the QDs
were controlled by partially covering the InAs QDs by a
30 Å thick layer of GaAs and by subsequent 30 s growth
interruption22 to allow diffusion of In �Ga� atoms from �into�
the strained islands. The growth resulted in InxGa1−xAs QDs
whose exact shape, lateral size, composition, and strain pro-
file are unknown.

The sample was not rotated during the growth of the
strained layer, resulting in a variable density of QDs across
the sample’s surface.6 The estimated density of QDs in the
areas that were measured is 108 cm−2.

The optical microcavity was formed by distributed Bragg
reflecting �DBR� stacks of 25 and 11 periods of alternating
AlAs and/or GaAs quarter wavelength layers below and
above a GaAs spacer layer, respectively, giving a Q factor of
�500. The spacer layer was grown to a width close to the
wavelength in matter of the light emitted from the QDs due
to ground state electron-hole �e-h� pair recombinations �1�
cavity�. The microcavity improves the efficiency of photon
collection, but limits the energy in which photon collection is
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possible. In particular, emission of photons with energies
smaller than the microcavity mode energy is forbidden.
Therefore, the density of QDs which emit efficiently is
roughly 2 orders of magnitude lower than their actual
density.23 In order to electrically charge the QDs, a p-i-n
junction was formed by n doping the substrate and the bot-
tom DBR, and p doping the top DBR, while leaving the
GaAs spacer intrinsic. An extra AlAs barrier was grown in-
side the GaAs spacer between the p-type region and the
QDs. This barrier prolongs the hole’s tunneling time into the
QDs at forward bias and out of them at reverse bias, with
respect to the tunneling time of the electron. This enables
negative charging upon forward bias and positive charging
upon reverse bias.

The top electrical contact of the sample was made of a
semitransparent layer of indium-tin oxide in order to provide
optical accessibility. The sample was not patterned or pro-
cessed laterally to prevent obscuration of the QD emission
and its polarization.

B. Optical characterization

For the optical measurements, we used a diffraction-
limited low temperature confocal optical microscope.2,24 The
sample was mounted on a cold finger of a He-flow cryostat,
maintaining a temperature of about �20 K. A X60 in situ
microscope objective was used in order to focus cw or pulsed
laser light at normal incidence on the sample surface. The
emitted light was collected by the same microscope objec-
tive. The objective was accurately manipulated in three di-
rections using computer-controlled motors. The collected
light was spatially filtered, dispersed by a 1 m monochro-
mator, and detected by a nitrogen-cooled charge coupled de-
vice �CCD� array detector. The system provides diffraction-
limited spatial resolution, both in the excitation and the
detection channels, and spectral resolution of about 15 �eV
per CCD camera pixel.

The polarization of the emitted light was analyzed by two
computer-controlled liquid crystal variable retarders and a
linear polarizer in front of the monochromator. The degree of
polarization of the emitted light and its polarization state
were deduced by six independent measurements of differ-
ently polarized spectra and calculation of the Stokes
parameters.25 Throughout this work, we use the symbol H

�V� for linear light polarization along the �11̄0� ��110�� crys-
tallographic axis of the sample. These in-plane orientations

are determined by cleaving. The symbol D= 1
�2

�H+V� �D̄
= 1

�2
�H−V�� is used for the 45° �−45° � diagonal polarization,

while the symbol R= 1
�2

�H+ iV� �L= 1
�2

�H− iV�� is used for
the right �left� hand circular polarization.

A general state of polarization can be represented as a
vector inside the Poincaré sphere. Figure 1 shows a vector in
the Poincaré sphere and its relation to the shape and orienta-
tion of the polarization. In Fig. 2, we show the PL spectra
from a single QD as a function of the voltage applied to the
sample. The QD was excited by a cw 1.47 eV Ti:sapphire
laser light. The current through the device as a function of
the voltage is also shown. The specific structure of our
sample is such that at forward biases �above �7 V� the QDs

are negatively charged, as clearly evident by the abrupt step
in the emission energy. This injection induced charging
mechanism is similar to that reported earlier.4,10 At large re-
verse biases, however, the QD is increasingly positively
charged due to vast differences between the tunneling-out
rates of electrons and holes.9,26

The spectral line identification in Fig. 2 is based on the
order by which the lines appear and disappear as the voltage
on the device increases. Information gained from excitation
intensity dependence PL spectroscopy �not shown� and po-
larization sensitive spectroscopy �see below� is also used for
this purpose.

In Fig. 3, we present the measured polarization sensitive
spectra for the bias voltages indicated by horizontal lines in
Fig. 2. We note here that the spectral shapes of the observed
negatively charged lines and, in particular, the fine structure
components of X−2, XX−2, and X−3 are similar to those ob-
served also in previous works.4,27

In Fig. 3�a�, the QD was, on average, neutral. The neutral
as well as the singly negatively and singly positively charged
exciton and biexciton spectral lines are observed. The corre-
sponding polarization spectra projected on the linear H-V

and on the linear D-D̄ axes of the Poincaré sphere are shown
in Fig. 3�b�. The projections are calculated by subtracting the
two cross-linearly polarized spectra divided by their sums.
Division by zero is avoided by adding a constant equal to the
standard deviation of the background noise to each spectrum.
The projection on the R-L axis of the Poincaré sphere was
zero to within our experimental uncertainty �not shown�.
From these two projections, the actual magnitude and direc-
tion of the linearly polarized lines can be straightforwardly
determined. In Figs. 3�c� and 3�d�, we present the PL spec-
trum and its linear polarization projections, respectively, for
a bias voltage of 7.15 V at which the QD was, on average,
negatively charged with two to three electrons.
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FIG. 1. �a� The polarization state represented as a vector P on
the Poincaré sphere. �b� The same polarization state represented as
the loci of points that the electric field of the light obtains, during
one period, in a plane perpendicular to its propagation direction.
s0,. . .,3 are the experimentally determined four Stokes coefficients
�Ref. 25�.
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III. THEORETICAL MODEL

The model that we developed is a relatively simple many-
carrier model which includes the electrostatic interactions
between the QD confined charge carriers. Unlike previous,

similar models2,5,19 which neglected the EHEI, our model
includes it. This interaction is indeed orders of magnitude
smaller than the direct Columbic terms. Spectrally, it is only
significant when the fine excitonic structure of the spectrum
is considered. However, when the polarization spectrum is
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FIG. 2. �a� Measured PL spectra from a single
SAQD as a function of the bias on the device.
The QD was excited by 1.47 eV cw laser light.
The various spectral lines are labeled by X �XX�
for single �double� initial e-h pair occupation and
a superscript which denotes the QD charge state
during the recombination. The horizontal solid
lines mark the voltages for which spectra are pre-
sented in Fig. 3. �b� The current through the de-
vice as a function of the bias voltage.
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FIG. 3. �Color online� ��a� and �c�� Measured
PL spectrum for bias voltages of 0 and 7.15 V,
respectively. The energy is measured from the en-
ergy of the X0 line. ��b� and �d�� PL polarization
spectra for bias voltages of 0 and 7.15 V, respec-
tively. The black �orange� lines present the polar-

ization as projected on the H-V �D-D̄� axis of the
Poincaré sphere. Vertical dash lines at various
spectral lines are drawn to guide the eye.
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considered, this anisotropic interaction20,28,29 is by far the
leading term.

Our model is constructed as follows: We first solve a
single-carrier problem for the electron and for the hole in the
QD. In this manner, we obtain a consistent set of single
charge-carrier energies and associated wave functions. We
then use this set of energies and wave functions in order to
construct a many-carrier second quantization Hamiltonian,
which includes the electrostatic interaction between the con-
fined carriers. In particular, we consider the EHEI which is
introduced into our model using a semiphenomenological ap-
proach. The many-body Hamiltonian is then diagonalized,
thus obtaining the collective many-carrier energies and wave
functions. We then use the dipole approximation to calculate
the optical transitions between the many-carrier states for a
given light polarization. From these calculations, we finally
construct the polarization sensitive emission spectrum, which
is used for comparison with the experimental measurements.

A. Single-carrier problem

The single-carrier energies and wave functions are calcu-
lated using the slowly varying envelope-function approxima-
tion �SVEFA�.30 We use one �doubly Kramers degenerate�
band for the electron and one band for the hole without band
mixing �“one-band SVEFA”�. This approximation results in
two independent Schrödinger equations for the envelope
functions of the electron and that of the hole. The potential of
the QD is approximated by a finite three-dimensional poten-
tial well in the form of a rectangular slab, with the long
�short� side oriented along the H �V� direction, and with
different dimensions and offsets for the two types of carriers.
The parameters that we used are listed in Table I. We solved
the differential equations numerically, using the finite differ-
ences method, thus obtaining the single particle eigenener-
gies and envelope wave functions.

B. Many-carrier Hamiltonian

The second quantization many-carrier Hamiltonian for the
QD containing both electrons and holes is given by2,19

Ĥ = Ĥ0 + Ĥee + Ĥhh + Ĥeh, �1�

where Ĥ0 is the single-carrier Hamiltonian, Ĥee �Ĥhh� is the
electron-electron �hole-hole� interaction Hamiltonian, and

Ĥeh = �
i1,i4,j2,j3

�− Ci1,j2,j3,i4
ehhe + Cj2,i1,j3,i4

hehe �âi1
† b̂j2

† b̂j3
âi4

�2�

is the electron-hole interaction Hamiltonian. The electron

creation operator âi
† and the hole creation operator b̂j

† sepa-
rately satisfy the regular fermionic anticommutation rela-
tions. The quantities of the form Cn1,n2,n3,n4

p1p2p3p4 , where p1,. . .,4 can
be either e �for electron� or h �for hole�, and the indices
n1,. . .,4 run over the appropriate states, are the Coulomb inter-
action integrals.

Computation is only feasible with a limited number of
single-carrier states. Therefore, only the first 12 lowest en-
ergy electron and hole states are usually considered in our
calculations.

For the single-carrier wave functions which are calculated
using the SVEFA, the Coulomb integrals can be separated
into long-range �inter-unit-cell� and short-range �intra-unit-
cell� integrals. The long-range integral can be expanded into

a Taylor series in r�1−r�2− �R� 1−R� 2�, where R� 1�2� is the lattice
vector nearest to the position vector r�1�2�. In most cases, the
zeroth order of that series is much larger than the other or-
ders, and also larger than the short-range integral.30 For the
one-band SVEFA, the zeroth order of the long-range interac-
tion is given by30

Cn1,n2,n3,n4

p1p2p3p4 = �p1,p4
�p2,p3

�Sn1
,Sn4

�Sn2
,Sn3
� � d3r1d3r2

��n1

p1*�r�1��n2

p2*�r�2�
e2

�	r�1 − r�2	
�n3

p2�r�2��n4

p1�r�1� ,

�3�

where �n
p�r�� is the envelope function of the nth state of a

single carrier of type p, e is the electron charge, � is the
dielectric constant of the QD material, and Sn is the �pseudo�
spin of state n.

The rectangular slab shape of our model QD is symmetric
under reflections about planes perpendicular to its main sym-
metry axes. Therefore, single-carrier envelope functions are
either odd or even under these reflections. The term 1

	r�1−r�2	 is
even under the application of the same reflection for both r�1
and r�2. Therefore, the parity of the integrand in Eq. �3� under
such a “double reflection” is determined by the parities of the
envelope functions only. Whenever the integrand is odd un-
der a double reflection, the integral vanishes. We use these
symmetry considerations in order to reduce the required
computation resources.

TABLE I. The QD parameters used to calculate the single-
carrier energies and envelope wave functions.

Parameter Value Units

QD shape Rectangular slab

QD size for the electron

�Length�width�height� 244�232�34 Å

Hole/electron length ratio 0.72

Electron effective mass 0.065a m0

Hole z-direction effective mass 0.34a m0

Hole in-plane effective mass 0.25 m0

Electron potential offset −324 meV

Hole potential offset −108 meV

GaAs band gap 1.519b eV

Band gap of QD material 1.087 eV

In0.5Ga0.5As dielectric constant 13.8b

Ep of In0.5Ga0.5As 25.5a eV

aReference 31.
bReference 32.
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C. Electron-hole exchange interaction

The zeroth order term in the long-range EHEI, Cj2,i1,j3,i4
hehe

�Eq. �3��, equals zero. Therefore, higher order terms in the
long-range as well as the short-range exchange integral must
be considered.29,33

The pseudospin structure of the EHEI for the lowest en-
ergy envelope functions is deduced from symmetry consid-
erations �the method of invariants�.11,20 The SVEFA requires
that the same considerations hold also for any other combi-
nation of envelope functions.29 Thus, we express the
electron-hole-exchange terms Cj2,i1,j3,i4

hehe as follows:

Cj2,i1,j3,i4
hehe =

1

2

�0

nj2,ni1,nj3,ni4 �1
nj2,ni1,nj3,ni4 0 0

�1
nj2,ni1,nj3,ni4*

�0
nj2,ni1,nj3,ni4 0 0

0 0 − �0
nj2,ni1,nj3,ni4 �2

nj2,ni1,nj3,ni4

0 0 �2
nj2,ni1,nj3,ni4*

− �0
nj2,ni1,nj3,ni4

� , �4�

where nik represents the index of the envelope function be-
longing to state number ik. The e-h pseudospin base for the
matrix are the functions �	↓⇑, 	↑⇓, 	↑⇑, 	↓⇓�.

The terms �0 and �2 are mainly affected by the short-
range interaction.20,29 This intra-unit-cell interaction is not
sensitive to the details of the slowly varying envelope wave
functions.29 Therefore, we assume that all the nonvanishing
�0

n2,n1,n3,n4 and �2
n2,n1,n3,n4 terms have the same values, �0 and

�2, respectively. The values that we used were chosen such
that the calculated X0 spectrum would fit the magneto-PL
measured X0 spectrum.12 Since the short-range interaction is
even under double reflections,29 the symmetry considerations
which aid in identifying the vanishing Coulomb integrals
apply also in identifying the vanishing EHEI terms �0 and
�2.

The �1
n2,n1,n3,n4 integrals are mainly affected by the second

order terms in the expansion of the long-range interaction,
which are given by20,29

1

2
�1

n2,n1,n3,n4 =� � �h
n2*�r�1��e

n1*�r�2�
e2�� ↓,⇑

† �1 − 3n̂n̂†��� ↑,⇓

�	r�1 − r�2	3

��h
n3�r�2��e

n4�r�1�d3r1d3r2, �5�

where n̂ is a unit vector in the direction of r�1−r�2, 1 is the
3�3 unit matrix, and �� ↑,⇓ is the valence-conduction band
dipole matrix element. The dipole matrix element ��� � is re-

lated to the momentum matrix element �M� � through the par-
ticle’s mass and the energy difference between the dipole
states34 �the band gap energy Eg�,

�� ↑,⇓�↓,⇑� =
− i	

m0Eg
M� ↑,⇓�↓,⇑�, �6�

where the conduction-valence band momentum matrix ele-
ments are given by28,31

M� ↑,⇑ = M� ⇓,↓ = 0� , �7�

M� ↑,⇓�↓,⇑� =
i

2
�m0Ep„1,�− �i,0… , �8�

where Ep is the bulk material conduction-valence band inter-
action energy,31,35 and the spin quantization axis is chosen
along the �001� �or z� direction. For compatibility with the
experimentally defined axes, we choose the major axis of the

QD, believed to be along the �11̄0� crystallographic axis,14 as
the x �or H� direction.

Substituting Eqs. �6�–�8� into Eq. �5� yields

�1
n2,n1,n3,n4 =

3e2	2Ep

2�m0Eg
2 � � �h

n2*�r�1��e
n1*�r�2�

�
�y1 − y2�2 − �x1 − x2�2 + 2i�x1 − x2��y1 − y2�

��x1 − x2�2 + �y1 − y2�2 + �z1 − z2�2�5/2

��h
n3�r�2��e

n4�r�1�d3r1d3r2. �9�

One can now, in principle, compute these integrals using the
single-carrier envelope wave functions that were numerically
obtained earlier. This approach demands a lot of computation
resources in order to obtain reliable accuracy. Therefore, we
choose to approximate the wave functions analytically by
using in-plane harmonic oscillator functions36 instead of the
numerical ones �see Appendix A�. With these approxima-
tions, the six dimensional integrals are reduced into five ana-
lytical ones.37 The nonanalytical integral can be easily calcu-
lated numerically. Alternatively, for a nearly round QD, this
integral can be expanded into a power series in the aspect
ratio of the model QD, from which only terms up to the
linear order can be kept. This approach provides also impor-
tant insight. The result of this derivation for �1

1,1,1,1 is

�1
1,1,1,1 =

3�
e2	2Ep�� − 1�
8�m0Eg

2�lx
e�3�2��1 + �2

, �10�

where lx
e is the characteristic length of the electron �Gauss-

ian� wave function in the x direction �see Appendix A�, �
=0.72 is the ratio between the characteristic length of the
hole wave function to that of the electron, and �=0.96 is the
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length ratio between the short and long sides of the rectangle
�the aspect ratio�.

For lx
e=72 Å, which gives the same s-px energy separation

for the electrons as the numerical wave functions, we calcu-
lated the �1 terms, which we list in Table II. In the table, we
also list the values that we could directly deduce from the
measured fine structure splitting of the X0 and X−2 lines
��1

1,1,1,1 and �1
1,2,1,2, respectively�. The agreement, as can be

seen in the table, is remarkable.
We note that the ratios �1

n2,n1,n3,n4 to �1
1,1,1,1 can be quite

large for small deviations from the symmetrical case. In par-
ticular, there are significant sign variations between the vari-
ous terms. The expressions for these ratios as functions of �
and � �for 	1−�	1� are also given in Table II.

D. Optical transitions: Polarization selection rules

The optical transition operator in the dipole approxima-
tion is expressed as19

P�̂ = �
i,j

p� ijâib̂j . �11�

Under the one-band SVEFA, the transition momentum vector
p� ij is given by

p� ij = M� Sj,Si� �i
e��r��� j

h�r��d3r . �12�

The momentum matrix elements M� Sj,Si
are given explicitly

by Eqs. �7� and �8�.
The rate of an optical transition38 centered at an energy �,

for a certain polarization e�, is given by

�e���� =
4�n�

3	m0
2c2�

i,f
	�f 	e� · P�̂ 	i	2��,�i−�f

Fi, �13�

where �= e2

	c � 1
137 is the fine structure constant, and n is the

refraction index of the QD material. The indices i and f run
over all initial states 	i and final states 	f. �i �� f� is the
energy of the initial state 	i �final state 	f�. Fi is the popu-
lation probability of the initial state 	i. For the bright neutral
exciton transitions, we calculate

	�0	x̂ · P�̂ 	XH
0 	2 = 	�0	ŷ · P�̂ 	XV

0	2 =
m0Ep

2
�1.44� . �14�

The other two transitions from the bright states and the tran-
sitions from the “dark” excitonic states vanish. Assuming
equal population probabilities for the bright and dark X0

states, we get a total X0 rate of �0.78 ns�−1, in agreement
with the measured lifetime.7 The calculated rates of all other
optical transitions are given in units of this total X0 rate.

For example, in Fig. 4 we present a diagram of the calcu-
lated many-carrier energy levels and the optical transitions
between them, which lead to the spectrum resulted from ex-
citonic transitions in a triply negatively charged QD �X−3�.
As can be deduced from Fig. 4, the X−3 line results from
three initial levels �each doubly Kramers degenerate�. These
levels contain mainly the following single-carrier states: one
s-shell hole, two s-shell electrons, and one px and one py
electron, where the p-shell electrons are in their triplet con-
figurations. These open shell configurations are the lowest in

TABLE II. Calculated, measured, and estimated electron-hole
exchange interaction terms �in �eV�. The measured and estimated
terms were used for calculating the PL spectra. The calculated ratios
are given in terms of the hole/electron length ratio � and the aspect
ratio �, for 	1−�	1.

Parameter Used in fit Calculated Ratio to �1
1,1,1,1

�0 207

�2 21

�1
1,1,1,1 −25 −15

�1
1,2,1,2 196 118 �2

1+�2
2�−1
�−1

�1
1,3,1,3 −222 −133 �2

1+�2
�−2
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3 3
2 2 1,2,31.0 , e 3 1

2 2 1,2,31.0 , e

1 1 4
1 1
2 2 1,2,30.71 0.69, e

s + ↑ ↓ ↑

1 1
2 2 1,2,31.0 , e
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FIG. 4. �Color online� Schematic description of the calculated
many-carrier energy levels, and their spin wave functions, in which
an optical transition between them results in the X−3 spectral lines.
Each transition rate �in units of the total X0 rate� and its degree of
polarization are indicated �if absent, the transition is unpolarized�.
Only one of the two Kramers states is shown for each level �for
notation, see Appendix B�. The number before each component
indicates its amplitude. Components which are irrelevant to the po-
larization degree and have amplitudes below 0.1 are not included.
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energy, since the energy difference between the px and py
single electron states is smaller than their exchange interac-
tion. The degeneracy between the triplet configurations is
removed by the EHEI with the hole. Our experimental data
can only be explained with these open p-shell occupation in
mind �see below�.

The final states are mainly composed of three single elec-
tron states: one in the s shell, one in the px shell, and one in
the py shell. The expected eightfold degeneracy is partially
removed by the electron-electron exchange interaction,
which leaves a fourfold degenerate ground state �we found
no experimental evidence for an anisotropic e-e exchange
interaction9 which would have further reduced this degen-
eracy�. The calculated optically allowed transitions between
the initial and final states and their polarization selection
rules are given in Fig. 4. The highest energy transition is
finely structured from three lines with intensity ratios of ap-
proximately 3:2:1. These intensities were previously deduced
using a simple model by Urbaszek et al.4

If the ground p shell was occupied by two electrons, the
X−3 transitions would have generated a single almost unpo-
larized spectral line, very similar to that due to the X−1 tran-
sitions. This is in clear contradiction with the measurements
presented in Fig. 3, Fig. 8, and previous measurements on
similar QDs.4,27

Another example is provided in Fig. 5, where we show
the levels’ diagram and optical transitions, which result in the
biexciton recombination in a doubly negatively charged QD
�XX−2�.

Here, the initial states are mainly composed of the same
single-carrier states as the initial states of the X−3, except for
the addition of one more s-shell hole. Unlike the X−3, the
paired s-shell holes do not remove the degeneracy of the
triplet configuration of the p-shell electrons. Similarly, the

final states are mainly composed of the same single electron
states as the final states of the X−3, except for an additional
one s-shell hole. The EHEI between the unpaired hole and
the electrons completely removes the degeneracy between
the electron states. As a result, there are eight low energy
states �the energy differences between the lowest and be-
tween the highest pairs of states are too small to be noted� to
six of which optical transitions are allowed. Similar to the
case of the X−3, the optical spectrum is finely structured from
three pairs of lines with total intensity ratios of approxi-
mately 3:2:1 as previously deduced by the simple consider-
ations of Urbaszek et al.4 A major difference between the
two examples is in their polarization selection rules. In the
first case �X−3�, the total spin is half-integer and Kramers
degeneracy prevails. Therefore, only partial linear polariza-
tion is expected. In the second case �XX−2�, the total spin is
an integer. In this case, full linear polarization is expected,
just like in the case of the neutral single exciton. Indeed, the
intermediate pair of spectral lines is fully polarized along the
QD’s primary axes.

Similar diagrams for less complicated transitions were
discussed in previous works.11,21,39 In these works, simpler
models were used. These models are sufficient only when the
EHEIs are much smaller than any other interaction. In Figs.
6�a� and 6�c�, we show the calculated spectrum for various
charge states. The corresponding H-V polarization projec-
tions are shown in Figs. 6�b� and 6�d�, respectively.

Within our simple, one-band model, the calculated D-D̄
�and, of course, the R-L� projections vanish, and therefore,
they are not shown. For the calculations, equal probabilities
for excitons and biexcitons in all charge states were
assumed.40 In the calculations, only initial configurations
within 1 meV �compatible with the experiments’ tempera-
ture� above the ground state were considered.

1 1 1 1 2,30.95 1, 1 e−⇑ ⇓ ↑ ↓ 1 1 1 1 2,30.95 1, 0 e⇑ ⇓ ↑ ↓ 1 1 1 1 2,30.95 1,1 e⇑ ⇓ ↑ ↓
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1 1 1 1
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t t⋅ ⇑ ⇓− �

26 eVµ
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1 1 1 1
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( ) ( )1 1
1 1 1 1 1 4 1 1 1 42 2
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1
3 3
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1
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⇑

( )1
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22 eVµ

2 eVµ
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, 100%0.06 V

, 100%0.06 H

1
3 3
2 2 2,30.99 , e⇑ meV

39 eVµ

1
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⇓ −

( ) ( )1 1
1 1 1 1 1 4 1 1 1 42 2

1 1 1 1
2 2 2 21,2,3 1,2,30.63 0.76, ,e e

s s⋅ ⇓ ⇑ + ⇓ ↑↓↓ ⇑ ↑↓↑− � �

FIG. 5. �Color online� Schematic description
of the calculated many-carrier energy levels, and
their spin wave functions, in which an optical
transition between them results in the XX−2 spec-
tral lines. Each transition rate �in units of the total
X0 rate� and its degree of polarization are indi-
cated �if absent, the transition is unpolarized�. All
states are shown �for notation, see Appendix B�.
The number before each component indicates its
amplitude. Components which have amplitudes
below 0.1 are not included.
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The calculated lines are convoluted with 50 �eV broad
Gaussians to account for the spectral diffusion.7 In the cal-
culation of the polarization projections, a constant back-
ground of 3.5% of the maximal intensity is added to both
cross-linearly polarized spectra. This is done in order to
mimic the effect of background noise on the measured spec-
tra �see Sec. II�.

IV. COMPARISON BETWEEN EXPERIMENTAL
MEASUREMENTS AND MODEL CALCULATIONS

In Fig. 7, we compare between the measured and calcu-
lated spectral positions of various lines. We note that the
spectrum produced by our simple model correlates with the
experimentally measured one in the energy order of the vari-
ous spectral lines. The calculated energy differences between
the various lines, however, are in most cases smaller than
those measured. Specifically, the calculated energy differ-
ences between the exciton and biexciton and between the
positive and negative trions �X+1 and X−1, respectively� are
smaller than the measured ones. This is probably a conse-
quence of the relative simplicity of our single band model41

and the lack of information about the exact shape, strain, and
composition of the QDs. With our model’s limitations, we
found it hard to simultaneously fit the biexciton binding en-
ergy and the difference between the positive and negative
trion transitions.

In Fig. 8, we compare the measured and calculated polar-
ized fine structure of various spectral lines, while in Fig. 9,
we compare the measured and calculated linear polarization
spectra for these spectral lines. We note in Figs. 8 and 9 that
the measured fine structures are reproduced quite nicely by
our model calculations. In particular, the calculated number
of fine structure components, their relative intensities, and
their polarizations correlate with the measured values.

On the other hand, while the calculated polarization spec-
tra are always polarized along the H-V axis of the Poincaré
sphere, the measured ones are sometimes rotated. Few spe-

cific lines �see below� are polarized along the �V+D̄�-�H
+D� axis.

The calculated energy differences between the fine struc-
ture components of a given spectral line are sometimes larger
than the measured values. Particularly, the calculated fine
structure splittings between the components of the X−3 line
and the calculated splitting between the unpolarized and po-
larized doublets of the X−2 line are larger than the measured
ones. We believe that this may be a consequence of the �0
dependencies on the envelope wave functions, which are ne-
glected in our model.

In the absence of polarization memory �which requires
quasiresonant polarized excitation9�, and in the absence of
magnetic field, the theory predicts that the spectral lines can
only present linear polarizations. This is what we observed
experimentally as well. In the theoretical model, the linear
polarization can only be oriented along the main axes of the

QD, which are usually along the crystalline directions �11̄0�
and �110�,14 which we denote by H and V, respectively. In
the experiment, however, we found that some spectral lines
are polarized along other directions. The polarization appears
in three sets of orthogonal axes: The measured polarization
of the neutral exciton line is indeed along the H-V axis of the
Poincaré sphere. A few other lines, notably the neutral biex-
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citonic transitions. Vertical dash lines at various spectral lines are
drawn to guide the eye.
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citon, the doubly charged biexciton, and the triply charged
exciton, are also polarized along this axis. Their degree of
polarization is somewhat smaller than that of the X0 lines
due to the unpolarized spectral background that they ride on.
Few other spectral lines are polarized along an axis which is
rotated clockwise by 135° relative to the H-V axis of the
Poincaré sphere.

This polarization axis, which roughly coincides with the
1
�2

�V+D̄� ��120�� and the 1
�2

�H+D� ��21̄0�� crystalline direc-
tions, appears only in lines associated with configurations
which contain one unpaired px carrier �either electron or
hole�: X−2, XX−1, and XX+1. Careful inspection of the un-
evenly polarized spectra of the X−2 line presented by Ediger

et al.27 leads to the same conclusion. Unfortunately, they did
not fully measured the polarization state of the line.

For other configurations, which contain only s carriers or
either closed shells or two unpaired p carriers �px and py�, the
polarization is along the H-V axis. In addition, we sometimes

observe lines which are polarized along the D-D̄ axis as well.
Such a spectral line is seen in Fig. 3�d�, at energy of
−2.6 meV relative to the X0 line. This relatively weak dou-
blet may result from pair recombination in doubly negatively
charged QD as deduced from its voltage dependence.

These observations are not reproduced by the simple
model that we present, probably since the model, ignores the
underlying crystal. For example, in the single band model,
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the polarization due to recombination of a px shell e-h pair is
the same as that of a py pair, which is clearly not the case.

We rule out another possible explanation42 expected in a
nearly p-shell degenerated QD. In such a QD, where the
px-py splitting is comparable to or smaller than the EHEI,
configurations containing an unpaired px carrier and those
containing an unpaired py carrier are mixed.42 This mixing
can indeed lead to recombination in linear polarizations
along axes different from the primary axes of the QD. This is
not the case here, since for nearly degenerate QDs, the fine
structures of the X−2, XX−1, and XX+1 transitions should

contain twice the number of fine structure components than
that actually observed.

One straightforward way to include the lattice will be to
solve the single electron problem using a multiband
approach.31,43 Such a model is absolutely necessary for cal-
culating the polarization selection rules in highly positively
charged QDs. There, the complicated nature of the p-shell
holes is not likely to be captured by a one-band model. The
polarization degree of the highly positively charged QD
emission lines �identified by their voltage dependence� that
we measured was marginal, while our single band model
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yields polarizations similar to those of the negatively charged
QD lines. We believe that this discrepancy results from the
inadequacy of the single band model. In addition, we note
that the highly positively charged QD lines were all mea-
sured under large electrostatic fields, which, for now, were
not considered in our model.

V. SUMMARY

We presented detailed polarization sensitive spectroscopy
of single QDs in various charge states. We developed a
many-carrier model based on single band, envelope-function
approximation, which includes the isotropic and anisotropic
electron-hole exchange interactions for the analysis of the
measured data. We calculated the PL spectrum with its fine
structure and polarizations for the exciton and biexciton op-
tical transitions in neutral, singly positively, and singly, dou-
bly, and triply negatively charged QDs. The calculations are
favorably compared with the measured polarization sensitive
PL spectra.

However, while our model can only reproduce polariza-
tions along the main axes of the QD, the experimental data
display polarizations oriented along other directions as well.
This indicates, probably, that the one-band-based model is
too simple to describe this observation.
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APPENDIX A: ANALYTICAL WAVE FUNCTIONS USED IN
THE CALCULATION OF THE �1 INTEGRALS

As model functions we used the following functions:

�1
p = 	0,0p, �2

p = 	1,0p, �3
p = 	0,1p,

�4
p = 	1,1p, �5

p = 	2,0p, �6
p = 	0,2p.

The kets of the form 	nx ,nyp stand for the two-
dimensional elliptic harmonic oscillator functions:

�x,y	nx,nyp =

Hnx� x

lp
x �Hny� y

lp
y�

�2�nx+ny�nx!ny!
lp
xlp

y
e−�1/2���x/lp

x�2+�y/lp
y�2�,

where p is the charge-carrier index �either e or h�, lp
x�y� is a

characteristic length along the x �y� direction, nx�y� is the
quantum number associated with the x �y� direction, and
Hnx�y�

is the Hermite polynomial of order nx�y�. The aspect

ratio � and the hole/electron length ratio � are defined as �

=
le
y

le
x =

lh
y

lh
x and �=

lh
x

le
x =

lh
y

le
y .

APPENDIX B: NOTATION USED FOR THE STATE
VECTORS

In Table III, we list the symbols and abbreviations used in
writing the spin state vectors.
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